绿色荧光蛋白的研究
- 格式:pdf
- 大小:363.03 KB
- 文档页数:7
绿色荧光蛋白(GFP)原核表达分析石河子大学分子生物学实验结课论文绿色荧光蛋白(GFP)原核表达分析学生姓名学号专业年级、班级指导教师所在学院中国·新疆·石河子2016年1月绿色荧光蛋白(GFP)原核表达分析摘要:本实验主要探讨目的蛋白(GFP)在大肠杆菌中的表达的情况以及鉴定目的蛋白形成的是包涵体还是可溶性蛋白。
本实验先对菌液进行培养、活化、然后采用IPTG 分别对其不同时间点的诱导,用SDS-PAGE来确定目的蛋白的可溶性及其分子量,掌握GFP 诱导不同时间的表达情况的检测方法。
关键词:绿色荧光蛋白;SDS-PAGE;原核表达1 前言1.1实验目的掌握聚合酶链式反应(PCR)的原理和操作方法;了解重组载体的构建方法;锻炼学生查阅文献资料、设计与优化实验的能力;加强学生对化学生物学中常用研究方法的认知。
1.2实验背景绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。
与以往lacZ、CAT 等报告基因相比,有很多无可比拟的优越性: GFP 不具有种属依赖性,在多种原核和真核生物细胞中都表达;荧光强度高,稳定性高;不需要反应底物与其他辅助因子,受蓝光激发产生绿色荧光,尤其适用于体内的即时检测;另外GFP 分子量小,易于融合,适用于多种转化方式,对受体无毒害,安全可靠;并且通过替换一些特殊氨基酸,可以使之产生不同颜色的光,从而适应不同的研究需要。
正是由于GFP 检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域。
绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。
采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有效的手段。
gfp绿色荧光蛋白序列概述及解释说明1. 引言1.1 概述GFP(绿色荧光蛋白)是一种具有独特发光特性的蛋白质,被广泛应用于细胞和分子生物学领域。
其绿色荧光可以通过外源激活而观察到,使得科学家们能够可视化细胞内发生的过程,并实时跟踪靶标分子的定位与转移。
GFP的序列是理解其结构、功能以及应用关键的基础。
1.2 文章结构本文将从多个方面对GFP绿色荧光蛋白序列进行概述及解释说明。
首先,我们将介绍GFP的历史和发现过程,以及其在现代生物学中的重要性。
随后,我们将详细探讨GFP序列的组成和编码基因信息,并解析与功能相关性方面的研究进展。
最后,我们将阐述GFP序列在生物学研究中的广泛应用,并就目前存在的问题和未来发展进行思考。
1.3 目的本文旨在提供有关GFP绿色荧光蛋白序列的全面概述及解释说明,深入探讨其组成、结构、功能和应用,并对其未来发展进行展望。
通过本文的阐述,读者将能够更好地理解和应用GFP序列在生物学领域中的价值,为相关研究提供指导和启示。
同时,我们也希望通过此文促进对GFP技术的探索和创新,推动生物科学的不断发展。
2. GFP绿色荧光蛋白序列概述2.1 GFP简介GFP(Green Fluorescent Protein)绿色荧光蛋白是一种来自于海洋水母的蛋白质。
它的主要特点是能够发出绿色荧光,并且在非生物致死条件下仍然保持稳定。
由于这些特性,GFP成为了生物学领域中一种广泛使用的标记工具。
2.2 GFP的发现历程GFP最早是在1960年代末期由奥斯汀·盖因斯、罗德南·麦迪安和道格拉斯·普里肯特等科学家在研究水母Aequorea victoria时发现的。
他们观察到当GFP暴露在紫外线下时会发出绿色荧光,并且将其提取出来进行进一步研究。
随后,科学家们发现GFP能够自身形成一个染色体,而不需要其他辅助物质。
2.3 GFP的结构特征GFP的序列长约238个氨基酸残基,具有高度保守性。
绿色荧光蛋白的研究进展作者:杨慧敏, 李文刚, 吴高锋, 魏娟, 王鑫作者单位:杨慧敏,吴高锋,魏娟,王鑫(河南农业大学,郑州,450002), 李文刚(郑州牧专,郑州,450011)刊名:中国畜牧兽医英文刊名:CHINA ANIMAL HUSBANDRY & VETERINARY MEDICINE年,卷(期):2008,35(8)引用次数:1次1.方六荣.陈焕春表达绿色荧光蛋白伪狂犬病病毒转移载体的构建及转移特性[期刊论文]-中国兽医学报 20012.李夏.陈素文.喻达辉绿色荧光蛋白及其在转基因动物研究中的应用[期刊论文]-南方水产 20053.范伟兴.宋建兰表达绿色荧光蛋白伪狂犬病病毒Bartha-K61株TK突变株的构建[期刊论文]-畜牧兽医学报2003(05)4.林爱星.刘小军.陈永福绿色萤光蛋白及其在转基因表达检测中的应用 1997(03)5.岳莉莉.齐义鹏.社会胜用Bac-to-Bac杆状病毒表达系统高效表达绿色荧光蛋白标记的HB Ve抗原[期刊论文]-病毒学报 1998(03)6.Chafee I.Too Y.Euskirchen G Green fluorescent protein as a marker for gene expiree 19947.Fleckenstein J M.Holland J T.Hasty D L Interaction of an outer membrane p rotein ofenterotoxigenic Escherichia coliwith cell surface heparan sulfate proteoglycans 2002(03)8.Galipeau J.Li H.Paquin A Vesicular stamatitis delivery in experimental brain cancer 1999(12)9.Grignani F.Kinsella T.Mencarelli A High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein 1998(01)10.Heim R.Cubitt A B.Tsien R Y Improved green fluorescence 1995(6516)11.Heim S.Freeman R B J.Eulitz C Auditory temporal processing deficit in dyslexia is associated with enhanced sensitivity in the visual modality 2001(03)12.Ikawa M.Kominami K.Yoshimura Y Green fluorescent protein as a maker in transgenic mice 1995bas Y A.Gurskaya N G.Yanushevich Y G Diversity and evolution of the green fluorescent protein family 200214.Loimas S.Toppinen M R.Visakorpi T Human prostate carcinoma cells as targets for herpes simplex virus thymidine kinase-mediated suicide gene therapy 2001(02)15.Ogawa H.Inouye S.Tsuji F Localization,trafficking,and temperature Dependence of the Aequorea GFP in culture dvertebratet 199516.Rasher D C.Eckerd S W W Primary structure of The Aquaria Victoria green fluorescent protein1992(02)17.Valdivia R H.Alexander E H Applications for green fluorescent protein (GFP) in the study of hostpathogen interactions 199618.Wang S.Hazelrigg T Implications for bed mRNA localization from spatial distribution of exuprotein in Drosophila genesis 1994(6479)1.期刊论文罗文新.陈敏.程通.管宝全.李少伟.李少菁.张军.夏宁邵橙色荧光蛋白--绿色荧光蛋白GFPxm的改造-生物工程学报2003,19(1)最近报道了从大型多管水母中分离出新的gfp基因.经大肠杆菌表达并纯化出的绿色荧光蛋白(GFPxm)具有476nm的激发峰和496nm的发射峰,但是只能在低温下成熟的缺点限制了它的应用.这里进一步报道GFPxm的12种突变型.在大肠杆菌中的表达结果表明,有7种突变型在37℃条件下产生高的荧光强度.在25、32和37℃条件下表达6 h,GFPxm16、GFPxm18和GFPxm19的相对荧光强度均高于增强型绿色荧光蛋白(EGFP),而GFPxm16和GFPxm163在42℃高温表达时仍能保持高的荧光强度.这7种突变型中的4种在哺乳动物细胞中已获得良好表达.此外,有6种突变型的荧光光谱红移,目前所达到的最长激发峰为514nm、最长发射峰为525nm.另外有3种突变型具有包括紫外在内的两个激发峰,1种突变型只有单一的紫外激发峰.首次报道具有橙色荧光的突变型OFPxm,它的激发峰为509nm、发射峰为523nm.523nm属于黄绿色,但肉眼看到的蛋白为橙色.OFPxm在高温下可得到高水平表达且很好地成熟,但是因为低的量子产率而荧光强度相对较低.2.学位论文左妍四环素-绿色荧光蛋白生物传感器的构建及活性测定2004将来源于水母的绿色荧光蛋白基因(gfp)和来源于E.coli转座子Tn10的四环素阻遏蛋白基因(tetR)共同构建到E.coli表达载体pET-30a+上,使融合蛋白两部分蛋白间插入不同长度肽联,获得TetR C-端与GFP N-端融合蛋白:TR∷GFP和TR∷GFPs.在E.coli BL21中诱导表达并纯化了两种形式的融合蛋白.TR∷GFP(蛋白间间隔19aa)保留了GFP的荧光特性,即在395nm激发,可以510nm附近有最大发射峰.在四环素存在时,TR∷GFP在400nm-700nm范围内的荧光强度普遍增强,在510nm处增幅最大,由原来1.132增至2.214,增幅为95.6﹪,而四环素对相同浓度的GFP与TetR荧光影响不大,表明TR∷GFP,能感受外界四环素.TR∷GFPs(蛋白间间隔5aa)具备GFP荧光性质,但不具备感受四环素能力.对其中GFP部分定点突变(T203Y),获得发射荧光红移的突变融合蛋白(TR∷GFPsm).在E.coli BL21中诱导表达并纯化了TR∷GFPs和TR∷GFPsm,TR∷GFPsm经395nm激发,在526nm处出现最大发射峰;在四环素存在时,TR∷GFPsm在400nm-700nm范围内荧光强度普遍增强,以526nm处增幅最大,由原来20.33增至41.6,增幅为104.6﹪;而四环素对相同浓度的GFP与TetR荧光影响幅度较小,表明TR∷GFPsm,能感受外界四环素.用不同浓度的tc滴定TR∷GFPsm,显示4.1218μM的TR∷GFPsm随着tc浓度的增加,荧光强度相应呈指数增长,最终达到饱和.初步说明TR∷GFPsm具有tc生物传感器性质.为了使TetR与四环素结合所产生的构象变化能更好地传递给GFP,将TetR插入到GFP171aa-172aa,构建了GFP与TetR中间融和蛋白GFP()TR,在E.coli BL21中诱导表达,该融合蛋白失去荧光性质.为了获得对四环素更为敏感的传感器,用易错PCR构建了TR∷GFP和TR∷GFPsm突变体库,初步摸索了平板筛选荧光突变体的方法.3.期刊论文左妍.杨克迁四环素-绿色荧光蛋白融合蛋白的构建及其活性测定-生物工程学报2005,21(1)将来源于水母的绿色荧光蛋白基因(gfp)和来源于E.coli转座子Tn10的四环素阻遏蛋白基因(tetR)共同构建到E.coli表达载体pET-30a+上,获得TetR C-端与GFP N-端融合蛋白.对经诱导表达并纯化后的融合蛋白(TR::GFP)进行荧光发射光谱分析表明,该融合蛋白保留了GFP的荧光特性,即在395 nm激发下,可在510 nn附近有特征发射峰.在加入四环素后,融合蛋白在395 nm激发下,在400 nm~700nm范围内的发射光谱发生明显变化,荧光强度普遍增加,且以510 nm处最大发射峰增幅最大,由原来1.132增至2.214,而四环素对相同浓度的GFP与TetR荧光影响不大,结果表明该融合蛋白,能感受外界四环素,并产生一定的荧光变化.4.学位论文邹奇大鼠肝卵圆细胞移植对暴发性肝衰的治疗作用及示踪研究2007目的:建立成年大鼠肝卵圆细胞增殖模型,进一步进行卵圆细胞的分离、纯化、鉴定和培养;利用绿色荧光蛋白基因转染和荧光染料羧基荧光素乙酰乙酸琥珀酰亚胺酯(CFDA-SE)染色两种方法进行标记,比较两种方法标记细胞的可行性;随后选择较优标记方法标记的卵圆细胞移植治疗暴发性肝功能衰竭大鼠,探索卵圆细胞移植治疗暴发性肝衰的可行性及有效性。
绿色荧光蛋白的基因克隆和表达研究(湖北师范学院生命科学学院生物科学0802班湖北黄石435002)摘要:目的:研究绿色荧光蛋白(Greed Fluorescent Protein,GFP)基因的基因克隆及在大肠杆菌中的表达。
方法:通过分别将DH-5α (pEGFP-N3)和DH-5α(pET-28a)提取质粒、酶切并连接形成重组质粒pET-28a-GFP,将重组质粒导入E.coli DH-5α感受态细胞中进行转化,通过限制性核酸内切酶Not I与Bam H1和PCR对所建质粒进行分析鉴定后, 通过转化的方法把含绿色荧光蛋白(GFP)外源基因转入大肠杆菌体BL-21内进行表达,再用IPTG 诱导GFP基因表达,可以看到显现绿色,判断GFP基因在大肠杆菌中成功表达。
结果:结果显示构建的重组质粒pET-28a-GFP在E.coli中成功表达。
关键词:绿色荧光蛋白;质粒重组;原核表达;诱导表达中图分类号:Q53Studies On Cloning and Expression of Green FluorescentProtein geneAbstract: Objective:Studies indicated that the cloning and expression of the GFP gene in the E.coli. Methods:Extract the plasmid of the DH-5α(pEGFP-N3) and DH-5α(pET-28a). Then cutting by enzyme and connecting the two plasmids to form pET-28a-GFP recombined plasmid. The recombinant plasmid confirmed by restriction enzyme and PCR transfected into E.coli DH-5α to ensure the expression of green fluorescent protein. Guiding the recombined plasmid, which contains exogenous genes of GFP into E.coli for expression, through transformative method. The expression of GFP gene can be induced by the IPTG and then we can see green. Results: The results suggest that pET-28a-GFP recombined plasmid has successfully expressed in E.coli. Keywords: G ed Fluorescent Protein; Recombined Plasmid; Prokaryote Expression; Induced Expression绿色荧光蛋白的基因克隆和表达的研究引言随着分子生物学和基因工程技术的迅速发展和广泛应用, 人们根据自己的意愿有目的、有计划、有根据、有预见地将外源基因导入动物细胞内, 使外源基因进行表达、阐明基因表达的调控机理或者通过与染色体基因组进行稳定整合,将生物性状传递给子代动物的研究方兴未艾[1]。
绿色荧光蛋白和荧光素发光原理1. 引言:荧光的魅力说到发光,大家脑海中是不是会闪现出五光十色的景象?比如夜空中的星星、深海中的生物,甚至是那些可爱的小虫子们。
今天,我们就来聊聊“绿色荧光蛋白”和“荧光素”的发光原理。
这俩家伙可不简单,它们在科学界可是赫赫有名!就像小朋友们喜欢的超级英雄一样,它们都有各自的“超能力”。
那么,这些荧光家伙到底是怎么让我们眼前一亮的呢?2. 绿色荧光蛋白(GFP)2.1 GFP的起源绿色荧光蛋白,简称GFP,最初是从一种海洋水母中发现的。
想象一下,这水母在海里游来游去,随时随地都能发出迷人的绿色光芒,简直就像海底的明星!后来,科学家们把这个神奇的蛋白提取出来,发现它在研究生物体时可以发挥大作用。
比如,它可以标记细胞,帮助研究人员观察细胞的活动,真是个无敌的小帮手。
2.2 GFP的发光原理那么,GFP是怎么发光的呢?这就要提到它的结构了。
GFP里有一种叫“色氨酸”的氨基酸,平时看起来毫不起眼,但它一遇到特定的光照,就开始“激动”起来。
经过一番“舞动”,它就会释放出能量,变成美丽的绿色光芒。
就好比一颗小星星在黑夜中闪烁,光彩夺目。
这种发光过程,我们称为“荧光”。
而且,GFP是相对稳定的,能在细胞中长时间发光,所以它被广泛应用于各种生物研究中。
3. 荧光素(Fluorescein)3.1 荧光素的介绍说到荧光素,大家可能觉得这个名字听起来有点陌生,但它可是在化学界里炙手可热的存在!荧光素是一种合成染料,颜色多样,最常见的当然是鲜艳的绿色。
它广泛应用于医学、环保监测,甚至是材料科学。
这玩意儿就像一位多才多艺的明星,能够在不同的场合展现自己的才华。
3.2 荧光素的发光原理荧光素的发光原理和GFP有点相似,但又各有千秋。
它的分子结构里有多个共轭双键,这些双键就像一条条“小桥”,让电子在分子间自由游走。
当荧光素被激发光照射时,这些电子就会快速跃迁,随后又很快回到原来的状态,同时释放出能量,形成荧光。
绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。
其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。
这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。
由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。
由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。
在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。
一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。
我们这边细胞组的基本上都在用这个东东。
标记细胞GFP的分子结构和发光机制绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。
GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。
Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。
β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。
桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。
这种坚实的结构保证了其稳定和抗热、抗变性的特点。
GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。
位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。
绿色荧光蛋白标记技术原理绿色荧光蛋白标记技术,听起来是不是有点高大上?其实它的原理并不复杂,就像在大自然中,有些动物能发光一样,比如那些闪闪发光的小水母。
科学家们发现了一种叫做绿色荧光蛋白(GFP)的东西,这种蛋白质在紫外光照射下会发出绿色的光,简直像是给细胞穿上了炫酷的衣服,让它们闪闪发亮。
想象一下,细胞们聚在一起,争相展示自己的“荧光衣”,那画面得多好看啊!好啦,咱们先来聊聊这项技术的基础。
绿色荧光蛋白最初是从一种叫水母的生物中提取出来的。
科学家们就像小侦探一样,四处寻找那些能发光的生物,最终在水母的身上找到了这个神奇的蛋白。
这种蛋白质不仅能发光,还特别稳定,几乎不容易被破坏。
这就让科学家们兴奋得像得了彩票一样,因为它可以用来标记细胞、观察细胞的活动,简直是生物研究中的一把“瑞士军刀”。
科学家们开始想办法把绿色荧光蛋白引入其他生物中。
这就像给细胞做手术,把这个发光的小家伙植入它们的基因里。
经过一番操作后,细胞就能发光了,仿佛在说:“看!我也能发光!”这让研究人员能够实时观察细胞的行为,了解它们是怎么工作的。
这种技术的应用可广泛了,不光是基础研究,在药物开发、疾病诊断方面都有大显身手的机会。
就好像在厨房里,厨师用不同的调料做出各种美味,绿色荧光蛋白也为科学研究增添了无限可能。
再来聊聊这个技术的实际应用。
科学家们用绿色荧光蛋白标记不同类型的细胞,比如肿瘤细胞、神经细胞等等。
比如说,研究肿瘤的时候,科学家可以将肿瘤细胞标记上绿色荧光蛋白,然后用显微镜观察它们的生长和扩散,简直就像是在看一场细胞的“真人秀”。
通过观察细胞的行为,研究人员能够发现肿瘤是如何发展的,甚至能找出一些新药物的靶点。
再比如,在神经科学研究中,科学家们利用这个技术可以标记神经元,观察神经元之间是如何传递信号的。
想象一下,神经元就像一个个小小的邮递员,负责送信,绿色荧光蛋白就好比是邮递员的制服,让它们在复杂的网络中一目了然。
研究人员能清楚地看到哪些神经元在工作,哪些在休息,这对了解大脑功能、治疗神经系统疾病至关重要。
石河子大学分子生物学实验结课论文绿色荧光蛋白(GFP)原核表达分析学生姓名学号专业年级、班级指导教师所在学院中国·新疆·石河子2016年1月绿色荧光蛋白(GFP)原核表达分析摘要:本实验主要探讨目的蛋白(GFP)在大肠杆菌中的表达的情况以及鉴定目的蛋白形成的是包涵体还是可溶性蛋白。
本实验先对菌液进行培养、活化、然后采用IPTG分别对其不同时间点的诱导,用SDS-PAGE来确定目的蛋白的可溶性及其分子量,掌握GFP 诱导不同时间的表达情况的检测方法。
关键词:绿色荧光蛋白;SDS-PAGE;原核表达1 前言1.1实验目的掌握聚合酶链式反应(PCR)的原理和操作方法;了解重组载体的构建方法;锻炼学生查阅文献资料、设计与优化实验的能力;加强学生对化学生物学中常用研究方法的认知。
1.2实验背景绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。
与以往lacZ、CAT 等报告基因相比,有很多无可比拟的优越性: GFP 不具有种属依赖性,在多种原核和真核生物细胞中都表达;荧光强度高,稳定性高;不需要反应底物与其他辅助因子,受蓝光激发产生绿色荧光,尤其适用于体内的即时检测;另外GFP 分子量小,易于融合,适用于多种转化方式,对受体无毒害,安全可靠;并且通过替换一些特殊氨基酸,可以使之产生不同颜色的光,从而适应不同的研究需要。
正是由于GFP 检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域。
绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。
采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有效的手段。
分子生物学综合实验论文题目: 绿色荧光蛋白(GFP)的基因克隆及表达中国·黄石2010年12月绿色荧光蛋白(GFP)基因的克隆与表达胡丽丹(湖北师范学院生命科学院0803班湖北黄石 43500)摘要:绿色荧光蛋白(GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
用碱裂解法提取的的质粒pEGFP-N3和pET-28α经过Bam H I和Not I双酶切连接后,得到pET-28α-pEGFP-N3重组质粒。
取部分的重组质粒做酶切实验,验证重组质粒的存在性,剩下的重组质粒导入表达菌E. coLi BL-21大肠杆菌感受态细胞中。
重组有GFP基因的E. coLi BL-21,在含有1 μL/mL 的卡纳霉素的LB培养基上培养。
当A600达到0.7时,用终浓度为0.8 mM的异丙基硫代-β-D-半乳糖苷(IPTG)诱导培养3小时,离心得到下层绿蓝色沉淀物即可。
关键词:绿色荧光蛋白 GFP 基因的克隆荧光蛋白水母CLoning and Expression of Green FLuorescent Protein GeneHU Li-Dan( Class three Grade eight, College of Life Sciences department,Hubei Normal university ,Huangshi 435000)Abstract:Green fluorescent protein(GFP),one kind of bioluminenscent proteins ,hasbeen found existing in the internal of Coelenterates,such as fellyfish,polyp and coral pEGFP-N3 and pET-28αwas harvested by sodium dodecylsulfate(SDS) alkaline process extraction and Agarose Gel Electrophoresis.After treating the two targeted plasmids with Bam H I and Not I, the recombinant plasmid,namely pET-28α-pEGFP-N3, can be retrieved by furthermore Agarose Gel Electrophoresis. Taking slight recombinant plasmid proves that recombinant plasmid does exist by dienzyme cutting(Bam H I and Not I).The recombinant plasmid lefting would be transported to E. coLi BL-21the competent cells. E. coLi BL-21containing recombinant GFP gene was grown overnight in LB solid medium containing kanamycin (Final concentration: 1 μL/mL). When absorbance at 600 nm value was 0.7, isopropyL β-D-thiogalactopyranoside was added to 0.8 mM and the incubation was continued an addition 3 h.Key words:Green fluorescent protein Fellyfish Genetic Cloning Fluorescin目录1.前言: (1)1.1绿色荧光蛋白(GREEN FLUORESCENT PROTEIN,GFP) (1)1.1.1 GFP研究背景 (1)1.1.2 GFP研究应用 (2)1.2基因的克隆与表达 (3)2.实验试剂及实验仪器: (5)2.1实验试剂与材料: (6)2.2实验仪器: (7)3.实验方法 (7)3.1质粒提取方法: (7)3.2琼脂糖凝胶电泳及回收: (9)3.3酶切及连接: (11)3.4E. CO L I DH5Α或E. CO L I BL21感受态制备及转入: (12)3.5酶切验证重组质粒: (13)3.6GFP基因的表达 (14)3.6.1活化菌种 (14)3.6.2扩大培养 (14)3.6.3 IPTG诱导GFP基因的表达 (14)4.结果与分析 (14)4.1质粒提取过程中现象与结果: (14)4.2琼脂糖凝胶电泳 (15)4.3E. CO L I DH5Α或E. CO L I BL21感受态制备及转入结果: (16)4.4酶切验证重组质粒 (16)4.5GFP基因的表达结果: (17)5.讨论: (18)5.1提取质粒出现图六的原因是: (18)5.2琼脂糖凝胶电泳出现图七、图八原因: (18)5.3E. CO L I DH5Α或E. CO L I BL21感受态制备及转入出现图九、十原因: .. 19 5.4酶切验证重组质粒出现图十一原因: (19)5.5GFP基因的表达结果如图十二、十三原因: (19)6.参考文献 (20)前言:1.1绿色荧光蛋白(green fluorescent protein ,GFP )1.1.1 GFP 研究背景绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
荧光蛋白研究进展赵嫚学院:理学院班级:应化0803班学号:2008310203907摘要:凭借在绿色荧光蛋白质(GFP)研究领域取得的重要成就,3 位科学家获得了今年的诺贝尔化学奖,他们分别是马丁·查尔菲、钱永健和下村修。
绿色荧光蛋白质可以帮助科学家了解细胞机制如何工作。
利用转基因技术,所有细胞和动物都可以产生荧光蛋白质。
康涅狄格学院化学家、《发光基因》作者马克·齐默将绿色荧光蛋白质称之为“21 世纪的显微镜”。
通过让基因携带绿色荧光蛋白质——与瘤转移或大脑功能有关的基因——科学家只需通过寻找荧光便可知道基因何时以及为什么“开启”。
本文就GFP的发现历程、生化特性、及其在分子生物学研究中的应用潜力进行简要阐述。
关键词:荧光蛋白质 GFP 诺贝尔化学奖研究前景1、荧光蛋白质简介荧光蛋白质为从发光生物中分离出的发光性蛋白质。
它不是虫荧光素、虫荧光酶那种酶蛋白质催化所引起的发光,而是通过低分子物质催化而发光的蛋白质。
水母的发光蛋白质(aequorin)是通过Ca2+而发光的。
海仙人掌类的Renilla也含有同样的发光蛋白质。
这种物质包含在细胞内颗粒中,这种颗粒称发光小体(lumisome),发光蛋白质所包含的发光物体是与海荧虫荧光素极为相近的物质,因而推测,发光蛋白质的发光与虫荧光素、虫荧光素酶反应有着密切的关系。
自1992 年绿色荧光蛋白基因从水母体内克隆以来,现在已经从很多的海洋生物物种中克隆到了新的荧光蛋白,它们能特异地“点亮”生物分子或细胞,并显示出生物分子的活动情况,从而能更有助于我们揭示这些分子或细胞的活动规律及本质。
已报道的荧光蛋白光谱分布于整个可见光区,它们被广泛应用于基因的表达调控、蛋白质空间定位与转运、蛋白折叠、信号传导、蛋白酶活性分析、生物分子相互作用等研究领域,荧光蛋白的发现与应用为现代生物学的研究提供了强有力的研究手段。
日籍科学家下村修(Osamu Shimomura)首次从水母(Aequorea victoria) 中分离出绿色荧光蛋白(green fluorescent protein,GFP),美籍教授查尔菲(Martin Chalfie)首次将GFP 的cDNA 转到新的物种中表达。
gfp-lc3单荧光实验方法GFP-LC3(绿色荧光蛋白-LC3)单荧光实验方法用于研究细胞自噬过程,以下是一种常用的实验方法:材料:1. GFP-LC3表达质粒2. 哺乳动物细胞系(如HEK293细胞)3. PBS缓冲液4. HEPES缓冲液5. 离心管6. 细胞培养培养基7. 离心机8. 荧光显微镜步骤:1. 将GFP-LC3表达质粒转染至哺乳动物细胞系中。
使用合适的转染试剂将GFP-LC3表达质粒引入细胞内,使细胞内表达GFP-LC3蛋白。
2. 培养转染后的细胞系。
将转染后的细胞系在培养基中按照常规方法进行培养,使其细胞生长并表达GFP-LC3。
3. 处理细胞。
根据实验需要,可以加入或处理细胞以诱导自噬过程。
常用的方法包括处理细胞,如饥饿、药物处理或其他刺激。
4. 收集细胞。
在处理后的适当时间点,使用PBS缓冲液冲洗细胞,然后使用离心机将细胞以适当的转速离心收集。
5. 固定细胞。
使用10%甲醛或4%乙醛在HEPES缓冲液中固定细胞,固定时间一般为10-20分钟。
6. 荧光显微观察。
使用荧光显微镜观察固定的细胞。
GFP-LC3表达的细胞会显示绿色荧光信号,代表自噬小体的形成和存在。
7. 分析结果。
根据观察结果,分析细胞中GFP-LC3的荧光信号的分布和数量,来评估细胞自噬的活性。
注意事项:- 在实验过程中,要注意细胞培养的条件和实验处理的时间点,以保证实验结果的准确性。
- 选择合适的显微镜和荧光滤光片,以获取清晰的荧光图像。
- 可以使用其他细胞标记物,如细胞器标记蛋白来研究自噬的位置和关系。
- 根据实验需要,可以结合其他技术或方法,如Western blotting等,来进行进一步的分析和验证。
《生物工程进展》1997,Vol.17,No.4
绿色荧光蛋白——现代细胞生物学与分子生物学研究领域的新标记物
岳莉莉 齐义鹏(武汉大学病毒学研究所 武汉430072)
摘要 从多管水母属Aequorenvicturia分离出的绿色荧光蛋白(GFP)
,因其特有的生物
化学性质及该基因在异源细胞内的表达产物亦能产生强烈的绿色荧光,使其在现代细胞生物学和分子生物学研究领域的应用具有广阔前景。本文就其研究进展及其应用进行简要综述。关键词 GFP 荧光 基因表达 突变株 应用
基因的表达或蛋白质的定位及时序的变化常需要用荧光物质作为标记。这种标记也是免疫荧光和免疫组化的基础。传统的荧光标记是通过纯化蛋白质再共价结合到荧光染料上,但是化学计量和染料附着的部位难于控制,因此尚需再次纯化。若该蛋白需用于活细胞内检测,最关键的问题是如何使其通过细胞膜。现在可用分子生物学的方法产生荧光蛋白,以取代传统的标记方法。常用的有荧火虫和细菌的荧光素酶基因,但由于它们都需要底物和辅助因子,因而在活体组织中的应用受到限制。由于绿色荧光蛋白所特有的生物化学性质,且该基因在异源细胞内的表达产物亦能产生强烈的绿色荧光,使其在生命科学中的应用具有美好的前景。本文就其研究进展进行简要综述。 一、绿色荧光蛋白的生物发光现象早在六十年代初期,Shimomura等[1]首先从多管水母属(Aequoriavictoria)中分离出一种称为aequoria的蛋白,该蛋白在结合钙离子后可发射蓝光,当时称为光蛋白(photoprotein)。它是分子量为20kD的单一多肽链,在其发光前,1Mol的aequoria结合3Mol的钙离子及1Mol非共价键结合的腔肠动物荧光素。尽管光蛋白体系本身发射蓝光,然而水母整体发光及其提取的颗粒都是呈绿色,推测其粗提液中一定还有一种蛋白即绿色荧光蛋白(greenfluorescentprotein,GFP)[1,2]。
Morise
等[3]对GFP进行了分离和纯化,他们的实验结果表明,GFP的荧光发射峰在509nm,最大激发波长为395nm,并在475nm处有一肩峰。当将Ca2+加入到含低浓度GFP的aequorin溶液中时,光谱接近于aequorin发射的蓝光(Κmax
472nm);而将aequorin和GFP
按大自然比例
混合时,加入Ca
2+
,则光谱接近于活体的发射
光(Κmax509nm
)。推测在活体内
,GFP
通过荧
光素酶或钙活化光蛋白的能量转换过程,吸收蓝光而后发出强烈的绿色荧光。Aequorea发光系统分子间的能量转换过程如下:
AequorinCa2+BFP3+blueLightGFP↓激发GFP3+
greenlight(BFP为蓝色荧光蛋白)
二、GFP的生色基团从jellyfishAequoreavicioria分离出的GFP分子量约27230kD,为一单链多肽,它的生色基团(chromophore)
在各种苛性条件下
(如热、极端pH、化学变性剂)都很稳定,比如用
04酸、碱、或盐酸胍处理,一旦恢复中性pH环境,
或是除去变性剂,荧光就可恢复并具有和原来一致的发射光谱[5,6]。绿色荧光蛋白独特的生物化学性质暗示它含有特殊的结构,它的生色基团和另外一种荧光蛋白——藻胆蛋白(Phyco2biliproteins)的生色基团完全不同,它是由链内几个被修饰的氨基酸残基经共价键连接而成。最初由Shimomura提出,并被大家所公认的生色基团化学结构见图1[7,8]。
图1.AequoreaGFP的生色基团化学结构示意图 构成生色基团的3个氨基酸:Ser-dehy2droTyr-Gly位于第65—67位,生色基团由丝氨酸—脱水络氨酸—甘氨酸形成的对羟苯甲基咪唑环酮(42P2hydroxybene252imidazolinone)构成,其上游第8个氨基酸为色氨酸,不寻常的是这个色氨酸的荧光是检测不到的,可能是它和生色基团之间的能量转移阻抑了色氨酸荧光(320—350nm),这个色氨酸附近有多个脯氨酸残基(Pro2Val2Pro2Try2Pro),它的重要性现在还不明了,但从蛋白质数据库(PIRver25;Swiss2Protver14)中只找到细胞色素P2450蛋白具有这种结构[9]。 三、GFP基因的克隆及特征为了探索GFP发光的奥秘,传统的生物化学技术一直没有得到满意的答案,进入九十年代,采用分子生物学手段研究GFP,才使其有了重大突破。1992年,Prasher等[9]根据GFP的氨基酸序列合成了相应的寡核苷酸片段,以此作探针从A.Victoria的cDNA文库[10,11]中筛选出了gfp的几个阳性克隆,并对EcoR1片段的全序进行了分析,该序列有三个特征:1.此cDNA共有965个核苷酸,而用Northernblot证实的gfpmRNA全长是1105kb。215′末端非编码区很短,只有26个核苷酸。31无Poly(A)
尾,而gfpmRNA则有Poly(A)
尾。从
cDNA
的序列推算:gfp含有一个开放阅读框,编码238个氨基酸,分子量为26888kD,同经SDS—PAGE测定的天然GFP的分子量(27230kD)比较接近。由于用来构建基因文库的A.victori2
a基因组DNA来自于大量的jellyfish组织,电泳纯化的GFP显示至少有三种主要的同分异构体,其紫外吸收率(A395A280)均在1110~
1125[8]。根据限制性酶切和Southernblot分析
这些阳性克隆,也发现至少存在有三种不同的内切酶图谱,因而可能存在三种不同的gfp基因,见图2。与前述的gfp序列相比,gfp2基因在216kb的DNA片段上,至少有3个外显子(、、),分别编码69、98和71个氨基酸,推测在该基团组的上游可能还有一个外显子。生色基团的氨基酸残基位于外显子的3′末端。目前尚不清楚这些cDNA是否来源于不同的gfp
基因,但它们的核苷酸和氨基酸确有不同之处。见表1。
14图2.三种Aequoreagfp基因的限制性酶切图谱双线代表可与gfpicDNA杂交的DNA片段
表1 不同gfp克隆编码区序列比较A.与gfp2基因不同的核苷酸序列B.氨基酸不同处
aa位置gfp2基因gfp10基因gfp1基因gfp10cDNA12(8个沉默)100TyrPheTyrgfp1cDNA2(2个沉默)108SerThrSer141MetLeuMet
219IleVal
四、发光机制的研究GFP基因的克隆为探索GFP的发光机制打下了坚实的基础。人们很自然地想到GFP在异源细胞内能否形成生色基团?在受到激发后能否产生特征性的绿色荧光?1994年2月Chalfie等人[12]以“绿色荧光蛋白作为基因表达的标记”为题在Science上发表了他们在大肠杆菌和线虫体内表达GFP的初步结果,当期的封面也登载了他们的照片。通过测定重组GFP的荧光光谱发现,它和提纯的天然GFP光谱完全一致。随着GFP基因分别在大肠杆菌[12,13]、线虫[13]、酵母[14]、果蝇[15]、昆虫细胞[16]和cos细胞[17]内的表达成功,说明GFP的生色基团在没有A.victoria其它产物存在的异源细胞内可以自发形成,其发光不需要特殊的辅助因子参与。但是荧光形成的机制究竟是什么?荧光的产生与蛋白质的结构有何关系?荧光的特性能否被改变?依然亟待解决。为了解决这些问题,
Heim等[18]将GFP基因的编码区插入到
pGE2
MEX22表达质粒T7启动子下游并诱导其表
达,在不同的时间和条件下测定重组GFP的荧光谱,结合SDS2PAGE分析,提出其发光机制如下:
翻译后的GFP前蛋白在有氧条件下,Gly267位与Ser265的羧基环化形成第5位碳原子上的咪唑基,新的N=C双键促其脱氢连接成生色基团,第5位碳上的咪唑基再自身氧化与第4碳形成双键,从而构成完整的生色基团。它24的自身环化与氧化过程见图3。图3.GFP生色基团的生物合成机制示意图[17] 虽然Aequorea和Renilla的GFP有相同的生色基团,且有相同的发射光谱(Κmax509nm),但两者的吸收光谱不同(Aequarea的GFP有两个吸收峰:395nm和475nm,而Re2nilla的GFP只有一个:498nm,其消光系数比前者高出10倍)。Ward[19]认为不同的吸收光谱是其分子微环境不同造成的。已知Aequorea的GFP是30kD的单体,而RenillaGFP为54kD的二聚体。在实际应用中发现,RenillaGFP的长波激发优于AequoreaGFP,但尚未得到Reniliagfp基因的克隆。然而AequoreaGFP长波吸收峰(475nm)的优点是有较大的光稳定性,且更适合于标准的荧光滤镜,缺点是振幅较低。为了增强荧光亮度使它更适合于应用,Heim等[16]用羟胺(hydroxylamine)处理使
GFPcDNA随机突变,或在PCR扩增GFP编码区时加入MnCl2增加其错配率,将产物再插入pGEMEX22表达质粒,从中筛选出3个有意义的突变株:H9在398nm处、P9和P11在471nm
处的荧光强度增加。这些突变株的单个
氨基酸替换均位于GFPC′末端,远离生色基团;而第4个突变株:P4用紫外光激发,可产生鲜艳的蓝色荧光,它是由于生色基团中心的Try266变成了His266的缘故,见表2。
表21AequoreaGFP突变株的特性GFP突变最大吸收波长(nm)最大发射波长(nm)相对荧光强度(%)野生型无396(476)508(503)100
H9突变株Ser202→PheThr203→Ile398511117P9突变株Ile167→Thr471(396)502(507)166P11突变株Ser167→Thr471(396)502(507)188P4突变株Tyr66→His38244857W突变株Tyr66→Trp458480(未测)
考虑到Ser65位于生色基团2对羟苯甲基咪唑环酮的氨基端,为了证实Ser65在脱氢形成乙烯基侧链假说中的作用[20],他们于1995年又在Nature上发表了实验结果[21]。出乎意外的是,当将Ser65分别突变成Ala、Leu、Cys
或Thr,都在470—490nm处有单一的吸收峰,
34