高中物理量子卫星运行速度公式
- 格式:docx
- 大小:21.35 KB
- 文档页数:14
高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。
该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度为g = 10m/s 2。
求:(1)火星表面重力加速度的大小; (2)火箭助推器对洞察号作用力的大小.【答案】(1)2=4m/s g 火 (2)F =260N 【解析】 【分析】火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力. 【详解】(1)设火星表面的重力加速度为g 火,则2=M m Gmg r火火火2=M mGmg r 地地解得g 火=0.4g=4m/s 2(2)着陆下降的高度:h=h 1-h 2=700m ,设该过程的加速度为a ,则v 22-v 12=2ah 由牛顿第二定律:mg 火-F=ma 解得F=260N3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)R = (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=-得:R =(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12TlR T π⋅=. 所以23124()RT h R l T Tgππ+==. 【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.6.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G ;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
高中物理卫星运行规律与宇宙速度1.如图所示,人造卫星A、B在同一平面内绕地心O做匀速圆周运动,已知AB连线与AO 连线间的夹角最大为θ,则卫星A、B的线速度之比为()A.sin θ B.1sin θ C.sin θ D.1 sin θ2.中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗卫星均做圆周运动,a是地球同步卫星,则()A.卫星a的角速度小于c的角速度B.卫星a的加速度大于b的加速度C.卫星a的运行速度大于第一宇宙速度D.卫星b的周期大于24 h3.科学家预测银河系中所有行星的数量大概在2~3万亿之间.目前在银河系发现一颗类地行星,半径是地球半径的两倍,质量是地球质量的三倍.卫星a、b分别绕地球、类地行星做匀速圆周运动,它们距中心天体表面的高度均等于地球的半径.则卫星a、b的() A.线速度之比为1∶ 3 B.角速度之比为3∶22C.周期之比为22∶ 3 D.加速度之比为4∶34.关于环绕地球运行的卫星,下列说法正确的是()A.在同一轨道上运行的两颗质量相同的卫星,它们的动量相同B.在赤道上空运行的两颗同步卫星,它们的机械能可能不同C.若卫星运动的周期与地球自转周期相同,它就是同步卫星D.沿椭圆轨道运行的卫星,在轨道不同位置可能具有相同的速率5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动;b 是近地轨道地球卫星;c 是地球的同步卫星;d 是高空探测卫星.它们均做匀速圆周运动,各卫星排列位置如图所示,则( )A .a 的向心加速度等于重力加速度gB .b 在相同时间内转过的弧长最长C .c 在4 h 内转过的圆心角是π3 D .d 的运动周期可能是20 h6.使物体脱离星球的引力束缚,不再绕星球运行,从星球表面发射所需的最小速度称为第二宇宙速度,星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为地球半径R 的4倍,质量为地球质量M 的2倍,地球表面重力加速度为g .不计其他星球的影响,则该星球的第二宇宙速度为( ) A.12gR B.12gR C.gR D. 18gR 7.太阳系外行星大多不适宜人类居住,绕恒星“Glicsc581”运行的行星“Gl -581c”却很值得我们期待.该行星的温度在0 ℃到40 ℃之间,质量是地球的6倍,直径是地球的1.5倍.公转周期为13个地球日.“Glicsc581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则( ) A .在该行星和地球上发射卫星的第一宇宙速度相同 B .如果人到了该行星,其体重是地球上的223倍C .该行星与“Glicsc581”的距离是日地距离的 13365倍 D .恒星“Glicsc581”的密度是地球的169倍8.登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星的公转视为匀速圆周运动.忽略行星自转影响,火星和地球相比( )A.火星的“第一宇宙速度”约为地球的第一宇宙速度的0.45倍 B .火星的“第一宇宙速度”约为地球的第一宇宙速度的1.4倍 C .火星公转的向心加速度约为地球公转的向心加速度的0.43倍D.火星公转的向心加速度约为地球公转的向心加速度的0.28倍9.2017年9月25日至9月28日期间,微信启动新界面,其画面视角从人类起源的非洲(左)变成为华夏大地中国(右).新照片由我国新一代静止轨道卫星“风云四号”拍摄,见证着科学家15年的辛苦和努力.下列说法正确的是()A.“风云四号”可能经过杭州正上空B.“风云四号”的向心加速度大于月球的向心加速度C.与“风云四号”同轨道的卫星运动的动能都相等D.“风云四号”的运行速度大于7.9 km/s10.“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想。
高中物理必修 1 公式3.力学公式: ①重力: Gmg②弹簧的弹力: F kx 1.平均速度:③滑动摩擦力: fNf m①s 总v(通用)t总静摩擦力: 0 f 静f m ,平衡时: f 静 F 动力④合力的范围: F≤ F 合 ≤ F 1 F 21F22v v1 2②v(s 1=s 2 时, v 1、 v 2 为前半程、后半程的 平均速度 )vv12v 1 v2③v(t 1=t 2 时, v 1、v 2 为前半段时间、后半段时间内的2当 F 1=F 2 且夹角为 120°时: F 1= F 2= F合当 F 1=F 2 且夹角为 θ 时:F合2F 1 cos⑤斜面上物体重力的分解:2平均速度 ) 下滑分力: G 1=mgsin θv 0 v t ④v(用于 匀变速 直线运动)2垂直分力 (压力 ): G 2=mgcos θ ⑤vv(用于计算匀变速直线运动纸带上某点的瞬时速度)t 中4.牛顿第二定律: F ma①光滑斜面上物体自由下滑时:a g sin②粗糙斜面上物体匀速下滑的条件:tan2.匀变速直线运动: (1)基本公式 (知三求二 )③一根连续的绳子上的拉力处处相等。
① v t v 0 at④牛二定律的瞬时性:②1 at 2s v t2弹簧、皮筋等软性物体的弹力不能突变, 桌面、绳子等硬性物体的弹力可以突变,22③v tv2as 0重力、电场力不能突变。
⑤连接体问题:下图中无论地面是否有摩擦力,中间绳子的拉力vvt④st2m1均为:TFmm121 at⑤ 2s v t t 2m 2F(2)辅助公式T①位移中点的瞬时速度:v 中s2 2v vt2TFm 1m 2m 1②逐差法: as 6 s 5 s 4 9Ts 3 2s 2 s 15.超重与失重:①当加速度竖直向上或竖直分加速度向上时,物体超重:(3)比值公式N m(g a) 或 N m(g a y )0=0):v Ⅰ:v Ⅱ:v①第 N 秒末的速度( vⅢ= 1:2:3②当加速度竖直向下或竖直分加速度向下时,物体失重:②第 N 秒内的位移( v 0=0):s Ⅰ:s Ⅱ:s Ⅲ= 1:3:5③前 N 秒内的位移( v 0=0):s 1:s 2:s 3= 1:4:92ss-④连续相等时间内的位移差:NN-1= aTN m 或 Nm(g a y )(g a)⑤相等位移内的时间比( v 0=0):t1 : t2 : t3 1: ( 2 1) : ( 3 2)高中物理必修 2 公式④射程:X20 vs in g 2 θ1.曲线运动基本规律①条件: v 0与 F合不共线②速度方向:切线方向2 02vsin 2gθ⑤射高:Y—————————————————————③弯曲方向:总是从 v 0 的方向转向 F 2.船渡河问题( v船与河岸的夹角为 α):合的方向9.线速度:v s 2 r 单位: m/s t T(1)时间最短: α=90,°(2) 路程最短:t min Lv船10.角速度:t2 T单位: rad/s ①如果 v ②如果 v船<v水,3.绳拉船问题①对与倾斜绳子相连的物体的运动进行分解v 1②合运动:物体实际的运动船>v水,v水cos,s min =Lv船⊥v船合12.周期与频率的关系:T 1f13.转速与频率的关系: n60 f24 2 v 2 14.向心力: F m mrm r 向 r 2 T22v4 r 2 a r 15.向心加速度: 2 向 rT③两 个分 运绳子伸缩 绳子摆动v 2θ16.竖直平面内圆周运动最高点的临界速度:vgr4.自由落体运动向=实际力 =所需的向心力17.方程格式: F①末速度: v t gt2gh②下落高度:h1 gt 22③下落时间:t2h g5.竖直下抛运动①末速度: vvgtt33ar18.开普勒第三定律:k(圆轨道k)22TT19.万有引力定律:m m12-11F G,G=6.67×102r20.中心天体质量: 21.中心天体密度:M 2 34r2GT②下落高度:h6.竖直上抛运动①末速度:v t v 0 gt2M 3πρ(T为近地卫星周期432GTπR 322.卫星的轨道越高,转动得越慢.)1 gt②上升高度:2h v t223.卫星的运行速度: vGM r③上升时间: ④最大高度:t上Hvg2 0v 2gGM24.地球表面的重力加速度:2“黄金代换” :GM R = gg2R25.第一宇宙速度 (环绕速度 ): v 1 Rg 7.9km/s7.平抛运动①分速度:第二宇宙速度 (脱离速度 ):11.2km/s 第三宇宙速度 (逃逸速度 ):16.7km/s②合速度:22v t(gt) v————————————————————— 26.功的定义式: WFs cos 恒力做功③速度方向: ④分位移 ⑤位移方向:tanx v 0t1gt y2 tangt v2 gt 2vvxg2 y27.变力做功的计算: ①摩擦力做功: W f = ±fs ,s 为路程②F-s 图像法:图象围的“面积”代表功28.摩擦发热: Q = f s ·相对W29.功率: PFv cos tP f30.交通工具行驶的最大速度:v m⑥飞行时间:t2 ,与 vh 0 无关g31.动能: E k1 mv 2232.重力势能: E P = mgh8.斜抛运动①分速度③飞行时间:v xv ytvcosθvsinθ-sinθg2v0gt②分位移x v0 cosθty v1sin θt gt2221mv2221mv mg22mgh11233.弹性势能:Ep34.动能定理:W总Ek35.机械能守恒:选修 3-1 公式一、电场3、并联电路电流的分配:与电阻成反比 I I1 2R 2 R 1R2, I I 干1RR121、电荷先中和后均分:q 1 q2q(带正负号 )24、串联电路的总电阻: R 串 R 1 R 2 ( nR)2、库仑定律:q q1 2F k(不带正负号 )2rR RR1 25、并联电路的总电阻: R 并( ) RRn12(k=9.0 1×09 N ·m 2/C 2,r 为点电荷球心间的距离)9 N ·m 2/C 2,r 为点电荷球心间的距离 )F q3、电场强度定义式:E6、I-U 伏安特性曲线的斜率:k tan1R场强的方向:正检验电荷受力的方向 .4、点电荷的场强:Q Ek(Q 为场源电量 ) A2rA5、电场力做功: W AB qU AB (带正负号 )6、电场力做功与电势能变化的关系: W 电E P7、部分电路欧姆定律: I U R 7、电势差的定义式: UWABAB(带正负号 )q8、闭合电路欧姆定律:IE R r8、电势的定义式:W APA(带正负号 )q9、闭合电路的路端电压与输出电流的关系: U E I r (P 代表零势点或无穷远处 ) 10、电源输出特性曲线:9、电势差与电势的关系:U ABAB电动势 E :等于 U 轴上的截距10、匀强电场的电场强度与电势差的关系:E U d内阻 r :直线的斜率 rtanIE 短(d 为沿场强方向的距离 )11、初速度为零的带电粒子在电场中加速: 12、带电粒子在电场中的偏转:v2qU m11、多用电表: 若将电压表量程扩大n 倍,需 R 串 (n 1)R g加速度 ——aqU md若将电流表量程扩大n 倍,需R并R gn 1偏转量 ——y2qUl22md vE 欧姆表:调零I g,测量R内12、电功 (电能):W UItPtI xR内ERx偏转角 ——tanqU md v l22U2对于纯电阻: W Pt UItI RttR13、初速度为零的带电粒子在电场中加速并偏转:yqU lU2md22qU 1m2 l24dU1W13、电功率: P UIt对于纯电阻: PW tUII2R2UR14、电容的定义:QC单位:法拉 FU214、电热: Q I Rt15、平行板电容器的电容: C4 Skd215、热功率:P I R热16、闭合电路中的电功率:EI U 外I U内 I 二、电路l1、电阻定律:R (l 叫电阻率)S2、串联电路电压的分配:与电阻成正比17、电源输出的最大电功率:当R r 时,输出功率最大,P出2E4rU U 12R1R2R1,U U总1R R1 218、电源的效率:P出P总UIEIUE RRr三、磁场1、磁场的方向:小磁针静止时N 极的指向2、安培定则:判断直线电流、环形电流、通电螺线管的磁场方向。
人造卫星的运动规律公式人造卫星的运动规律公式人造卫星是人类制造并将其投入地球轨道或其他宇宙体轨道中的人造天体。
为了准确预测和控制人造卫星的运动,科学家们发现了一些与卫星运动相关的公式。
以下是一些与人造卫星运动规律相关的公式及其解释说明:牛顿第二定律牛顿第二定律是描述物体运动的基本定律,适用于卫星运动的推导。
它的公式表达如下:F=ma其中,$ F 代表作用在卫星上的合力, m $代表卫星的质量,$ a $代表卫星的加速度。
根据这个公式可得出卫星的加速度与合力的关系,从而进一步推导出卫星的运动规律。
引力定律引力定律描述了卫星与地球之间的引力相互作用。
它的公式表达如下:F g=G⋅m1⋅m2r2其中, $ F_g $代表卫星受到的引力, $ G $代表万有引力常数,$ m_1 $和 $ m_2 $分别代表卫星和地球的质量, $ r $代表卫星与地球的距离。
引力的存在使得卫星围绕地球做圆周运动。
圆周运动公式卫星在地球轨道上进行圆周运动,其运动速度、半径和周期之间存在一定的关系,可以用以下公式表达:v=2πr T其中, $ v $代表卫星的速度, $ r $代表卫星与地球的距离,$ T $代表卫星完成一次绕地运动所需的时间,即周期。
这个公式说明了卫星的速度与卫星与地球的距离和周期的关系。
开普勒定律开普勒定律描述了卫星在椭圆轨道上运动时的规律。
其中,开普勒第一定律表明,卫星绕地运动的轨迹是一个椭圆;开普勒第二定律说明,卫星在运动过程中,相同时间内扫过的面积相等;开普勒第三定律表达了卫星轨道上的周期与轨道半长轴的关系。
典型案例1:国际空间站(ISS)的运动国际空间站是目前人类在轨道上长期停留的空间实验室。
它的运动符合上述所列的运动规律公式。
例如,ISS的速度约为每秒公里,它的周期约为每90分钟绕地球一周。
根据圆周运动公式,我们可以计算出ISS与地球的距离约为416公里。
通信卫星用于向地面的接收器传送信息。
它们也符合上述的运动规律公式。
星球有关公式以及变式高一
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω
=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5. 第一 ( 二、三 ) 宇宙速度 V1=(g 地 r
地 )1/2=(GM/1/2=(GM/地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
强调:(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
天体物理学公式和解析
1.开普勒第三定律:T2/R3=K(=4&pi;2/GM){R:轨道半
径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2
(G=6.67&times;10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:
GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:
V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4&pi;2(r地
+h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径)
强调:(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期
变小;
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
高一物理宇宙速度知识点宇宙速度是指天体在宇宙中沿某个轨道的速度。
在高中物理课程中,学生们会接触到一些与宇宙速度相关的知识点。
下面我们将介绍几个关于宇宙速度的重要概念和原理。
首先是关于逃逸速度的概念。
逃逸速度是指一个天体表面上的速度,当天体表面的物体动能等于万有引力势能时,物体能够从天体表面逃逸出去。
逃逸速度与天体的质量和半径有关,可以通过以下公式计算得到:Ve = √(2GM/R)其中,Ve代表逃逸速度,G是引力常数,M是天体质量,R是天体半径。
逃逸速度可以看作一个天体对物体束缚力的界限,超过这个速度,物体就可以离开天体,进入宇宙空间。
接下来是关于地球绕太阳运动的速度。
地球绕太阳运动的速度被称为公转速度,是地球绕太阳一周所花费的时间与地球公转轨道的周长之比。
公转速度可以通过以下公式计算得到:v = 2πr/T其中,v代表公转速度,r是地球到太阳距离的平均值,T是地球绕太阳一周所花费的时间,也就是一年的时间。
地球的公转速度决定了地球绕太阳的轨道和季节变化。
除了公转速度,还有一个与太阳系有关的重要速度,那就是太阳系的脱离速度。
太阳系的脱离速度是指一个天体距离太阳系的质心足够远,以至于能够与太阳系的引力束缚解脱而逃离太阳系的速度。
太阳系的脱离速度需要克服太阳系的总引力,包括太阳、行星以及其他天体所产生的引力,因此计算太阳系的脱离速度比较困难。
宇宙速度的概念还可以延伸到宇宙飞船和卫星的发射和飞行过程中。
当人们发射一颗卫星或者宇宙飞船进入轨道时,需要使其达到足够的速度。
这个速度被称为轨道速度或者第一宇宙速度。
轨道速度的大小与地球的引力势能和卫星或者宇宙飞船的质量有关,可以通过以下公式计算得到:v = √(GM/R)其中,v代表轨道速度,G是引力常数,M是地球质量,R是轨道高度加上地球半径的和。
轨道速度的大小决定了卫星或者宇宙飞船是否能够稳定地绕着地球运行。
总的来说,宇宙速度是指天体在宇宙空间中沿某个轨道所具有的速度。
高中物理量子卫星运行速度公式一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻/s--t图、v--t图/速度与速率、瞬时速度。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力1)平抛运动1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体的向心力等于合力,向心力只改变速度的方向,不改变速度的大小。
所以物体的动能不变,向心力不做功,动量保持变化。
3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)1)常见的力1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm 为最大静摩擦力)5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)注:(1)劲度系数k由弹簧自身决定;(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;(3)fm略大于μFN,一般视为fm≈μFN;(4)其它相关内容:静摩擦力(大小、方向);(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);(6)安培力和洛仑兹力的方向由左手定则决定。
2)力的合成与分解1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 (F1>F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x 轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)在同一直线上的力的组合可以取直线的正方向,用符号表示力的方向,简化为代数运算。
四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(4)干涉与衍射是波特有的;(5)振动图象与波动图象;(6)其它相关内容:超声波及其应用/振动中的能量转化。
六、冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s 相对子弹相对长木块的位移}注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,此时化学能转化为动能,动能增加;(6)其他相关内容:后坐力运动、火箭、航天技术发展、航天飞行。