PKPM参数设置
- 格式:docx
- 大小:34.28 KB
- 文档页数:10
PKPM参数设置PKPM(鹏凯测定物性分析与计算程序)是一种广泛应用于土木工程结构设计中的计算程序,它能够对结构进行受力分析、变形计算以及稳定性分析等,并可以根据需要进行参数设置。
下面将介绍一些常见的PKPM参数设置。
1.结构类型设置:PKPM能够分析各种类型的结构,包括梁、柱、板、桁架等。
在进行计算之前,需要选择结构类型,并设定相关参数,如结构的材料属性、截面形状和尺寸等。
2.受力边界条件设置:在进行结构分析时,需要设定结构的受力边界条件,包括支座类型、受力方向和受力大小等。
支座类型可以选择固定支座、弹性支座或自由支座。
受力方向和大小应根据具体情况进行设置,一般需要根据结构的受力与约束情况进行考虑。
3.材料属性设置:PKPM可以对多种材料进行分析,如钢材、混凝土和木材等。
在进行计算之前,需要设定材料的物理性质,如弹性模量、抗弯强度和抗压强度等。
这些参数可以根据实际情况选择合适的数值,以保证计算结果的准确性。
4.截面参数设置:对于梁、柱等结构,需要设定截面的几何形状和尺寸。
常见的截面形状包括矩形、圆形、T形等,而尺寸可以通过设定宽度、高度、厚度等参数来确定。
在设定截面参数时,需要根据结构的实际形态和受力情况进行选择,以保证计算的准确性。
5.荷载设置:在进行结构分析时,需要考虑结构所受到的外部荷载,如重力荷载、活荷载以及风荷载等。
在设定荷载参数时,需要根据结构的使用要求和设计规范进行选择。
可以根据实际情况设置荷载的种类、大小和分布等。
6.稳定性分析参数设置:在进行结构稳定性分析时,需要设定相关参数,如屈曲长度系数、曲率半径等。
这些参数可以根据结构的几何形状和受力情况进行选择,以保证计算结果的准确性。
总之,PKPM参数设置是进行结构分析与计算的重要环节,合理的参数设定可以保证计算结果的准确性和可靠性。
不同的结构类型和受力条件需要设置不同的参数,设计人员应根据实际情况选择适当的参数值,并遵循相关的设计规范和标准,以保证结构的安全可靠性。
PKPM参数设置规范详解PKPM是一种常用的结构分析和设计软件,具有参数设置功能,可以根据不同的需求进行定制。
本文将详细介绍PKPM参数设置的规范,帮助用户更好地使用该软件。
首先需要明确的是,参数设置是PKPM软件中非常重要的一项功能,它直接影响到分析结果的准确性和可靠性。
因此,在进行参数设置时,需要遵循一定的规范,以确保分析结果的准确性。
一、参数设置的原则:1.合理性原则:设置的参数应符合实际情况,反映结构的真实状态,不能过于乐观或过于保守。
2.一致性原则:参数设置应与其他设计参数相一致,确保整个设计的协调性。
3.严谨性原则:遵循规范和标准,确保参数设置的合理性和准确性。
二、常见参数设置:1.材料参数:PKPM软件中提供了各类结构材料的参数设置,包括弹性模量、泊松比、抗拉强度等。
在设置材料参数时,应根据实际材料的性质和试验数据进行选择。
2.几何参数:几何参数包括构件的尺寸、形状等。
在设置几何参数时,应确保准确、一致,并考虑对结构响应的影响。
3.工况参数:工况参数包括荷载、边界条件等。
在设置工况参数时,应根据结构的使用状况和设计要求进行选择,并保持与其他设计参数的一致性。
4.计算参数:计算参数包括求解方法、计算精度等。
在设置计算参数时,应根据结构类型和分析要求进行选择,并保持计算结果的稳定性和可靠性。
三、参数设置的步骤:1.分析问题的定义:首先需要明确分析的目的和要求,确定分析的类型和范围。
2.数据的获取和处理:收集和整理分析所需的相关数据,包括结构的几何形状、材料性质、荷载情况等。
3.参数的选择和设置:根据实际情况,选择合适的参数,并进行设置。
需要注意的是,参数的设置应符合规范和标准,反映结构的真实状态。
4.分析的执行和结果的评定:按照设置的参数进行分析,并对结果进行评定。
如果结果不符合要求,可以进行参数的调整和分析的迭代,直到满足要求为止。
四、参数设置的注意事项:1.结构的复杂性:对于复杂结构的分析,参数设置更为关键。
PKPM参数设置教程PKPM是一款常用的结构分析和设计软件,它具有简单易用、功能强大的特点。
在进行结构分析和设计时,正确设置PKPM的参数是非常重要的,本教程将为大家详细介绍PKPM参数设置的步骤和注意事项。
一、模型参数设置1.材料参数:在PKPM中,材料参数包括混凝土、钢筋等材料的强度和弹性模量等属性。
在进行结构分析和设计之前,需要根据实际情况输入正确的材料参数。
2.截面参数:截面参数是指梁、柱、梁柱节点等构件的截面尺寸和形状等属性。
在进行结构分析和设计之前,需要根据实际情况输入正确的截面参数。
3.支座参数:支座参数是指结构的支座类型、支座刚度等属性。
在进行结构分析和设计之前,需要根据实际情况输入正确的支座参数。
二、荷载参数设置1.面积荷载:在PKPM中,面积荷载可以是均布荷载、集中荷载等。
在进行结构分析和设计之前,需要根据实际情况输入正确的面积荷载参数,包括荷载的大小和作用位置等。
2.点荷载:点荷载是指作用在结构上的集中力或集中力矩。
在进行结构分析和设计之前,需要根据实际情况输入正确的点荷载参数,包括荷载的大小和作用位置等。
3.温度荷载:温度荷载是指由于温度变化引起的结构变形。
在进行结构分析和设计之前,需要根据实际情况输入正确的温度荷载参数,包括温度变化范围和温度变化系数等。
三、分析参数设置1.分析类型:在PKPM中,分析类型包括静力分析、模态分析和动力时程分析等。
在进行结构分析和设计之前,需要根据实际情况选择合适的分析类型。
2.求解控制:在PKPM中,求解控制包括杆件分析控制和节点分析控制等。
在进行结构分析和设计之前,需要根据实际情况设置合适的求解控制参数。
3.分析选项:在PKPM中,分析选项包括荷载组合、组合类型等。
在进行结构分析和设计之前,需要根据实际情况选择适合的分析选项。
四、设计参数设置1.验算参数:在PKPM中,验算参数包括构件的抗弯强度、剪切强度等。
在进行结构设计之前,需要根据实际情况设置正确的验算参数。
PKPM全参数设置PKPM具备了工程结构分析的全过程,包括结构建模、荷载计算、结构分析、结果查看与输出等功能。
其全参数设置是指在进行结构分析时,可以对各种参数进行设置,以满足具体的工程需求。
下面将详细介绍PKPM全参数设置的内容。
首先是结构建模参数设置。
结构建模是指将实际工程结构在计算机中建立模型的过程。
在PKPM中,可以设置模型的单位系统、结构材料参数、截面参数、节点参数等。
单位系统的设置分为英制和公制两种,可以根据不同需求选择适当的单位。
结构材料参数包括弹性模量、泊松比等,用于描述结构材料的力学性能。
截面参数包括截面形状和尺寸等,用于描述结构截面的几何形状。
节点参数包括节点坐标、约束条件等,用于描述结构节点的位置和固定状态。
其次是荷载计算参数设置。
荷载计算是指对结构受力的分析计算过程。
在PKPM中,可以设置各种荷载类型,包括自重、活荷载、温度变形等。
对于每种荷载类型,可以设置荷载大小、作用位置、作用方向等参数。
此外,还可以设置荷载组合方式,包括工况组合和极限组合等。
工况组合是指不同时期或不同工况下荷载的叠加,极限组合是指在一定工况下荷载的最不利组合。
通过合理设置荷载计算参数,可以得到符合实际工况的结构受力情况。
再次是结构分析参数设置。
结构分析是指对结构在受力作用下的响应进行计算的过程。
在PKPM中,可以设置结构分析的方法,包括静力分析、模态分析、动力时程分析等。
静力分析是指在不考虑结构振动和动力影响的情况下进行受力计算,模态分析是指计算结构的固有振动频率和振型,动力时程分析是指考虑结构的动力响应进行时程分析。
对于每种分析方法,还可以设置相应的参数,如静力分析中的加载方式、模态分析中的模态数等。
通过合理设置结构分析参数,可以得到结构的受力情况和振动特性。
最后是结果查看与输出参数设置。
结果查看与输出是指对分析计算得到的结果进行查看和输出的过程。
在PKPM中,可以通过设置参数来选择查看和输出的结果类型和格式。
PKPM设置参数(一)前处理注意事项1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。
2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。
PMCAD的数据检查要通过。
SATWE数据报告提示的问题要消除。
3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。
范例外的自重需用户输入。
4、板―柱结构输入:柱网需输入截面为100X100的虚梁。
5、厚板转换层输入:柱网需输入截面为100X100的虚梁。
层高以板厚的1/2划分。
6、错层结构输入:A、框架错层:在PM中调整梁端高,含斜梁。
B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。
C、多塔层高不同:把形成的塔虚层中楼板去掉。
关于整理SATWE设计参数便览的说明设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。
SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。
论坛里也有许多帖子,但总觉得系统性、实用性有些不足。
SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。
由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。
更欢迎参与。
SATWE参数便览之总信息1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算值重算。
2、混凝土容重:隐含值25。
构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。
3、钢材容重:隐含值78。
可行。
4、裙房层数:指地上的周边都有的群房。
当主体一面或多面无裙房时,风荷载需个案处理。
5、转换层所在层号:按自然层号填输,含地下室的层数。
6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。
7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。
PKPM参数设置SATWE参数设置一:总信息?1、水平力与整体坐标夹角(度):一般为缺省。
若地震作用最大得方向大于15度则回填。
?2、混凝土容重(KN/m3):砖混结构25KN/m3,框架结构26KN/m3、3、刚才容重(KN/m3):一般情况下为78。
0 KN/m3(缺省值)。
4、裙房层数:程序不能自动识别裙房层数,需要人工指定、应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
?5、转换层所在层号:应按PMCAD楼层组装中得自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。
程序不能自动识别转换层,需要人工指定、对于高位转换得判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,就是否为3层或3层以上转换。
?6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数+1)、?7、地下室层数: 根据实际情况输入。
?8、墙元细分最大控制长度(m):一般为缺省值1。
?9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定、如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加到薄弱层号中,如不打勾,则需要用户手动添加、?此项打勾与在“调整信息”页“指定薄弱层号”中直接填写转换层层号得效果就是完全一致得。
10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比与周期比时建议选择。
在进行结构内力分析与配筋计算时不选择。
?11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定时保留弹性板面外刚度考虑。
特别就是对于板柱结构定义了弹性板3、6情况。
但已选择对所有楼层墙肢采用刚性楼板假定得话此条无意义。
12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。
不勾选得话位移偏小。
?13、计算墙倾覆力矩时只考虑腹板与有效翼缘:应勾选,使得墙得无效翼缘部分内力计入框架部分,实现框架,短肢墙与普通强得倾覆力矩结果更合理、?14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选、15、墙元侧向节点信息:这就是墙元刚度矩阵凝聚计算得一个控制参数,程序强制为“出口”,即只把墙元因细分而在其内部增加得节点凝聚掉,四边上得节点均作为出口节点,使得墙元得变形协调性好,分析结果更符合剪力墙得实际。
PKPM参数设置介绍⼀、荷载输⼊:1.所有荷载均应输⼊标准值。
2.荷载⽅向:竖向荷载向下为正;节点荷载弯矩的正⽅向按右⼿法则确定。
注意:1.输⼊楼板荷载前必须⽣成楼板,没有布置楼板的房间不能输⼊楼板荷载。
2.对塔架、⽀架等没有楼板和活荷载的构筑物,也应布置板厚为0的楼板,并布置少许活荷载,因为没有活荷载,程序不能进⾏荷载组合,是计算分析有误。
3.楼板荷载可以是负值,但只对板荷载传到梁起作⽤,对板配筋不起作⽤。
4.建模时不应布置框架间的填充墙、隔墙等⾮承重墙,但应将其荷载折算成均布线荷载布置在下层梁上。
5.楼梯、阳台、⾬篷、挑檐等⾮主要承重的零星构件不宜参加结构整体建模和计算,仅将其荷载布置在相关的构件上。
⼆、楼层组装注意:1.为保证⾸层竖向构件计算长度正确,该层层⾼通常从基础顶⾯算起。
裙房指与⾼层建筑物相连,建筑⾼度不超过24⽶的辅助建筑。
由多层建筑组成的裙房也叫群楼。
转换层建筑物某楼层的上部与下部因平⾯使⽤功能不同,该楼层上部与下部采⽤不同结构(设备)类型,并通过该楼层进⾏结构(设备)转换,则该楼层称为结构(设备)转换层。
⽬前的⾼层建筑多为低层低层商⽤,上部住宿的多功能要求,在低层商⽤要求的⼤空间与上部住宿要求的多墙多柱的⼩空间之间,往往需要采⽤⼀定的结构形式进⾏转换处理,即加设转换层。
转换层常⽤的结构形式包括梁式、空腹桁架式、斜杆桁架式、箱形和板式耦联什么叫“耦联”在抗震中,“耦联”就是作⽤在给定侧移的某⼀质点上的弹性回复⼒不仅取决于这⼀质点上的侧移,⽽且还取决于其他各质点的位移,因⽽存在着刚度耦联,这样会给微分⽅程组的求解带来不少困难.所以,应运⽤振型分解和振型正交性原理来解耦,使⽅程组求解⼤⼤简化.1、“耦联”的概念主要是针对振型分解法⽽⾔的。
2、⾮耦联是指平动与扭转分开考虑,在各⾃独⽴的坐标系⾥分析,互相⽆关。
3、耦联是指扭转和平动同时出现在⼀个振型中,动⼒响应为多坐标系运动分量的合成。
PKPM参数设置2.PKPM参数选取一、风荷载程序中给出的基本周期是采用近似方法计算得到的,建议计算出结构的基本周期后,再代回重新计算。
二、地震作用及结构振动特性1)对于耦联选项,建议总是采用;2)质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。
例:*** 一31层框支结构,考虑双向水平地震力作用时,其计算剪重比增量平均为12.35%;***规则框架考虑双向水平地震作用时,角柱配筋增大10%左右,其他柱变化不大;***对于不规则框架,角、中、边柱配筋考虑双向地震后均有明显的增大;***通过双向地震力、柱按单偏压计算和双向地震力、双偏压计算比较可知,后者计算柱的配筋较前者有明显的增大。
建议:若同时勾选双向地震力、柱双向配筋时,要十分谨慎。
3)计算单向地震力,应考虑偶然偏心的影响。
5%的偶然偏心,是从施工角度考虑的。
****计算考虑偶然偏心,使构件的内力增大5%~10%;****计算考虑偶然偏心,使构件的位移有显著的增大,平均为18.47%。
注:对于不规则的结构,应采用双向地震作用,并注意不要与“偶然偏心”同时作用。
“偶然偏心”和“双向地震力”应是两者取其一,不要都选。
建议的选用方法:****当为多层(≤8层,≤30m),考虑扭转耦联与非扭转耦联均可;****当为一般高层,可选用耦联+偶然偏心;****当为不规则高层、满足抗规2条以上不规则性时,或位移比接近限值,考虑双向地震作用。
4)有效质量系数例:一八层框架,有大量的越层结构和弹性结点,需许多的振型才能使有效质量系数满足要求。
计算振型数剪重比有效质量系数30 1.6 50%60 3.2 90%原因:振型整体性差,局部振动明显。
注:要密切关注有效质量系数是否达到了要求。
若不够,则地震作用计算也就失去了意义。
三、结构的周期与位移***周期比:控制结构在大震下,扭转振型不应靠前,以减小震害。
***最大层间位移:按规范要求取楼层竖向构件最大杆件位移称为楼层控制层间位移;***位移比:取楼层最大杆件位移与平均杆件位移比值。
PKPM参数设置教程PKPM是一种常用的结构分析软件,通过设置不同的参数可以使得分析结果更加精确和合理。
本篇教程将对PKPM的参数设置进行详细介绍,希望对使用PKPM的用户有所帮助。
一、桁架模型参数设置桁架模型是PKPM最常用的结构类型之一,其参数设置主要包括节点设置、截面设置和材料设置。
节点设置:对于桁架模型,首先需要设置节点的坐标。
在PKPM中,可以通过手动输入坐标值或者通过导入CAD文件的方式进行设置。
在进行节点设置时,需要注意节点之间的互连关系,确保节点之间合理连接。
截面设置:截面设置是桁架模型设计中的重要步骤。
在PKPM中,可以选择常用的截面形状,如矩形、圆形等,也可以根据实际需要自定义截面形状。
在设置截面时,需要考虑到截面的几何尺寸和材料强度等因素。
对于桁架模型而言,大多数情况下可以简化为单元截面,在设置截面时需要注意保证桁架模型的整体稳定性和安全性。
材料设置:在PKPM中,可以选择常用的材料类型,如碳钢、高强钢等,也可以根据实际需要自定义材料类型。
在设置材料时,需要输入材料的弹性模量和屈服强度等参数。
对于桁架模型而言,通常使用弹性理想塑性材料模型进行分析。
二、框架模型参数设置框架模型是PKPM中比较常见的结构类型之一,其参数设置主要包括节点设置、截面设置和材料设置。
节点设置:框架模型节点的设置方式与桁架模型类似,需要设置节点的坐标,并保证节点之间连接合理。
截面设置:在PKPM中,框架模型的截面可以选择常见的几何形状,如矩形、圆形等,也可以自定义截面形状。
在设置截面时,需要考虑到截面的几何尺寸和材料强度等因素。
对于框架模型而言,通常需要设置节点的支座条件,包括固支、弹性支座和铰支等。
材料设置:在PKPM中,可以选择常用的材料类型,如混凝土、钢筋等,也可以自定义材料类型。
在设置材料时,需要输入材料的弹性模量、泊松比和抗压抗拉强度等参数。
对于框架模型而言,需要设置材料的屈服强度和破坏应变等参数。
PKPM参数设置及应用PKPM(Peking University People's Republic of China Method)是由北京大学研发的一种结构设计软件,广泛应用于建筑、桥梁、隧道等工程结构的力学计算和结构分析中。
PKPM软件具有功能强大、计算准确、使用方便等特点,广受工程师和设计师的认可和使用。
PKPM软件的参数设置与应用非常重要,可以影响计算结果的准确性和设计的经济性。
以下是一些常用的PKPM参数设置及其应用:1.材料参数设置:在PKPM中,需要设置材料的弹性模量、泊松比、材料密度等参数。
通过合理设置这些参数,可以准确计算结构在静力作用下的受力情况。
为了保证计算结果的准确性,需要根据材料的实际性能和实验数据进行合理的选择。
2.截面属性设置:在PKPM中,需要设置截面的几何参数,如截面形状、截面尺寸、截面面积等。
这些参数的设置影响着结构在受力时的抗弯、抗剪性能。
通过合理设置截面属性参数,可以保证结构的安全性和经济性。
3.荷载参数设置:在PKPM中,需要设置结构所受的荷载类型、大小、作用位置等参数。
荷载参数的设置直接影响结构在受力时的应力和变形情况。
为了准确计算结构的受力情况,需要根据设计要求和实际情况合理设置荷载参数。
4.边界条件设置:在PKPM中,需要设置结构的边界条件,包括约束条件和加载条件。
边界条件的设置影响结构在受力时的位移和变形情况。
为了准确计算结构的变形和应力分布,需要根据结构的实际支承情况和受力形式合理设置边界条件。
5.分析方法设置:在PKPM中,有多种不同的分析方法可供选择,如弹性分析、强度分析、稳定性分析等。
不同的分析方法适用于不同的结构类型和问题,通过合理设置分析方法,可以高效准确地分析结构的力学性能。
除了参数设置外1.结构建模:在PKPM中,需要进行结构的建模,即将实际结构进行适当简化和描述,以便进行力学分析。
建模过程需要根据结构的实际情况和要求进行合理抽象和选择,以确保计算结果的准确性。
PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。
2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。
3、梁柱混凝土保护层厚度,【混规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。
4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)5、抗震构造措施的抗震等级,【抗规3.3.2】建筑场地为1类时,对甲乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。
(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。
6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。
7、周期折减系数,【高规4.3.17】当非承重墙体为砌体墙时,高层建筑结构的计算自振周期折减系数可按下列规定取值:框架结构可取0.6~0.7;框架-剪力墙结构可取0.7~0.8;框架-核心筒结构可取0.8~0.9;剪力墙结构可取0.8~1.0(可根据实际情况自行确定,如框架结构的填充墙较少时,折减系数可取的大一些如0.85).文本文件输出1、平均重度,建筑的总质量除以总面积,框架12~13,框剪14~15,剪力墙15左右。
2、质量比,【高规3.5.6】楼层质量沿高度宜均匀分布,楼层质量不宜大于相邻下部楼层质量的1.5倍。
3、刚度比,【高规3.5.2】对框架结构,楼层与其相邻上层的侧向刚度比不宜小于0.7,与相邻上部三层刚度平均值的比值不宜小于0.8,规范中有详细的计算方法,框架与框剪的计算方法不同,Ratx1和Raty1的值不能小于1,若小于则是薄弱层,【高规3.5.8】侧向刚度变化、承载力变化、竖向抗侧力连续性不规则的,其对应于地震作用标准值的剪力应乘以1.25的增大系数,【抗规3.4.4】平面规则而竖向不规则的建筑,应采用空间结构计算模型,刚度小的楼层的地震剪力应乘以不小于1.15的增大系数,高层建筑结构设计应按【高规】,多层建筑结构设计也可以按【抗规】。
4、刚重比,【高规5.4】中有详细的计算方法和规定。
5、承载力之比,【抗规4.4.3】抗侧力结构的层间受剪承载力之比不应小于相邻上一楼层的80%。
6、周期比,【高规3.4.5】结构扭转为主的第一自振周期与平动为主的第一自振周期之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、超过A级高度的混合结构及本规程第10章所指的复杂高层建筑不应大于0.85,且前两个周期宜为平动周期。
7、剪重比,【抗规5.2.5】中有详细的规定和计算方法,由于地震影响系数在长周期段下降较快,对应基本周期大于3.5s的结构,由此计算所得的水平地震作用下的结构效应可能太小,而对于长周期结构,地震动态作用中的地面运动速度和位移可能对结构破坏具有更大影响,但是规范所采用的振型分解反应谱法尚无法对此作出估计,出于结构安全的考虑,提出了对结构总水平地震剪力及各楼层水平地震剪力最小值的要求。
8、有效质量系数,应大于90%。
9、各楼层地震剪力系数调整情况,不应大于1.10最大层间位移角,主要是考虑舒适度的要求,【抗规5.5.1】中有详细的弹性层间位移角的限值规定。
11位移比,【高规3.4.5】结构平面布置应减少扭转的影响,在考虑偶然偏心影响的规定水平地震力作用下,楼层竖向构件最大水平位移和和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑、超过A级高度的混合结构及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍,若超出限值应考虑双向地震作用的影响。
SATWE参数设置一:总信息1、水平力与整体坐标夹角(度):一般为缺省。
若地震作用最大的方向大于15度则回填。
2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。
3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。
4、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别转换层,需要人工指定。
对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。
6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数+1)。
7、地下室层数:根据实际情况输入。
8、墙元细分最大控制长度(m):一般为缺省值1。
9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。
如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加到薄弱层号中,如不打勾,则需要用户手动添加。
此项打勾与在“调整信息”页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。
10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建议选择。
在进行结构内力分析和配筋计算时不选择。
11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定时保留弹性板面外刚度考虑。
特别是对于板柱结构定义了弹性板3、6情况。
但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。
12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。
不勾选的话位移偏小。
13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。
14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。
15、墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,程序强制为“出口”,即只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,使得墙元的变形协调性好,分析结果更符合剪力墙的实际。
16、结构材料信息:按实际情况填写。
17、结构体系:按实际情况填写。
18、恒活荷载计算信息:1)一般不允许不计算恒活荷载,也较少选一次性加载模型;2)模拟施工加载1模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;3)按模拟施工2:计算时程序将竖向构件的轴向刚度放大十倍,削弱了竖向荷载按刚度的重分配,柱墙上分得的轴力比较均匀,传给基础的荷载更为合理。
4)模拟施工加载3:采用分层刚度分层加载模型,接近于施工过程,故此建议一般对多、高层建筑首选模拟施工3;对钢结构或大型体育馆类(指没有严格的标准层概念)结构应选一次加载。
对于长悬臂结构或有吊柱结构,由于一般是采用悬挑脚手架的施工工艺,故对悬臂部分应采用一次加载进行设计。
当有吊车荷载时,不应选用模拟施工3。
19、风荷载计算信息:一般来说大部分工程采用SATWE缺省的“水平风荷载”即可,如需考虑更细致的风荷载,则可通过“特殊风荷载”实现。
20、地震作用计算信息:一般为“计算水平地震作用”,抗规5.1.6条规定,6度时的部分建筑,应允许不进行截面抗震验算,但应符合有关的抗震措施要求。
因此这类结构在选择“不计算地震作用”的同时,仍要在“地震信息”页中指定抗震等级,以满足抗震构造措施的要求。
此时,“地震信息”页除抗震等级相关参数外其余项会变灰。
21、结构所在地区:一般选择“全国”。
分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程。
B类建筑和A类建筑选项只在坚定加固版本中才可选择。
22、特征值求解方式:仅在选择了“计算水平和反应谱方法竖向地震”时,菜允许选择“特征值求解方式”。
水平震型和竖向震型整体求解:只做一次特征值分析。
水平震型和竖向震型独立求解:做两次特征值分析。
23、“规定水平力”的确定方式:一般选择“楼层剪力差方法(规范方法)”二:风荷载信息:1、地面粗糙度类别:A: 指近海海面和海岛、海岸、湖岸及沙漠地区;B: 指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊C: 指有密集建筑群的城市市区;D: 指有密集建筑群且房屋较高的城市市区2、修正后的基本风压(KN/m2):按照《建筑结构荷载规范》附录D.4中附表D.4给出的50年一遇的风压采用,但不得小于0.3KN/m2。
一般情况下,高度大于60m的高层建筑可按100年一遇的风压制采用;对于高度不超过60m的高层建筑,其风压是否提高,可由结构工程师根据结构的重要性按实际情况确定。
3、X向结构基本周期(秒):第一次计算时采用默认值,然后根据计算出的周期乘以这件系数后回代。
4、Y向结构基本周期(秒):第一次计算时采用默认值,然后根据计算出的周期乘以这件系数后回代。
5、风荷载作用下结构的阻尼比(%):混凝土结构及砌体结构0.05,有填充墙钢结构0.02,无填充墙钢结构0.01。
6、承载力设计时风荷载效应放大系数:程序缺省值为1.0,对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。
7、用于舒适度验算的风压(KN/m2):缺省与风荷载计算的基本风压取值相同。