中考数学考前得分专练6
- 格式:doc
- 大小:185.00 KB
- 文档页数:3
中考基础题提分训练测试题(含答案)说明:适合考前2周使用.第一单元一、实数的分类及相关概念1.下列各数中,是有理数的是( ) A .π B .0.3 C . 5D .332.-8的绝对值是( ) A .8 B .18 C .-8D .-183.如果a 与3互为相反数,那么a 等于( ) A .3 B .13 C .-3D .-134.-12的倒数是( )A .-2B .12C .2D .1二、科学记数法5.据报道,现场观众累计约为4230000人次.将4230000用科学记数法表示应为( ) A .0.423×107B .4.23×106C .42.3×105D .423×1046.近两年来为沿线国家创造了约180000个就业岗位.将数据180000用科学记数法表示为 .7.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为( )A .93×108元 B .9.3×108元 C .9.3×107元 D .0.93×108元三、实数的大小比较8.下列四个实数中,最小的是( )A .- 3B .-2C .0.5D .69.在实数-5,13,0,(-2)0中,最大的数是( )A .-5B .13C .0D .(-2)010.实数a ,b 在数轴上的位置如图1所示,下列结论正确的是( )图1A .a -b>0B .|a|>bC .a +b >0D .ab >011.点A ,B 在数轴上的位置如图2所示,其对应的实数分别是a ,b ,则|a|-|b| 0.(填“>”“=”或“<”)图2四、非负数的性质12.已知a ,b 满足(a -1)2+b +2=0,则a +b = . 13.已知|x +y|+2-y =0,则xy 的值为 . 五、平方根、算术平方根、立方根、二次根式 14.化简:-42=( )A .4B .-4C .2D .-215.-8的立方根是( ) A .2 B .-2 C .±2D .-2 216.若一个数的平方根是2a +1和a +2,则a 为 . 17.下列计算正确的是( ) A .2 2-2=2 B .8+2=10 C .12÷2= 6 D .2×3= 6六、代数式求值18.如果a -b -2=0,那么代数式1+2a -2b 的值是 . 19.已知2a 2=1-4a ,则代数式a 2+2a -1的值为( )A .0B .12C .-12D .-32七、整式的运算20.计算(-2a)3的结果是( ) A .-8a 3B .-6a 3C .6a 3D .8a 321.下列计算正确的是( )A .⎝ ⎛⎭⎪⎫-130=1 B .62×64=68C .(-2)×(-2)2=8 D .36÷32=3322.下列运算正确的是( ) A .m 2·m 3=m 6B .(m 4)2=m 6C .m 3+m 3=2m 3D .(m -n)2=m 2-n 223.a 5÷a 3= . 八、因式分解24.分解因式4x 3-xy 2的结果是( ) A .x(4x +y)(4x -y) B .4x(x +y)(x -y) C .x(2x +y)(2x -y)D .2x(x +y)(x -y)25.分解因式:m 2+4m +4= . 26.因式分解:3a 2-27= . 九、规律探究27.观察下列一组数:32,-1,710,-917,1126,…,根据该组数的排列规律可推出第10个数是( )A .21101B .-21101C .21100D .-2110028.如图3所示是用火柴棒拼成的一组图形,第①个图形有3根火柴棒,第②个图形有5根火柴棒,第③个图形有7根火柴棒,第④个图形有9根火柴棒,…,按此规律拼下去,第n 个图形有 根火柴棒.图329.根据下列各式的规律,在横线处填空. 1+12-1=12, 13+14-12=112, 15+16-13=130, 17+18-14=156, …12 019+12 020-11 010= . 十、实数的运算30.计算:⎝ ⎛⎭⎪⎫13-2-|-6|+(π-3.14)0.31.计算:(-1)2 019+4sin 60°-12.32.计算:⎝ ⎛⎭⎪⎫15-1-|3-2|-(-2)2+(3-cos 60°)0.十一、化简求值(分式及整式的化简求值)33.先化简,再求值:(x -2y)(x +2y)+(x -2y)2,其中x =2,y =-12.34.先化简,再求值:x -3x 2+6x +9÷⎝⎛⎭⎪⎫1-6x +3,其中x =2-3. 35.先化简,再求值: m -1m ·m 2m 2-2m +1-2mm -1,其中m 是满足-2<m <2的整数.第二单元一、解方程(组)1.若一元二次方程x 2-2kx +k 2=0的一根为x =-1,则k 的值为( ) A .-1 B .0 C .1或-1D .2或02.分式方程 1x -1-5x +1=0的解是 .3.解方程组:⎩⎪⎨⎪⎧2x +y =7,6x -2y =16.4.解方程:5x +2=3x 2.5.解方程: x -2x -3+1=23-x .二、根的判别式及根与系数的关系6.已知关于x 的方程x 2-6x +k -1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <10 B .k =10 C .k >10D .k ≥107.关于x 的一元二次方程x 2-2x +m =0无实数根,则实数m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1D .m >18.关于x 的方程(a -2)x 2+3x -1=0有实数根,那么a 的取值范围是( ) A .a ≤-14B .a ≥-14且a ≠2C .a ≤-14且a ≠-2D .a ≥-149.一元二次方程x 2+6x +9=0的根的情况是( ) A .没有实数根 B .有两个不相等的实数根 C .有两个相等的实数根D .无法确定10.设x 1,x 2是方程2x 2-3x +1=0的两个根,则x 1+x 2= ,x 1·x 2= . 三、解不等式(组)11.已知m <n ,下列不等式中,正确的是( ) A .m +3>n +3 B .m -4>n -4 C .m 5>n 5D .-2m >-2n12.不等式6x -2>3x +4的解集在数轴上表示正确的是( )13.不等式组⎩⎪⎨⎪⎧x +2>3,x -12≤4的解为 .14.解不等式组:⎩⎪⎨⎪⎧2x>-4,1-2x -3>x +1.15.解不等式组:⎩⎪⎨⎪⎧3x -x -2≥6,x +1>4x -13,并把它的解集在数轴(如图1)上表示出来.图1四、方程(组)及不等式的应用16.某校准备组织七年级400名学生参观公园,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人.求每辆小客车和每辆大客车各能坐多少名学生?17.某中学图书馆近日购进甲、乙两种图书,已知甲种图书的进价比乙种图书的进价每本高20元,花780元购进甲种图书的数量与花540元购进乙种图书的数量相同.(1)求甲、乙两种图书每本的进价分别是多少元;(2)该中学购进甲、乙两种图书共70本,总购书费用不超过3950元,则最多购进甲种图书多少本?18.新能源汽车投放市场后,有效改善了城市空气质量.经过市场调查得知,某市去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆.(1)求今、明两年新能源汽车数量的平均增长率;(2)为鼓励市民购买新能源汽车,该市财政部门决定对今年增加的新能源汽车给予每辆0.8万元的政府性补贴.在(1)的条件下,求该市财政部门今年需要准备多少补贴资金?第三单元一、平面直角坐标系中点的坐标特征 1.点(3,4)到y 轴的距离为( ) A .3 B .4 C .5D .72.已知点P(-m ,m -3)在y 轴上,则点P 的坐标是( ) A .(3,0) B .(0,-3) C .(-3,0)D .(0,3)3.若点P(-m ,-3)在第四象限,则m 满足( ) A .m >3 B .0<m ≤3 C .m <0D .m <0或m >3二、动点问题的函数图象4.如图1,在矩形ABCD 中,动点P 从点B 开始沿B →A →D →C 的路径匀速运动到点C 停止,在这个过程中,△PBC 的面积S 随时间t 变化的图象大致是( )图15.如图2,在Rt△ABC中,∠BCA=90°,AC=2 cm,AB=4 cm,点P从点C出发,以2 cm/s的速度沿折线CA—AB—BC运动,最终回到点C.设点P的运动时间为x,线段CP的长度为y,则能反映 y与x之间的函数关系的图象大致是( )图26.如图3,在▱ABCD中,∠A=60°,AB=6厘米,BC=12厘米,点P,Q同时从顶点A 出发,点P 沿A→B→C→D方向以2厘米/秒的速度前进,点Q沿A→D方向以1厘米/秒的速度前进,当点Q到达点D时,两个点随之停止运动.设运动时间为x秒,点P,Q经过的路径与线段PQ围成的图形的面积为y平方厘米,则y关于x的函数图象大致是( )图3三、函数的图象与性质7.已知函数y =2x +m -1的图象经过原点,则m 的值为( ) A .0 B .1 C .-1D .28.二次函数y =x 2+2x -3的图象的对称轴是( ) A .直线x =1 B .直线x =-1 C .直线x =4D .直线x =-49.如图4,在▱ABCD 中,点A 在反比例函数y =kx(k ≠0)的图象上,点D 在y 轴上,点B ,C 在x 轴上.若▱ABCD 的面积为10,则k 的值是( )图4A .5B .-5C .10D .-1010.二次函数y =ax 2+bx +c 的部分图象如图5所示,由图象可知方程ax 2+bx +c =0的根是( )图5A .x 1=-1,x 2=5B .x 1=-2,x 2=4C .x 1=-1,x 2=2D .x 1=-5,x 2=511.在同一平面直角坐标系中,一次函数y =ax -b 和二次函数y =-ax 2-b 的图象大致是( )12.如图6,反比例函数y =kx(x >0)与一次函数y =ax +b 的图象交于点A(1,6)和点B(3,2).当ax +b <kx时,x 的取值范围是( )图6A .1<x <3B .x <1或x >3C .0<x <1D .0<x <1或x >313.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图7所示,下列结论:①abc <0;②2a -b <0;③当x >0时,y 随x 的增大而增大;④点(-3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2.其中正确的结论有( )图7A .4个B .3个C .2个D .1个14.正比例函数y =2x 和反比例函数y =2x的图象的一个交点为(1,2),则另一个交点为 .图815.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…按如图8所示的方式放置,点A 1,A 2,A 3,…和点B 1,B 2,B 3,…分别在直线y =kx +b(k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则C 5的坐标是 .四、一次函数、二次函数、反比例函数综合16.如图9,在平面直角坐标系中,一次函数y 1=kx +b(k ≠0)与反比例函数y 2=mx(m ≠0)的图象相交于第一、三象限内的A(3,5),B(a ,-3)两点,与x 轴交于点C .图9(1)求该反比例函数和一次函数的解析式;(2)在y 轴上找一点P ,使PB -PC 最大,求PB -PC 的最大值及点P 的坐标.17.如图10,抛物线y =ax 2+bx +c(a ≠0)的顶点为M(1,9),经过抛物线上的两点A(-3,-7)和B(3,m)的直线交抛物线的对称轴于点C .图10(1)求抛物线的解析式和直线AB 的解析式;(2)在抛物线上A ,M 两点之间的部分(不包含A ,M 两点),是否存在点D ,使得S △DAC =2S △DCM ?若存在,求出点D 的坐标;若不存在,请说明理由.第四单元一、余角、补角、对顶角、相交线与平行线1.如果∠α=35°,那么∠α的余角等于 .2.如图1,直线AB,CD相交于点O,OE⊥CD,已知∠BOE=65°,则∠AOC的大小为( )图1A.25°B.35°C.65°D.115°3.如图2,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为 .图24.已知直线m∥n,将一块含30°角的直角三角板ABC按如图3方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为( )图3A.10°B.20°C.30°D.40°二、三角形相关内容(三边关系、内角和、重要线段)5.下列长度的三条线段,能组成三角形的是( )A.3,4,8 B.5,6,10C.5,5,11 D.5,6,116.如图4,在△ABC中,∠C=80°,高AD,BE交于点H,则∠AHB的度数为( )图4A.105°B.100°C.110°D.120°7.如图5,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是12,则△BEF的面积是( )图5A.2 B.3C.4 D.68.如图6,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D,E,F是三边的中点,则△DEF的周长是 .图6三、多边形9.六边形的内角和是( )A.540°B.720°C.900°D.360°10.一个多边形的每一个外角都是36°,则这个多边形的边数是 .四、全等三角形的性质及判定11.如图7,△ABC≌△A′B′C,点B′在边AB上,线段A′B′与AC交于点D,若∠A =40°,∠B=60°,则∠A′CB的度数为( )图7A.100°B.120°C.135°D.140°12.如图8,已知AD∥BC,请添加一个条件,使得△ABC≌△CDA(不添加其他字母及辅助线),你添加的条件是 .图813.如图9,已知点A,E,F,C在同一直线上,AE=EF=FC,过点E,F分别作DE⊥AC,BF⊥AC,连接AB,CD,BD,BD交AC于点G,AB=CD.图9(1)求证:△ABF≌△CDE;(2)若AE=ED=2,求BD的长.五、等腰三角形、直角三角形14.如图10,在Rt△ABC中,CD是斜边AB上的中线,若∠A=26°,则∠BDC的度数是( )图10A.26°B.38°C.42°D.52°15.如图11,在△ABC中,AB=AC,AB的垂直平分线交AB,AC于点D,E,△BCE的周长是8,AB=5,则△ABC的周长是( )图11A.10 B.11C.12 D.1316.如图12,等边三角形ABC的周长为18,且AD⊥BC于点D,那么AD的长为( )图12A.3 B.4C.3 3 D.617.如图13,在△ABC中,点D,E,F分别在BC,AC,AB边上,且AB=AC,BF=CD,BD=CE.图13(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠EDF的度数.六、平行线分线段成比例、相似三角形的判定及性质18.如图14,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为( )图14A.2 B.3C.4 D.519.如果两个相似三角形的对应边上的高之比为1∶3,则两个三角形的面积比为( ) A.2∶3 B.1∶3C.1∶9 D.1∶ 320.如图15,下列条件中,不能判定△ACD∽△ABC的是( )图15A .∠ADC =∠ACB B .∠B =∠ACDC .∠ACD =∠BCDD .AC AB =AD AC21.如图16,在△ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在BC ,AC 边上,且∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)若AB =2 2,BD =1,求CE 的长.图16七、锐角三角函数及应用22.在Rt △ABC 中,∠C =90°,如果AC =2,cos A =23,那么AB 的长是( )A .3B .43C . 5D .1323.如图17所示的网格是正方形网格,点A ,B ,C 都在格点上,则tan ∠BAC 的值为( )图17A .2B .12C .2 55D .5524.如图18,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan D 的值为( )图18A.2+ 3 B.2- 3C.2 3 D.3 325.如图19,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6 m,则旗杆AB的高度为 m.图1926.如图20,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(3≈1.73,2≈1.41,结果保留一位小数)图20第五单元一、平行四边形的判定与性质1.如图1,在▱ABCD中,CE⊥AB,点E为垂足.如果∠A=119°,则∠BCE=( )图1A.61°B.29°C.39°D.51°2.如图2,在▱ABCD中,对角线AC与BD相交于点O,且AB⊥AC.若AD=5,AB=3,则S△ABO为( )图2A.3 B.4C.6 D.123.如图3,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件,不能使四边形ABCD成为平行四边形的是( )图3A.AB=CD B.OB=ODC.∠BCD+∠ADC=180°D.AD=BC4.如图4,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,连接DE,CD.过点E作EF∥DC交BC的延长线于点F.图4(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是18 cm,AC的长为6 cm,求线段AB的长度.二、矩形的判定与性质5.如图5,在矩形ABCD中,对角线AC与BD相交于点O,且AB=2 cm,BD=4 cm,则∠ACB的度数为( )图5A.25°B.30°C.45°D.60°6.如图6,四边形OABC是矩形,已知A(2,1),B(0,5),点C在第二象限,则点C的坐标是( )图6A .(-1,3)B .(-1,2)C .(-2,3)D .(-2,4)7.如图7,点O 是矩形ABCD 的对角线AC 的中点,点M 是AD 边的中点,若OM =3,BC =8,则OB 的长为 .图78.如图8,在▱ABCD 中,AE ⊥BC 于点E ,过点D 作DF ∥AE ,交BC 的延长线于点F ,连接AF.图8(1)求证:四边形AEFD 是矩形;(2)若AD =8,tan B =43,CF =92,求矩形AEFD 的面积.三、菱形的判定与性质9.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为( ) A .12 B .24 C .36D .4810.如图9,在菱形ABCD 中,点E ,F 分别是AC ,DC 的中点.若EF =5,则菱形ABCD的周长为( )图9A .15B .20C.30 D.4011.如图10,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH.若∠DHO=20°,则∠ABD的度数是( )图10A.60°B.65°C.70°D.75°12.如图11,在△ABC中,∠BAC=90°,点D是BC边的中点,AE∥BC,CE∥AD.图11(1)求证:四边形ADCE是菱形;(2)过点D作DF⊥CE于点F,∠B=60°,AB=6,求CF的长.四、正方形的判定与性质13.如图12,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的大小是( )图12A.67.5°B.22.5°C.30°D.45°14.已知四边形ABCD是平行四边形,下列结论中错误的是( )A.当∠ABC=90°时,它是矩形B.当AB=BC时,它是菱形C.当AC⊥BD时,它是菱形D.当AC=BD时,它是正方形15.如图13,正方形OMNP的顶点与正方形ABCD的对角线交点O重合,正方形ABCD和正方形OMNP的边长都是2 cm,则图中重叠部分的面积是 cm2.图1316.如图14,在矩形ABCD中,E是BC边上一点,DE平分∠ADC,EF∥DC交AD于点F,连接BD.图14(1)求证:四边形CDFE是正方形;(2)若BE=1,ED=2 2,求tan∠DBC的值.第六单元一、圆周角定理及其推论1.如图1,AB是⊙O的直径,C,D为圆上两点,∠D=34°,则∠BOC的度数为( )图1A.102°B.112°C.122°D.132°2.如图2,已知⊙O的直径AB=10 cm,点C在⊙O上,且∠BOC=60°,则△AOC的周长为( )图2A.(15+5 3) cm B.(10+5 3) cmC .5 3 cmD .15 cm3.如图3,⊙O 是△ABC 的外接圆,半径为3,∠A =45°,连接OB ,OC ,则边BC 的长为( )图3A .3 2B .3 32C .3 22D .3 34.如图4,在平面直角坐标系xOy 中,已知⊙A 经过点E ,B ,O ,C ,点C 在y 轴上,点E 在x 轴上,点A 的坐标为(-2,1),则sin ∠OBC 的值是 .图4二、圆内接四边形5.如图5,点A ,B ,C ,D 在⊙O 上,若∠B =100°,则∠ADE 的度数是( )图5A .30°B .50°C .100°D .130°6.如图6,已知⊙O 为四边形ABCD 的外接圆,O 为圆心,若∠BCD =120°,AB =AD =6,则⊙O 的半径长为( )图6A .2 3B . 2C .2 33D .3三、切线的性质与判定7.如图7,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,点D 是⊙O 上一点,连接AD 交BC 于点C ,连接OD .若∠C =50°,则∠BOD 等于( )图7A .40°B .50°C .60°D .80°8.如图8,AB 是⊙O 的直径,点C 是⊙O 上一点,点D 是AB 延长线上一点,DC 是⊙O 的切线,若⊙O 的半径为4,∠CAB =30°,则CD 的长为( )图8A .8B .4 3C .4D .2 39.如图9,DC 是⊙O 的直径,点B 在圆上,直线AB 交CD 延长线于点A ,且∠ABD =∠C .图9(1)求证:AB 是⊙O 的切线;(2)若AB =4 cm ,AD =2 cm ,求⊙O 的半径长. 四、弧长和扇形面积的计算10.如图10,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =40°,AB =6,则 BC ︵的长为( )图10A .8π3B .10π3C .5π3D .4π311.一个扇形的弧长为4π,扇形的圆心角为120°,则此扇形的面积为 . 五、阴影部分的面积12.如图11,在矩形ABCD 中,AB =2,BC =2,以点A 为圆心,AD 长为半径画弧交线段BC 于点E ,连接AE ,则阴影部分的面积为( )图11A .π4B .2 2-π4C .π2D .2 2-π213.如图12,在菱形ABCD 中,点E 是BC 的中点,以点C 为圆心,CE 长为半径作弧,交CD 于点F ,连接AE ,AF.若AB =6,∠B =60°,则阴影部分的面积为( )图12A .9 3-3πB .9 3-2πC .18 3-9πD .18 3-6π14.如图13,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若OA =3,则阴影部分的面积为 .图13第七单元一、尺规作图1.如图1,在平行四边形ABCD中,E是AD边上一点,且AE=AB,连接BE.(1)尺规作图:作∠A的平分线AF,交BC于点F,交BE于点G;(保留作图痕迹,不要求写作法)(2)若BE=8,AB=5,求AF的长.图12.如图2,已知在△ABC中,点D为AB边的中点.(1)请用尺规作图法,作出AC边的中点E,并连接DE;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,若S△ADE=2,求△ABC的面积.图2二、三视图、平面展开图3.如图3所示是某几何体的三视图,该几何体是( )图3A.圆柱B.正方体C.圆锥D.球4.下列立体图形中,主视图是圆的是( )5.如图4所示是由四个相同的小正方体组成的立体图形,它的俯视图为( )图46.把如图5所示的图形折叠成一个正方体的盒子,折叠后与“拓”相对的字是( )图5A.数B.学C.视D.野三、轴对称、中心对称图形7.下列四边形中不是轴对称图形的是( )A.矩形B.菱形C.正方形D.平行四边形8.下列图形中,既是中心对称图形,又是轴对称图形的是( )四、平移、旋转、折叠9.如图6,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到△OO′B′,则点B 的对应点B′的坐标是( )图6A.(1,0) B.(3,3)C.(1,3) D.(-1,3)10.如图7,在△ABC中,∠CAB=63°,在同一平面内,将△ABC绕点A旋转到△AED的位置,连接DC,使得DC∥AB,则∠BAE等于( )图7A.54°B.56°C.64°D.66°11.如图8,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B′重合,若AB=2,BC =3,则DE= .图812.如图9,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则图中阴影部分的面积为 .图9第八单元一、平均数、中位数、众数、方差1.数据2,3,3,5,6,10,13的中位数为( )A.5 B.4C.3 D.62.若五箱苹果的质量(单位:kg)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是( )A.18,18 B.19,18C .20,18D .20,193.“保护水资源,节约用水”应成为每个公民的义务.下表是某个小区随机抽查到的10户家庭的月用水情况,下列关于这10户家庭的月用水量说法错误的是( )A .中位数是5吨B .众数是5吨C .方差是3D .平均数是5.3吨4.甲、乙、丙三人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是s 2甲=0.61,s 2乙=0.35,s 2丙=1.13,在本次射击测试中,成绩最稳定的是( )A .甲B .乙C .丙D .无法确定二、概率5.在同一副扑克牌中抽取2张“方块”,2张“梅花”,1张“红桃”.将这5张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )A .15B .13C .12D .25 6.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是奇数的概率为( )A .12B .14C .13D .167.一个不透明的袋子中装有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号相同的概率是( )A .13B .12C .49D .598.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.三、统计图表9.为响应中考体育测试改革,第十五中学组织了一次全校2000名学生参加的“中考体育模拟”测试,测试结束后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次模拟测试的成绩分布情况,学校随机抽取了其中100名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到如图1所示的两个不完整的统计图表.图1成绩x/分频数频率50≤x<60 5 0.0560≤x<70 10 0.1070≤x<80 a 0.1580≤x<90 30 b90≤x≤100 40 0.40请根据所给的信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)若成绩在80分以上(包括80分)的为“优等”,估计该校参加这次模拟测试的2000名学生中成绩“优等”的有多少人?10.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如图2所示的两幅不完整的统计图,其中图①中A所占扇形的圆心角为36°.图2根据以上信息,解答下列问题:(1)这次被调查的学生共有 人; (2)请你将条形统计图补充完整;(3)若该校共有1000名学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用画树状图法或列表法求恰好选中甲、乙两位同学的概率.中考基础题提分训练测试题参考答案第一单元1.B 2.A 3.C 4.A 5.B 6.1.8×1057.C 8.B 9.D 10.C 11.> 12.-1 13.-4 14.A 15.B 16.-1 17.D 18.5 19.C 20.A 21.A 22.C 23.a 224.C 25.(m +2)226.3(a +3)(a -3) 27.B 28.(2n +1) 29.12 019×2 02030.解:原式=9-6+1=4. 31.解:原式=-1+4×32-2 3=-1+2 3-2 3=-1. 32.解:原式=5-(2-3)-4+1=5-2+3-4+1= 3. 33.解:原式=x 2-4y 2+x 2-4xy +4y 2=2x 2-4xy. 当x =2,y =-12时,原式=2×22-4×2×⎝ ⎛⎭⎪⎫-12=12.34.解:原式=x -3x +32÷x +3-6x +3=x -3x +32÷x -3x +3=x -3x +32·x +3x -3=1x +3.当x =2-3时,原式=12-3+3=12=22.35.解:原式=m -1m ·m2m -12-2m m -1=m m -1-2m m -1=-mm -1. ∵-2<m <2,且m 为整数,m ≠0,m ≠1,∴m =-1. 当m =-1时,原式=--1-1-1=-12.第二单元1.A 2.x =323.解:⎩⎪⎨⎪⎧2x +y =7,①6x -2y =16.②①×2+②,得10x =30. 解得x =3.把x =3代入①,得6+y =7. 解得y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =3,y =1.4.解:方程化为3x 2-5x -2=0. 因式分解,得(3x +1)(x -2)=0. 于是得3x +1=0,或x -2=0, x 1=-13,x 2=2.5.解:方程两边同乘x -3,得x -2+x -3=-2. 解得x =32.检验:当x =32时,x -3≠0.∴原分式方程的解为x =32.6.A 7.D 8.D 9.C 10.32,1211.D 12.A 13.1<x ≤914.解:⎩⎪⎨⎪⎧2x>-4,①1-2x -3>x +1.②解不等式①,得x >-2.解不等式②,得x <2.∴不等式组的解集是-2<x <2. 15.解:⎩⎪⎨⎪⎧3x -x -2≥6,①x +1>4x -13.②解不等式①,得x ≥2. 解不等式②,得x <4. ∴不等式组的解集为2≤x <4.不等式组的解集在数轴上的表示如图1所示.图116.解:设每辆小客车能坐x 名学生,每辆大客车能坐y 名学生.根据题意,得⎩⎪⎨⎪⎧3x +y =105,x +2y =110.解得⎩⎪⎨⎪⎧x =20,y =45.答:每辆小客车能坐20名学生,每辆大客车能坐45名学生.17.解:(1)设乙种图书每本的进价为x 元,则甲种图书每本的进价为(x +20)元. 根据题意,得 780x +20=540x .解得x =45.经检验,x =45是原分式方程的解,且符合题意. 45+20=65(元).答:甲、乙两种图书每本的进价分别为65元、45元. (2)设购进甲种图书a 本,则购进乙种图书(70-a)本. 根据题意,得65a +45(70-a)≤3950,解得a ≤40. ∵a 为整数,∴a 最大为40. 答:最多购进甲种图书40本.18.解:(1)设今、明两年新能源汽车数量的平均增长率为x. 由题意,得3 250(1+x)2=6370. 解得x 1=0.4=40%,x 2=-2.4(舍去).答:今、明两年新能源汽车数量的平均增长率为40%. (2)3 250×40%×0.8=1040(万元).答:该市财政部门今年需要准备1040万元补贴资金.第三单元1.A 2.B 3.C 4.B 5.A 6.A 7.B 8.B 9.D 10.A 11.A 12.D 13.B 14.(-1,-2) 15.(47,16)16.解:(1)把A(3,5)代入y 2=mx ,得m =3×5=15.∴反比例函数的解析式为y 2=15x .把B(a ,-3)代入y 2=15x ,得a =-5.∴B(-5,-3).把A(3,5),B(-5,-3)代入y 1=kx +b ,得⎩⎪⎨⎪⎧3k +b =5,-5k +b =-3.解得⎩⎪⎨⎪⎧k =1,b =2.∴一次函数的解析式为y 1=x +2.(2)如图1,当P ,C ,B 三点共线即点P 为一次函数y 1=x +2与y 轴的交点时,PB -PC最大,且最大值为线段BC 的长.图1令x =0,则y 1=2. ∴P(0,2).令y 1=0,则x =-2. ∴C(-2,0). ∴BC =-5+22+-32=3 2.∴PB -PC 的最大值为3 2.17.解:(1)∵抛物线的顶点为M(1,9), ∴可设抛物线的解析式为y =a(x -1)2+9.将A(-3,-7)代入抛物线y =a(x -1)2+9,得16a +9=-7. 解得a =-1.∴抛物线的解析式为y =-(x -1)2+9=-x 2+2x +8.令x =3,则y =5.∴B(3,5). 设直线AB 的解析式为y =kx +n. 将A(-3,-7),B(3,5)代入,得⎩⎪⎨⎪⎧-3k +n =-7,3k +n =5.解得⎩⎪⎨⎪⎧k =2,n =-1.∴直线AB 的解析式为y =2x -1. (2)存在.理由如下:由(1)可知,抛物线的对称轴为直线x =1,则C(1,1). 如图2,过点D 作y 轴的平行线交AB 于点H.图2设D(x ,-x 2+2x +8)(-3<x<1), 则H(x ,2x -1).∴DH =-x 2+2x +8-(2x -1)=-x 2+9. ∵S △DAC =2S △DCM ,∴12DH ·(x C -x A )=2×12MC ·(x C -x D ), 即12(-x 2+9)×(1+3)=2×12×(9-1)(1-x). 解得x =-1或x =5(舍去). ∴点D 的坐标为(-1,5).第四单元1.55° 2.A 3.50° 4.B 5.B 6.B 7.B 8.12 9.B 10.10 11.D 12.∠B =∠D(答案不唯一) 13.(1)证明:∵AE =EF =FC ,∴AF =CE.在Rt △ABF 与Rt △CDE 中,⎩⎪⎨⎪⎧AF =CE ,AB =CD ,∴Rt △ABF ≌Rt △CDE(HL). (2)解:∵△ABF ≌△CDE ,∴BF =DE.∵DE ⊥AC ,BF ⊥AC ,∴∠DEG =∠BFG. 在△DEG 与△BFG 中,⎩⎪⎨⎪⎧∠DEG =∠BFG ,∠DGE =∠BGF ,DE =BF ,∴△DEG ≌△BFG(AAS).∴EG =FG =12EF =12AE =1,DG =BG =12BD.在Rt △DEG 中,由勾股定理,得DG =ED 2+EG 2= 5. ∴BD =2DG =2 5. 14.D 15.D 16.C17.(1)证明:∵AB =AC ,∴∠B =∠C. 在△BDF 与△CED 中,⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BF =CD ,∴△BDF ≌△CED(SAS).∴DF =ED.∴△DEF 是等腰三角形.(2)解:∵∠A =50°,∴∠B =∠C =12×(180°-50°)=65°.∵△BDF ≌△CED ,∴∠BFD =∠CDE.∵∠CDE +∠EDF =∠BFD +∠B ,∴∠EDF =∠B =65°. 18.C 19.C 20.C21.(1)证明:∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°. ∵∠DEC =∠ADE +∠CAD =45°+∠CAD , ∠ADB =∠C +∠CAD =45°+∠CAD , ∴∠ADB =∠DEC. ∴△ABD ∽△DCE.(2)解:在Rt △BAC 中,AB =2 2,∴BC =AB 2+AC 2=4. ∵BD =1,∴DC =BC -BD =3.∵△ABD ∽△DCE ,∴AB DC =BD CE ,即 2 23=1CE .解得CE =3 24.∴CE 的长为 3 24.22.A 23.B 24.B 25.14.426.解:如图1,过点C作CD⊥AB于点D,则∠ACD=60°,∠BCD=45°.图1在Rt△BCD中,sin∠BCD=BDBC,∴BD=CD=BC·sin∠BCD=20×3×22=30 2≈42.3.在Rt△ACD中,tan∠ACD=ADCD,∴AD=CD·tan∠ACD≈42.3×3≈73.2.∴AB=AD+BD≈73.2+42.3=115.5.答:A,B间的距离约为115.5海里.第五单元1.B 2.A 3.D4.(1)证明:∵点D,E分别是AB,AC的中点,∴DE是Rt△ABC的中位线.∴DE∥CF.又EF∥DC,∴四边形CDEF是平行四边形.(2)解:∵四边形CDEF是平行四边形,∴DC=EF,DE=CF.∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC.∵DE是Rt△ABC的中位线,∴BC=2DE.∴四边形CDEF的周长=2DC+2DE=AB+BC=18.∴BC=18-AB.在Rt△ABC中,由勾股定理,得AB2=BC2+AC2,即AB2=(18-AB)2+62.解得AB=10.∴线段AB的长度为10 cm.5.B 6.D 7.58.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AD∥EF.∵DF ∥AE ,∴四边形AEFD 是平行四边形. ∵AE ⊥BC ,∴∠AEF =90°. ∴四边形AEFD 是矩形.(2)解:∵AB ∥CD ,tan B =43,∴tan ∠DCF =tan B =43.在Rt △CDF 中,tan ∠DCF =DF CF ,CF =92,∴DF =CF ·tan ∠DCF =92×43=6.∴S 矩形AEFD =AD ·DF =8×6=48. 9.B 10.D 11.C12.(1)证明:∵AE ∥BC ,CE ∥AD ,∴四边形ADCE 是平行四边形. ∵∠BAC =90°,点D 是BC 边的中点,∴AD =BD =CD. ∴四边形ADCE 是菱形.(2)解:∵∠B =60°,AD =BD ,∴△ABD 是等边三角形. ∴∠ADB =60°,AD =AB =6. ∵AD ∥CE ,∴∠DCE =∠ADB =60°. 在Rt △DFC 中,CD =AD =6,∴CF =12CD =3.13.B 14.D 15.116.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠ADC =∠C =90°. ∴∠ADE =∠DEC.∵EF ∥DC ,∴四边形CDFE 为平行四边形. ∵DE 平分∠ADC ,∴∠ADE =∠CDE =45°. ∴∠CDE =∠DEC.∴CD =CE. ∴四边形CDFE 是菱形.又∠C =90°,∴四边形CDFE 是正方形.(2)解:在Rt △DCE 中,∠CDE =45°,DE =2 2,sin ∠CDE =CEED ,∴CE =DC =DE ·sin 45°=22×2 2=2. ∴BC =BE +CE =1+2=3. ∴tan ∠DBC =DC BC =23.第六单元1.B 2.B 3.A 4.555.C6.A7.D8.B 9.(1)证明:如图1,连接OB.图1∵OB =OD ,∴∠OBD =∠BDC. ∵CD 是⊙O 的直径,∴∠CBD =90°. 又∠ABD =∠C ,∴∠ABO =∠ABD +∠OBD =∠C +∠BDC =90°. ∴OB ⊥AB.∵OB 是⊙O 的半径,∴AB 是⊙O 的切线. (2)解:设⊙O 的半径长为r cm.在Rt △ABO 中,由勾股定理,得AB 2+OB 2=AO 2, 即16+r 2=(r +2)2. 解得r =3.∴⊙O 的半径长为3 cm.10.D 11.12π 12.D 13.A 14.3π4第七单元1.解:(1)如图1,AF 即为所求.图1(2)∵AE =AB ,AF 平分∠BAE ,∴AG ⊥BE ,EG =BG =12BE =4.在Rt △AGB 中,AB =5,BG =4, ∴AG =AB 2-BG 2=52-42=3.∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠DAF =∠AFB.∵∠DAF =∠BAF ,∴∠AFB =∠BAF.∴BA =BF. ∵BG ⊥AF ,∴AG =GF =3. ∴AF =6.2.解:(1)如图2,DE 即为所求.图2(2)∵D 是AB 的中点,E 是AC 的中点,∴DE 是△ABC 的中位线. ∴DE ∥BC ,DE BC =12.∴△ADE ∽△ABC.∴S △ADE S △ABC =⎝ ⎛⎭⎪⎫DE BC 2=14.又S △ADE =2,∴S △ABC =8.∴△ABC 的面积为8.3.A 4.C 5.B 6.C 7.D 8.B 9.C 10.A 11.2 12.9第八单元1.A 2.B 3.C 4.B 5.A 6.A 7.A 8.解:(1)14.(2)画树状图如图1所示.图1由树状图可知,共有12种等可能的结果,其中甲组抽到A 小区,同时乙组抽到C 小区的结果有1种,∴甲组抽到A 小区,同时乙组抽到C 小区的概率为112.9.解:(1)15,0.30.【提示】a =100×0.15=15,b =30÷100=0.30. (2)补全频数分布直方图如图2所示.图2(3)2000×(0.3+0.4)=1400(人).答:该校参加这次模拟测试的2000名学生中成绩“优等”的约有1400人.10.解:(1)200.【提示】∵参加A社团的有20人,对应扇形的圆心角为36°,∴这次被调查的学生共有20÷36°360°=200(人).(2)参加C社团的人数为200-20-80-40=60(人),补全条形统计图如图3所示.图3(3)1 000×60200=300(人).答:这1000名学生中约有300人参加了羽毛球社团.(4)画树状图如图4所示.图4由树状图可知,共有12种等可能的结果,恰好选中甲、乙两位同学的结果有2种,∴P(选中甲、乙)=212=16.。
热点06 不等式与不等式组【命题趋势】1.解不等式(组)并在数轴上表示解集.试题难度一般不大,选择题、填空题和解答题中都会出现.2.联系生活实际,用不等式(组)解决实际问题,常与函数、方程结合考查.【满分技巧】一、不等式的性质不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.二、一元一次不等式及其解法(1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定.(2)根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.三、一元一次不等式组及其解法解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、一元一次不等式(组)的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”“最多”“不超过”“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【限时检测】(建议用时:30分钟)一、选择题1.如果0a b c ><,,那么下列不等式成立的是 A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选D .2.不等式2x ﹣1>3﹣x 的解集是A .x <43B .x >34C .x >43D .x <34【答案】C【解析】移项得2x +x >3+1,合并同类项得3x >4,系数化为1得x >43. 故选C .3.不等式3(x +1)>2x +1的解集在数轴上表示为A .B .C .D . 【答案】A【解析】去括号得,3x +3>2x +1,移项得,3x ﹣2x >1﹣3,合并同类项得,x >﹣2,在数轴上表示为:.故选A .4.不等式组2012x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是 A .B .C .D . 【答案】B【解析】2012x x +>⎧⎨-≤⎩①②, 由①得,x >﹣2,由②得,x ≤3,故此不等式组的解集为:﹣2<x ≤3.在数轴上表示为:故选B .5.关于x 的不等式组2150x x m ->⎧⎨-<⎩有三个整数解,则m 的取值范围是 A .67m <≤B .67m <<C .7m ≤D .7m <【答案】A 【解析】2150x x m ->⎧⎨-<⎩①② 由①得:x >3,由②得:x <m ,则不等式组的解集是:3<x <m .不等式组有三个整数解,则整数解是4,5,6.则6<m ≤7.故选A .6.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围 A .a >2B .a ≥2C .a <2D .a ≤2 【答案】C【解析】∵不等式(a ﹣2)x >1的解集为x <12a -,∴a ﹣2<0,∴a 的取值范围为:a <2.故选C . 7.若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是 A .1B .2C .3D .4 【答案】C【解析】解不等式2x -6+m <0,得:解不等式4x -m >0,得:∵不等式组有解,解得m <4,如果m =2,<2,整数解为x =1,有1个; 如果m =0,则不等式组的解集为0<m <3,整数解为x =1,2,有2个;如果m =-1,整数解为x =0,1,2,3,有4个, 故选C .8.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[–2.5]=–3;已知,x y 满足方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩则[]2x y +可能的值有 A .2个B .3个C .4个D .5个【答案】C 【解析】解方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩可得[][]1,3,x y ⎧=⎪⎨=⎪⎩又∵[a ]表示不大于a 的最大整数,∴1≤x <2,3≤y <4,∴4≤x 2+y <8,∴[x 2+y ]可能的值有4,5,6,7,故选C .9.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为A .20B .35C .30D .40【答案】C 【解析】∵990不能被13整除,∴两个部门人数之和:a +b ≥51,(1)若51≤a +b ≤100,则11(a +b )=990得:a +b =90,①由共需支付门票费为1290元可知,11a +13b =1290②解①②得:b =150,a =–60,不符合题意.(2)若a +b ≥100,则9(a +b )=990,得a +b =110③由共需支付门票费为1290元可知,1≤a ≤50,51≤b ≤100,得11a +13b =1290④,解③④得:a =70人,b =40人故两个部门的人数之差为70–40=30人,故选C .10.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种A .2B .3C .4D .5【答案】B【解析】设搭配A 种造型x 个,则B 种造型为(50﹣x )个.依题意,得: 7040(50)26603080(50)3000x x x x +-≤⎧⎨+-≤⎩,解得:20≤x≤22,∵x是整数,∴x可取20、21、22,∴可设计三种搭配方案:①A种园艺造型20个B种园艺造型30个.②A种园艺造型21个B种园艺造型29个.③A种园艺造型22个B种园艺造型28个.故选B.二、填空题11.不等式2x-3≤3的正整数解是___________.【答案】1、2、3【解析】解不等式2x-3≤3得x≤3,∴正整数解是1、2、3,故答案为:1、2、3.12.不等式组3121230xx+>-⎧⎨-≥⎩的解集为___________.【答案】﹣1<x≤4【解析】解不等式3x+1>﹣2,得:x>﹣1, 解不等式12﹣3x≥0,得:x≤4,则不等式组的解集为﹣1<x≤4,故答案为:﹣1<x≤4.13.解不等式组261,31513.22x xx x⎧+>-⎪⎪⎨⎪+≥-+⎪⎩①②,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________;(Ⅱ)解不等式②,得__________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________.【答案】3x >-;(Ⅱ)2x ≤;(Ⅲ)见解析;(Ⅳ)32x -<≤【解析】(Ⅰ)不等式①移项,得23x +x >1–6;合并同类项,得53x >–5;化系数为1,得x >–3故答案为x >–3.(Ⅱ)不等式②移项,得12x –52x ≥–3–1;合并同类项,得–2x 4≥-;化系数为1,得x 2≤故答案为x 2≤.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)根据数轴上的公共部分可得原不等式组的解集为–3<x 2≤.14.不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是__________.【答案】8≤k <12【解析】﹣4x ﹣k ≤0,﹣4x ≤k ,x ≥4k -, ∵不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2, ∴﹣3<4k -≤﹣2, 解得:8≤k <12,故答案为:8≤k <12.15.对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__________.【答案】13≤x <15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x <15.故答案为:13≤x <15.三、解答题16.解不等式5132x x -+>-. 【解析】将不等式5132x x -+>-, 两边同乘以2得,x -5+2>2x -6,解得x <3.17.解不等式组: 4(1)273x x x x -<+⎧⎪+⎨>⎪⎩. 【解析】4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②, 解①得:x <2,解②得x <72, 则不等式组的解集为2<x <72. 18.解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来. 【解析】31251422x x x x +>⎧⎪⎨+-≥⎪⎩①②,解不等式①,得x >﹣1, 解不等式②,得x ≤3,所以,原不等式组的解集为﹣1<x ≤3,在数轴上表示为:19.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵,由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵,根据题意可得,3020(10)230y y +-≤,1030y ≤,∴3y ≤,∵y 为自然数,∴y =3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵.20.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售额相同,3件甲种商品比2件乙种商品的销售额多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总额不低于5400万元,则至少销售甲种商品多少万件?【解析】(1)设甲种商品的销售单价是x 元,乙种商品的单价为y 元.根据题意得:23321500x y x y =⎧⎨-=⎩. 解得:900600x y =⎧⎨=⎩. 答:甲种商品的销售单价是900元,乙种商品的单价为600元.(2)设销售甲产品a 万件,则销售乙产品(8)a -万件.根据题意得:900600(8)5400a a +-≥.解得:2a ≥.答:至少销售甲产品2万件.21.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.【解析】(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,3600360010+=,0.9x x解得,x=40,经检验,x=40是原分式方程的解,∴0.9x=36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m件,则乙种商品购进(80﹣m)件,总利润为w元,w=(80﹣40)m+(70﹣36)(80﹣m)=6m+2720,∵80﹣m≥3m,∴m≤20,∴当m=20时,w取得最大值,此时w=2840,答:该商店获得的最大利润是2840元.。
2022年中考数学专题复习考前冲刺二次函数练习(广东版)学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--2.二次函数y =ax 2+bx +c ,若ab <0,a ﹣b 2>0,点A (x 1,y 1),B (x 2,y 2)在该二次函数的图象上,其中x 1<x 2,x 1+x 2=0,则( )A .y 1=﹣y 2B .y 1>y 2C .y 1<y 2D .y 1、y 2的大小无法确定3.二次函数2y ax bx c =++的图象如图所示,下列结论:①0ac <;①30a c +=;①240ac b -<;①当1x >-时,y 随x 的增大而减小,其中正确的有( )A .4个B .3个C .2个D .1个4.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点(1,0)A -和B ,与y 轴交于点C .下列结论:①0abc <;①20a b +<;①420a b c -+>;①30a c +>,其中正确的结论个数为( )A .1个B .2个C .3个D .4个5.已知抛物线2y ax bx c =++(,,a b c 是常数,0,1a c ≠>)经过点()2,0,其对称轴是直线12x =.有下列结论: ①0abc >;①关于x 的方程2ax bx c a ++=有两个不等的实数根;①12a <-. 其中,正确结论的个数是( )A .0B .1C .2D .36.一次函数y acx b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .7.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;①20a b +=;①320b c -<;①2am bm a b +≥+(m 为实数).其中正确结论的个数是( )A .1个B .2个C .3个D .4个8.关于二次函数228=+-y x x ,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(2,0)-和(4,0)D .y 的最小值为-99.将抛物线22(3)2y x =-+向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )A .22(6)y x =-B .22(6)4y x =-+C .22y x =D .224y x =+ 10.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20ax bx c m +++=(0)m >有两个根,其中一个根是3.则关于x 的方程20ax bx c n +++=(0)n m <<有两个整数根,这两个整数根是( )A .2-或0B .4-或2C .5-或3D .6-或4 11.二次函数y =x 2的图象平移后经过点(2,0),则下列平移方法正确的是( ) A .向左平移2个单位,向下平移2个单位B .向左平移1个单位,向上平移2个单位C .向右平移1个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位12.二次函数()20y ax bx c a =++≠的顶点坐标为()1,n -,其部分图象如图所示.以下结论错误的是( )A .0abc >B .240ac b -<C .30a c +>D .关于x 的方程21ax bx c n ++-=无实数根 13.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 14.函数y =ax 2+1与函数a y x=(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .15.已知二次函数y =x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是 ( )A .(3,0)B .(2,0)C .(-2,0)D .(-1,0)评卷人得分 二、填空题 16.抛物线()2221y x k x k =+--(k 为常数)与x 轴交点的个数是__________.17.下列关于二次函数22()1y x m m =--++(m 为常数)的结论,①该函数的图象与函数2y x =-的图象形状相同;①该函数的图象一定经过点(0,1);①当0x >时,y 随x 的增大而减小;①该函数的图象的顶点在函数21y x =+的图像上,其中所有正确的结论序号是__________.18.加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =-+-,则最佳加工时间为________min .19.已知二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的y 与x 的部分对应值如下表:x 5- 4-2- 0 2 y 60 6- 4- 6下列结论:①0a >;①当2x =-时,函数最小值为6-;①若点()18,y -,点()28,y 在二次函数图象上,则12y y <;①方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是__________________.(把所有正确结论的序号都填上)20.抛物线23(1)8y x =-+的顶点坐标为______________________________.21.二次函数y =-x 2+2x +2图象的顶点坐标是_________.参考答案:1.C【解析】【分析】抛物线在平移时开口方向不变,a 不变,根据图象平移的口诀“左加右减、上加下减”即可解答.【详解】把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为 []22(1)12(2)2y x x =--+=-+, 故选:C .【点睛】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点.2.B【解析】【分析】 首先分析出a ,b ,x 1的取值范围,然后用含有代数式表示y 1,y 2,再作差法比较y 1,y 2的大小.【详解】①a ﹣b 2>0,b 2≥0,①a >0.又①ab <0,①b <0,①x 1<x 2,x 1+x 2=0,①x 2=﹣x 1,x 1<0.①点A (x 1,y 1),B (x 2,y 2)在该二次函数y =ax 2+bx +c 的图象上,① 2111=y c x b a x ++,2222211=b c y ax ax x b x c ++++=.①y 1﹣y 2=2bx 1>0.①y 1>y 2.【点睛】本题主要考查二次函数的性质,二次函数图象上点的坐标特征和函数值的大小比较,解题的关键是判断出字母系数的取值范围.3.B【解析】【分析】根据抛物线的开口向上,得到a >0,由于抛物线与y 轴交于负半轴,得到c <0,于是得到ac <0,故①正确;根据抛物线的对称轴为直线x =−12b a=,于是得到2a +b =0,当x=-1时,得到30a c +=故①正确;把x =2代入函数解析式得到4a +2b +c <0,故①错误;抛物线与x 轴有两个交点,也就是它所对应的方程有两个不相等的实数根,即可得出①正确根据二次函数的性质当x >1时,y 随着x 的增大而增大,故①错误.【详解】解:①①抛物线开口向上与y 轴交于负半轴,①a >0,c <0①ac <0故①正确;①①抛物线的对称轴是x=1,①12b a-= ①b=-2a①当x=-1时,y=0①0=a-b+c①3a+c=0故①正确;①①抛物线与x 轴有两个交点,即一元二次方程20ax bx c =++有两个不相等的实数解 ①240b ac ->①240ac b -<故①正确;①当-1<x <1时,y 随x 的增大而减小,当x >1时y 随x 的增大而增大.所以正确的答案有①、①、①共3个故选:B【点睛】本题考查了二次函数的图象与系数的关系、二次函数的性质、二次函数与x 轴的交点,正确识别图象,并逐一分析各结论是解题的关键.4.B【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,进而判断①;根据对称轴<1求出2a 与b 的关系,进而判断①;根据x=﹣2时,y >0可判断①;由x=-1和2a 与b 的关系可判断①.【详解】①抛物线开口向上,①a>0,①对称轴在y 轴右边,①02b a ->,即b<0 , ①抛物线与y 轴的交点在x 轴的下方,①0c <,①0abc >,故①错误;对称轴在1左侧,①12b a-< ①-b<2a ,即2a+b>0,故①错误;当x=-2时,y=4a-2b+c>0,故①正确;当x=-1时,抛物线过x 轴,即a-b+c=0,①b=a+c ,又2a+b>0,①2a+a+c>0,即3a+c>0,故①正确;故答案选:B .【点睛】此题考查二次函数图像位置与系数的关系,数形结合是关键.5.C【解析】【分析】根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断①根据根的判别式240b ac ->,即可判断①;根据1c >以及c=-2a ,即可判断①.【详解】①抛物线2y ax bx c =++经过点()2,0,对称轴是直线12x =, ①抛物线经过点(1,0)-,b=-a当x= -1时,0=a-b+c ,①c=-2a;当x=2时,0=4a+2b+c ,①a+b=0,①ab<0,①c >1,①abc <0,由此①是错误的,由已知,抛物线与x 轴,有两个交点,①240b ac ->①①中方程()22224=4440b ac b a c a b ac a =---=-+>,①关于x 的方程2ax bx c a ++=有两个不等的实数根,①正确; ①1c >,c=-2a>1, ①12a <-,①正确 故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.6.B【解析】【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系、抛物线与y轴的交点即可得出a、b、c的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】解:A、①二次函数图象开口向上,对称轴在y轴右侧,抛物线与y轴的交点在x轴上方c>①a>0,b<0,0ac∴>①一次函数图象应该过第一、三、四象限,A错误;B、①二次函数图象开口向上,对称轴在y轴左侧,抛物线与y轴的交点在x轴上方c>①a>0,b>0,0∴>ac①一次函数图象应该过第一、二、三象限,B正确;C、①二次函数图象开口向下,对称轴在y轴右侧,抛物线与y轴的交点在x轴上方c>①a<0,b>0,0∴<ac①一次函数图象应该过第一、二、四象限,C错误;D、①二次函数图象开口向下,对称轴在y轴左侧,抛物线与y轴的交点在x轴上方c>①a<0,b<0,0ac∴<①一次函数图象应该过第二、三、四象限,D错误.故选:B.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b、c的正负确定一次函数图象经过的象限是解题的关键.7.D【解析】【分析】由抛物线的对称轴公式即可对①进行判断;由抛物线的开口方向可判断a,结合抛物线的对称轴可判断b,根据抛物线与y轴的交点可判断c,进而可判断①;由图象可得:当x=3时,y>0,即9a+3b+c>0,结合①的结论可判断①;由于当x=1时,二次函数y取最小值a+b+c ,即2am bm c a b c ++≥++(m 为实数),进一步即可对①进行判断,从而可得答案.【详解】解:①抛物线的开口向上,①a >0,①抛物线的对称轴是直线x=1,①12b a-=, ①b <0,20a b +=,故①正确;①抛物线与y 轴交于负半轴,①c <0,①0abc >,故①正确;①当x=3时,y >0,①9a+3b+c >0,①12a b =-,①9302b b c -++>, 整理即得:320b c -<,故①正确;①当x=1时,二次函数y 取最小值a+b+c ,①2am bm c a b c ++≥++(m 为实数),即2am bm a b +≥+(m 为实数),故①正确. 综上,正确结论的个数有4个.故选:D .【点睛】 本题考查了二次函数的图象与性质、二次函数与其系数间的关系等知识,属于常考题型,熟练掌握二次函数的图象与性质是解题的关键.8.D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可.【详解】①2228=(1)9y x x x =+-+-①抛物线的对称轴为直线:x=-1,在y 轴的左侧,故选项A 错误;令x=0,则y=-8,所以图象与y 轴的交点坐标为(0,8)-,故选项B 错误;令y=0,则228=0x x +-,解得x 1=2,x 2=-4,图象与x 轴的交点坐标为(2,0)和(4,0)-,故选项C 错误;①2228=(1)9y x x x =+-+-,a=1>0,所以函数有最小值-9,故选项D 正确.【点睛】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键.9.C【解析】【分析】按照“左加右减,上加下减”的平移法则,变换解析式,然后化简即可.【详解】解:将抛物线22(3)2y x =-+向左平移3个单位长度,得到22(3+3)2y x =-+, 再向下平移2个单位长度,得到22(3+3)2-2y x =-+,整理得22y x =,故选:C .【点睛】本题考查了二次函数图象的平移,掌握“左加右减,上加下减”的法则是解题关键. 10.B【解析】【分析】由题意可得方程20ax bx c ++=的两个根是﹣3,1,方程在y 的基础上加m ,可以理解为二次函数的图象沿着y 轴平移m 个单位,由此判断加m 后的两个根,即可判断选项.【详解】二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,即方程20ax bx c ++=的两个根是﹣3和1,20ax bx c m +++=可以看成二次函数y 的图象沿着y 轴平移m 个单位,得到一个根3, 由1到3移动2个单位,可得另一个根为﹣5.由于0<n <m ,可知方程20ax bx c n +++=的两根范围在﹣5~﹣3和1~3,由此判断B 符合该范围.故选B .本题考查二次函数图象与一元二次方程的综合,关键在于方程加减任意数值可理解为在图像上进行平移.11.C【解析】【分析】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.【详解】解:A 、平移后的解析式为y =(x +2)2﹣2,当x =2时,y =14,本选项不符合题意. B 、平移后的解析式为y =(x +1)2+2,当x =2时,y =11,本选项不符合题意.C 、平移后的解析式为y =(x ﹣1)2﹣1,当x =2时,y =0,函数图象经过(2,0),本选项符合题意.D 、平移后的解析式为y =(x ﹣2)2+1,当x =2时,y =1,本选项不符合题意.故选:C .【点睛】本题考查了二次函数的平移问题,掌握二次函数的平移特征是解题的关键. 12.C【解析】【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可以对A 进行判断;根据抛物线与x 轴的交点情况可对B 进行判断;x=1时,y <0,可对C 进行判断;根据抛物线y=ax 2+bx+c 与直线y=n+1无交点,可对D 进行判断.【详解】解:A .①抛物线开口向下,①a <0,①对称轴为直线x=-2b a=-1, ①b=2a <0,①抛物线与y 轴交于正半轴,①c >0,故A 正确;B .①抛物线与x 轴有两个交点,①b 2-4ac >0,即4ac-b 2<0,故B 正确;C .①抛物线的对称轴为直线x=-1,抛物线与x 轴的一个交点在(-3,0)和(-2,0)之间,①抛物线与x 轴的另一个交点在(0,0)和(1,0)之间,①x=1时,y <0,即a+b+c <0,①b=2a ,①3a+c <0,故C 错误;D .①抛物线开口向下,顶点为(-1,n ),①函数有最大值n ,①抛物线y=ax 2+bx+c 与直线y=n+1无交点,①一元二次方程ax 2+bx+c=n+1无实数根,故D 正确.故选:C .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 13.D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】①二次函数()2345y x +=-①该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h,k).14.D【解析】【分析】本题分a>0和a<0两种情况,讨论二次函数的图象的开口方向和反比例函数图象所在的象限,并且确定二次函数图象的顶点坐标为(0,1),然后选择答案即可.【详解】当a>0时,y=ax2+1的图象开口向上,顶点坐标为(0,1);ayx=的图象位于第一、三象限,没有选项的图象符合.当a<0时,y=ax2+1的图象开口向下,顶点坐标为(0,1);ayx=的图象位于第二、四象限,D选项的图象符合.故选:D.【点睛】本题考查了反比例函数的图象性质和二次函数的图象性质,解题的关键是熟练掌握它们图象的性质.15.C【解析】【分析】二次函数y=x2+bx-2的图象与x轴的交点,当y=0时,即可解答.【详解】解:把x=1,y=0代入y=x2+bx-2,得0=1+b-2,①b=1,①y=x2+x-2.令y=0,则x2+x-2=0,解得x1=1,x2=-2.①它与x轴的另一个交点坐标是(-2,0).故选:C.【点睛】本题考查了二次函数和x轴交点的问题,解题的关键是掌握所学的知识,正确求出二次函数的解析式.16.2【解析】【分析】求出∆的值,根据∆的值判断即可.【详解】解:①∆=4(k-1)2+8k=4k 2+4>0,①抛物线与x 轴有2个交点.故答案为:2.【点睛】本题考查了二次函数与坐标轴的交点问题,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴的交点横坐标是一元二次方程ax 2+bx +c =0的根.当∆=0时,二次函数与x 轴有一个交点,一元二次方程有两个相等的实数根;当∆>0时,二次函数与x 轴有两个交点,一元二次方程有两个不相等的实数根;当∆<0时,二次函数与x 轴没有交点,一元二次方程没有实数根.17.①①①【解析】【分析】①两个二次函数可以通过平移得到,由此即可得两个函数的图象形状相同;①求出当0x =时,y 的值即可得;①根据二次函数的增减性即可得;①先求出二次函数22()1y x m m =--++的顶点坐标,再代入函数21y x =+进行验证即可得. 【详解】当0m >时,将二次函数2y x =-的图象先向右平移m 个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象;当0m <时,将二次函数2y x =-的图象先向左平移m -个单位长度,再向上平移21m +个单位长度即可得到二次函数22()1y x m m =--++的图象 ∴该函数的图象与函数2y x =-的图象形状相同,结论①正确对于22()1y x m m =--++当0x =时,22(0)11y m m =--++=即该函数的图象一定经过点(0,1),结论①正确由二次函数的性质可知,当x m ≤时,y 随x 的增大而增大;当x m >时,y 随x 的增大而减小则结论①错误22()1y x m m =--++的顶点坐标为2(),1m m +对于二次函数21y x =+当x m =时,21y m =+即该函数的图象的顶点2(),1m m +在函数21y x =+的图象上,结论①正确综上,所有正确的结论序号是①①①故答案为:①①①.【点睛】本题考查了二次函数的图象与性质等知识点,熟练掌握二次函数的图象与性质是解题关键.18.3.75【解析】【分析】根据二次函数的对称轴公式2b x a =-直接计算即可. 【详解】解:①20.2 1.52y x x =-+-的对称轴为()1.5 3.75220.2b x a =-=-=⨯-(min ), 故:最佳加工时间为3.75min ,故答案为:3.75.【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.19.①①①【解析】【分析】先根据表格中的数据利用待定系数法求出抛物线的解析式,进而可直接判断①;由抛物线的性质可判断①;把点()18,y -和点()28,y 代入解析式求出y 1、y 2即可①;当y =﹣5时,利用一元二次方程的根的判别式即可判断①,进而可得答案.【详解】解:由抛物线过点(﹣5,6)、(2,6)、(0,﹣4),可得:25564264a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:134a b c =⎧⎪=⎨⎪=-⎩,①二次函数的解析式是234y x x =+-,①a =1>0,故①正确;当32x =-时,y 有最小值254-,故①错误; 若点()18,y -,点()28,y 在二次函数图象上,则136y =,284y =,①12y y <,故①正确; 当y =﹣5时,方程2345x x +-=-即2310x x ++=,①23450∆=-=>,①方程25ax bx c ++=-有两个不相等的实数根,故①正确;综上,正确的结论是:①①①.故答案为:①①①.【点睛】本题以表格的形式考查了待定系数法求二次函数的解析式、二次函数的性质以及一元二次方程的根的判别式等知识,属于常考题型,熟练掌握二次函数与一元二次方程的基本知识是解题的关键.20.(1,8)【解析】【分析】根据题意可知,本题考察二次函数的性质,根据二次函数的顶点式,进行求解.【详解】解:由二次函数性质可知,()2y a x h k =-+的顶点坐标为(h ,k )①23(1)8y x =-+的顶点坐标为(1,8)故答案为:(1,8)【点睛】本题考查了二次函数的性质,先把函数解析式配成顶点式根据顶点式即可得到顶点坐标.21.(1,3)【解析】【分析】将题目中的函数解析式化为顶点式,即可得到该函数的顶点坐标,本题得以解决.【详解】①二次函数y=-x2+2x+2=-(x-1)2+3,①该函数的顶点坐标为(1,3),故答案为:(1,3).【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,化为顶点式进行求解.。
2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A.3B.C.D.2.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,,A ,B ,相对面上的两个数互为相反数,则()A. B.C.1D.23.我国自主研发的500m 口径球面射电望远镜有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据250000为()A.B.C. D.4.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,把一块含有角的直角三角板的两个顶点分别放在直尺的一组对边上.如果,那么的度数是()A.B. C. D.6.下列计算正确的是()A.B. C. D.7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.下列命题中真命题的个数是()①过一点有且只有一条直线与已知直线平行;②同角的余角相等;③垂直于同一条直线的两直线平行;④长度相等的弧是等弧.A.1个B.2个C.3个D.4个9.如图,在中,以A为圆心,AC长为半径作弧,交BC于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线AP,交CD于点E,若,,则AE长为()A. B.3 C.4 D.510.如图,在中,,,,在中,,,BC与EF在同一条直线上,点C与点E重合以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,停止运动.设运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。
11.若二次根式有意义,则x的取值范围为______.12.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819122850发芽的频数则绿豆发芽的概率估计值是______精确到13.若关于x的方程的一个根是3,则此方程的另一个根是______.14.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果,那么线段BF的长度为______.15.如图,一条抛物线与x轴相交于A、B两点点A在点B的左侧,其顶点P在线段MN上移动.若点M、N的坐标分别为、,点B的横坐标的最大值为3,则点A的横坐标的最小值为______.三、解答题:本题共7小题,共63分。
专练06三角形中有关角的计算与证明1.已知△ABC ,点P 为其内部一点,连结PA 、PB 、PC ,在△PAB ,△PBC 和△PAC 中,如果存在一个三角形,其内角与△ABC 的三个内角分别相等,那么就称点P 为△ABC 的等角点.(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真”;反之,则写“假”. ①内角分别为30°、60°、90°的三角形存在等角点;________命题; ②任意的三角形都存在等角点;________命题.(2)如图 ①,点P 是△ABC 的等角点,若∠BAC=∠PBC ,探究图 ①中∠BPC ,∠ABC ,∠ACP 之间的数量关系,并说明理由;(3)如图②,在△ABC 中,∠BAC<∠ABC<∠ACB ,若△ABC 的三个内角的角平分线的交点P 是该三角形的等角点,直接写出△ABC 三个内角的度数.【答案】 (1) ①内角分别为30°、60°、90°的三角形存在等角点,是真命题; ②任意的三角形都存在等角点是假命题,如等边三角形不存在等角点; 故答案为:1、真,2、假.(2)解:如图①,∵△ABC 中, ∠BPC=∠ABP+∠BAC+∠ACP , ∠BAC=∠PBC ,∴∠BPC=∠ABP+∠PBC+∠ACP =∠ABC+∠ACP. (3)∵P 为三角形内角平分线的交点, ∵∠PBC=12∠ABC ,∠PCB=12∠ACB , ∵P 为△ABC 的等角点,∴∠PBC=∠A,∴∠ABC=2∠PBC=2∠A,∴∠BCP=∠ABC=2∠A,∴∠ACB=2∠BCP=4∠A,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠A+4∠A=180°,∴∠A=180°7,∴该三角形的三个内角的度数分别为:180°7,360°7,720°7.故答案为:180°7,360°7,720°7.2.将一块直角三角板XYZ放置在AABC上,使得该三角板的两条直角边XY,XZ恰好分别经过点B,C.(1)如图1,当∠A=45°时,∠ABC+∠ACB=________度,∠ABX+∠ACX=________度.(2)如图2,改变直角三角板XYZ的位置,使该三角板的两条直角边XY,XZ仍然分别经过点B,C,那么∠ABX+∠ACX的大小是否发生变化?若变化,请举例说明,若没有变化,请探究∠ABX+∠ACX与∠A的关系.【答案】(1)在三角形ABC中,∵∠A=45°∴∠ABC+∠ACB=180°-45°=135°∵∠A=45°∴∠ABC+∠ACB=180°-∠A=180°-45°=135°∵∠YXZ=90°∴∠XBC+∠XCB=90°∴∠ABX+∠ACX=135°-90°=45°(2)解:不变化,∠ABX+∠ACX =90°-∠A,理由如下∵∠x =90°,∴∠XBC+∠XCB =90°∵∠A+∠ABC+∠ACB =180°,∴∠ABX+∠ACX =(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=180°-∠A-90°=90°-∠A3.如图(1)如图,请证明∠A+∠B+∠C=180°(2)如图的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D(3)如图,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明(4)如图,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.【答案】(1)证明:如图1,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1,∠A=∠2,又∵∠BCD=∠BCA+∠2+∠1=180°,∴∠A+∠B+∠ACB=180°;(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(3)解:如图3,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+ 1(∠B+∠D);2(4)解:②∠3+∠4﹣∠1﹣∠2不变正确.理由如下:作PQ∥AB,如图4,∵AB∥CD,∴PQ∥CD,由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,由PQ∥CD得∠5=∠2,∵∠APQ+∠5+∠1=90°,∴180°﹣∠3﹣∠4+∠2+∠1=90°,∴∠3+∠4﹣∠1﹣∠2=90°.4.如图,在△ABC中,AB=AC,D为直线BC上一动点(不与点B,C重合),在AD的右侧作△ACE,使得AE=AD,∠DAE=∠BAC,连接CE.(1)当D在线段BC上时,①求证:△BAD≌△CAE.②请判断点D在何处时,AC⊥DE,并说明理由.(2)当CE∥AB时,若△ABD中最小角为26°,求∠ADB的度数.【答案】(1)解:①∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ABD和△ACE中,{AB=AC∠DAB=∠EACAD=AE,∴△BAD≌△CAE(SAS);②如图,连接DE,若AC⊥DE,又∵AD=AE,∴AC平分∠DAE,∴∠DAB=∠CAE=∠CAD,∴AD平分∠CAB,又∵AB=AC,∴BD=CD,∴当点D在BC中点时,AC⊥DE;(2)解:当CE∥AB时,则有∠ABC=∠ACE=∠BAC=60°,∴△ABC为等边三角形,①如图1:此时∠BAD=26°,∴∠ADB=180°﹣∠BAD﹣∠B=180°﹣26°﹣60°=94°.②如图2,此时∠ADB=26°,③如图3,此时∠BAD=26°,∠ADB=60°﹣26°=34°.④如图4,此时∠ADB=26°.综上所述,满足条件的∠ADB的度数为26°或34°或94°5.如图,P是等腰△ABC内一点,AB=BC,连接PA,PB,PC.图1 图2(1)如图1,当∠ABC=90°时,PA=2,PB=4,PC=6,求∠APB.(2)如图2,当∠ABC=60°时,PA=3,PB=4,PC=5,求∠APB.【答案】(1)解:将△APB沿点B顺时针旋转90°,得到△BCP′,连接PP′,可得∠P′BP=90°,且BP=BP′=4,∴△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′=4√2,在△PP′C中,PC2=62=36,P′C2+P′P2=22+(4√2)2=4+32=36,∴PC2=P′C2+P′P2,∴△PP′C为直角三角形且∠PP′C=90°,∴∠BP′C=90°,∴∠BP′C=∠BP′P+∠BP′C=45°+90°=135°,又∵旋转,∴∠APB=∠BP′C=135°(2)解:将△APB沿点B顺时针旋转60°得到△BCP′,连接PP′,可得:BP′=BP=4,∠PBP′=60°∴△PBP′为等边三角形,∴∠BP′P=60°,PP′=4,在△PP′C中,PP′2+P′C2=42+32=25,CP2=52=25,∴△PP′C为直角三角形且∠PP′C=90°,∴∠BP′C=∠BP′P+∠PP′C=60°+90°=150°,∴∠APB=∠BP′C=150°6.如图,CA=CB,CD=CE,∠ACB=∠DCE=40°,AD、BE交于点H,连接CH.(1)求证:ΔACD≌ΔBCE;(2)求证:CH 平分∠AHE;(3)求∠CHE的度数.【答案】(1)证明;∵∠ACB=∠DCE=40°,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS)(2)证明;过点C作CM⊥AD于M,CN⊥BE于N,∵△ACD≌△BCE,∴∠CAM=∠CBN,在△ACM和△BCN中,{∠CAM=∠CBN∠AMC=∠BNC=90°AC=BC,∴△ACM≌△BCN(AAS),∴CM=CN,∴CH平分∠AHE(3)解;∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠AMC=∠AMC,∴∠AHB=∠ACB=40°,∴∠AHE=180°-40°=140°,∠AHE=70º∴∠CHE= 127.我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,△AOB的内角∠AOB与△COD的内角∠COD互为对顶角,则△AOB与△COD为对顶三角形,根据三角形内角和定理知“对顶三角形”有如下性质:∠A+∠B=∠C+∠D.(1)性质理解:如图2,在“对顶三角形” △AOB与△COD中,∠EAO=∠C,∠D=2∠B,求证:∠EAB=∠B;(2)性质应用:①如图3,则∠A+∠B+∠C+∠D+∠E的度数为;②如图4,在△ABC中,点D,E分别在AB,AC上,∠BOD=∠A.若∠ECD比∠DBE大20∘,求∠BDO的度数;(3)拓展提高:如图5,已知BE,CD是△ABC的角平分线,且∠BDC和∠BEC的平分线DP和EP相交于点P,设∠A=α,求∠P的度数(用α表示∠P).【答案】(1)证明:据题意,得∠BAO+∠B=∠C+∠D,∴∠BAO−∠C=∠D−∠B,∵∠EAO=∠C,∠D=2∠B,∴∠BAE=∠B(2)解:①∠A+∠B+∠C+∠D+∠E=∠A+∠C+∠B+∠E+∠D=∠FGD+∠GFD+∠D=180°;故答案为:180°;②由题意得∠ECD−∠DBE=20°,由(1)得∠EBD+∠BDO=∠ECO+∠OEC,∴∠BDO−∠OEC=20°,∵∠BOD=∠A,∴∠A+∠DOE=180°,故∠ADO+∠AEO=180°,∵∠AEO+∠CEO=∠BDO+∠ADO=180°,∴∠BDO=∠AEO,∴∠BDO+∠CEO=180°,∵∠BDO−∠OEC=20°,∴∠BDO=100°;(3)解:∠P=180∘−α4,理由如下:∵∠BDC和∠BEC的平分线DP和EP相交于点P,∴∠BDP=∠CDP,∠BEP=∠CEP,由(1)得∠BDP+∠DBE=∠BEP+∠P①,∠CDP+∠P=∠CEP+∠DCE②,由①−②得∠DBE−∠P=∠P−∠DCE,∴∠P=12(∠DBE+∠DCE),即∠P=14(∠ABC+∠ACB),∴∠P=14(180°−∠A)=180°−α48.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=________;如图2,若∠ACD=90°,则∠AFB=________;如图3,若∠ACD=120°,则∠AFB=________;(2)如图4,若∠ACD=α,则∠AFB=________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.【答案】(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故答案为:120°,90°,60°;(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.故答案为:180°﹣α;(3)解:∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中{AC=DC∠ACE=∠DCBCE=CB,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.9.己知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足PQPC=AQAB(如图1所示)(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;(2)在图1中,联结AP,当AD= 32,且点Q在线段AB上时,设点B、Q之间的距离为x,S△APQS△PBC=y,其中S△APQ表示S△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数关系式,并写出函数定义域;(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小【答案】(1)解:∵AD∥BC,∠ABC=90°,∴∠BAD=∠ABC=90°,当AD=2时,AD=AB,∴∠D=∠ABD=45°,∴∠PQC=∠D=45°,∵PQPC =AQAB,∴PQ=PC,∴∠C=∠PQC=45°,∴∠BPC=90°,∴PC=BC·sin45°=3√22(2)解:如图,作PE⊥AB于E,PF⊥BC于F,∵∠ABC=90°, ∴四边形EBFP 是矩形, ∴PF=BE , 又∵∠BAD=90°, ∴PE ∥AD ,∴Rt △BEP ∽Rt △BAD , ∴BE BA =EPAD , ∴BEEP =BAAD =232=43, 设BE=4k ,则PE=3k , ∴PF=BE=4k ,∵BQ=x ,AQ=AB-BQ=2-x ,∴S △APQ =12AQ·PE=12(2-x )·3k ,S △PBC =12BC·PF=12×3×4k=6k , ∵S △APQS △PBC=y ,∴12(2−x )·3k 6k =y ,∴y=2−x 4(0≤x ≤78);(3)解:∵Rt △BEP ∽Rt △BAD , ∴BE BA =EPAD ,∴BEEP =BAAD ∴PFEP =BAAD , ∵PCPQ =BAAD , ∴PFEP =PCPQ , ∴Rt △PCF ∽Rt △PQE , ∴∠FPC=∠EPQ ,∵∠EPQ+∠QPF=∠EPF=90°,∴∠FPC+∠QPF=90°,即∠QPC=90°。
专题6 分式及其运算考点一、分式的概念和性质1.(2022·云南·昆明中考模拟)要使12022x +有意义,则x 的取值范围为( )A .0x ≠B .2022x >-C .2022x ≠D .2022x ≠-2.(2022·湖南怀化·中考真题)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个3.(2022·广东·中考三模)若分式55m m --的值为零,则m =( ) A .5-B .5C .5±D .04.(2022·云南·中考三模)下列函数中,自变量x 的取值范围错误的是( ) A .11212y x x ⎛⎫=≠ ⎪-⎝⎭B .)1y x =≥C .)1y x =≤D .21y x =-(x 为任意实数)5.(2022·湖北黄石·中考真题)函数11y x =-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠6.(2022·广西·中考真题)当x =______时,分式22xx +的值为零. 7.(2022·湖南邵阳·x 的取值范围是_________. 8.(2022·湖南·长沙市中考二模)若分式11x x --的值为零,则x 的值为______. 考点二、分式化简9.(2022·四川绵阳·中考二模)下列分式属于最简分式的是( ) A .265xy xB .x y y x--C .22x y x y++D .2293x y x y-+10.(2022·四川眉山·中考真题)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a - D .2a a +11.(2022·辽宁沈阳·中考真题)化简:21111x x x -⎛⎫-⋅= ⎪+⎝⎭______.12.(2022·四川自贡·中考真题)化简:22a3a42a3a2a4a4--⋅+-+++=____________.13.(2022·西藏·中考真题)计算:222242a a aa a a+⋅---.14.(2022·辽宁大连·中考真题)计算2224214424x x xx x x x-+÷--+-.15.(2022·湖北十堰·中考真题)计算:2222a b b abaa a⎛⎫--÷+⎪⎝⎭.16.(2022·四川泸州·中考真题)化简:22311 (1). m m mm m-+-+÷17.(2022·湖南常德·中考真题)化简:231 122a aaa a+-⎛⎫-+÷⎪++⎝⎭18.(2022·甘肃武威·中考真题)化简:()2233322x x xx x x++÷-++.考点三、分式化简求值19.(2022·山东济南·中考真题)若m-n=2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.420.(2022·山东菏泽·中考真题)若22150a a --=,则代数式2442a a a a a -⎛⎫-⋅⎪-⎝⎭的值是________. 21.(2022·四川成都·中考真题)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 22.(2022·四川广安·中考真题)先化简:2242(2)244x xx x x x -++÷--+,再从0、1、2、3中选择一个适合的数代人求值.23.(2022·内蒙古内蒙古·中考真题)先化简,再求值:2344111x x x x x -+⎛⎫--÷ ⎪--⎝⎭,其中3x =.24.(2022·山东聊城·中考真题)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.25.(2022·辽宁锦州·中考真题)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中|1x =+.26.(2022·辽宁营口·中考真题)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.27.(2022·湖北荆州·中考真题)先化简,再求值:222212a b a b a b a ab b ⎛⎫-÷ ⎪-+-+⎝⎭,其中113a -⎛⎫= ⎪⎝⎭,()02022b =-.28.(2022·四川广元·中考真题)先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解.29.(2022·新疆·中考真题)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =.30.(2022·山东滨州·中考真题)先化简,再求值:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-答案与解析考点一、分式的概念和性质1.(2022·云南·昆明中考模拟)要使12022x +有意义,则x 的取值范围为( )A .0x ≠B .2022x >-C .2022x ≠D .2022x ≠-【答案】D【分析】根据分式有意义的条件列不等式求解即可.【详解】解:根据分式有意义即分母不为0,得到20220x +≠,即2022x ≠-,故D 正确. 故选:D .【点睛】本题主要考查了分式有意义的条件,理解分式有意义的条件(分母不能为零)是解题关键.2.(2022·湖南怀化·中考真题)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个A .5-B .5C .5±D .0【答案】A【分析】根据分式的值为零的条件列式计算即可. 【详解】解:由题意得:|m |−5=0且m −5≠0, 解得:m =−5, 故选:A .【点睛】本题考查的是分式的值为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.(2022·云南·云大附中三模)下列函数中,自变量x 的取值范围错误的是( ) A .11212y x x ⎛⎫=≠ ⎪-⎝⎭B .)1y x =≥C .)1y x =≤D .21y x =-(x 为任意实数)5.(2022·湖北黄石·中考真题)函数1y x =-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠ B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠6.(2022·广西·中考真题)当x =______时,分式22xx +的值为零. 【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可. 【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0, 故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.7.(2022·湖南邵阳·x 的取值范围是_________.【答案】x >2##2<x【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0, 解得:x >2, 故答案为:x >2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.8.(2022·湖南·长沙市开福区青竹湖湘一外国语学校二模)若分式11x x --的值为零,则x 的值为______.考点二、分式化简9.(2022·四川绵阳·二模)下列分式属于最简分式的是( ) A .265xy xB .x y y x--C .22x y x y ++D .2293x y x y-+10.(2022·四川眉山·中考真题)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2aa +11.(2022·辽宁沈阳·中考真题)化简:1111x x x -⎛⎫-⋅= ⎪+⎝⎭______. 【答案】1x -##1x -+12.(2022·四川自贡·中考真题)化简:2a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________.【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.13.(2022·西藏·中考真题)计算:222242a a a a a a +⋅---. 24a a a a --2)(2)(2)a a a a -+-22a - 【点睛】本题考查了分式的化简,理解并掌握分式的计算法则,注意在解题过程中需注意的事项,仔细计算是本题的解题关键.14.(2022·辽宁大连·中考真题)计算2224214424x x x x x x x-+÷--+-.22222122x x x x x xx 211.xxx【点睛】本题考查的是分式的混合运算,掌握15.(2022·湖北十堰·中考真题)计算:2222a b b ab a a a ⎛⎫--÷+ ⎪⎝⎭.16.(2022·四川泸州·中考真题)化简:22311 (1). m m mm m-+-+÷17.(2022·湖南常德·中考真题)化简:231 122a aaa a+-⎛⎫-+÷⎪++⎝⎭18.(2022·甘肃武威·中考真题)化简:()2233322x x xx x x++÷-++.考点三、分式化简求值19.(2022·山东济南·中考真题)若m-n=2,则代数式222m n mm m n-⋅+的值是()A.-2B.2C.-4D.420.(2022·山东菏泽·中考真题)若22150a a--=,则代数式2442a aaa a-⎛⎫-⋅⎪-⎝⎭的值是________.【答案】15【分析】先按分式混合运算法则化简分式,再把已知变形为a2-2a=15,整体代入即可.21.(2022·四川成都·中考真题)已知2272a a -=,则代数式2211a a a a a--⎛⎫-÷ ⎪⎝⎭的值为_________. 【答案】72##3.5##312 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简22.(2022·四川广安·中考真题)先化简:2242(2)244x xxx x x-++÷--+,再从0、1、2、3中选择一个适合的数代人求值.23.(2022·内蒙古内蒙古·中考真题)先化简,再求值:344111x xxx x-+⎛⎫--÷⎪--⎝⎭,其中3x=.24.(2022·山东聊城·中考真题)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.25.(2022·辽宁锦州·中考真题)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-,其中|1x =+.x 26.(2022·辽宁营口·中考真题)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.27.(2022·湖北荆州·中考真题)先化简,再求值:222212a b a b a b a ab b ⎛⎫-÷ ⎪-+-+⎝⎭,其中113a -⎛⎫= ⎪⎝⎭,()02022b =-.28.(2022·四川广元·中考真题)先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解.29.(2022·新疆·中考真题)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅ ⎪-+--+⎝⎭,其中2a =.30.(2022·山东滨州·中考真题)先化简,再求值:344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-。
2022年中考数学考点提分专练——有理数一、选择题1.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位2.两个有理数相加,如果和小于每一个加数,那么()A.这两个加数同为负数; B.这两个加数同为正数C.这两个加数中有一个负数,一个正数; D.这两个加数中有一个为零3. 下列算式中,运算结果为负数的是()) D.(−3)2A.−|−1|B.−(−2)3C.−(−524.若a、b互为相反数,则2(a+b)﹣3的值为()A.﹣1 B.﹣3 C.1 D.25.如图,已知点A,B,C,D将周长为4的圆周4等分,现将点A与数轴上表示﹣1的点重合.将圆沿数轴向右连续滚动,则点A,B,C,D中与表示2020的点重合的是()A.点A B.点B C.点C D.点D6.两个互为相反数的有理数相除,商为()A. 正数B. 负数C. 不存在D. 负数或不存在7.如果一个数的平方与这个数的差等于0,那么这个数只能是()A.0B.-1 C .1 D.0或18.现规定一种新的运算,x*y=xy+x﹣y﹣1,其中x,y为有理数,那么a*b+b*a等于()A.2ab﹣2 B.2ab+2C.2ab+2a﹣2b﹣2 D.09.的值是( )A .B .C .D . 10.如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是( )A.M 或RB.N 或PC.M 或ND.P 或R11.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A .6858B .6860C .9260D .9262 12.某商店以每套80元的进价购进8套服装,并以90元左右的价格卖出.如果以90元为标准,超过标准的售价记为正数,不足标准的售价记为负数,出售价格记录如下:+2,﹣3,+5,+1,﹣2,﹣1,0,﹣5(单位:元).其它收支不计,当商店卖完这8套服装后( )A.盈利B.亏损C.不盈不亏D.盈亏不明13. 已知数轴上A 、B 两点坐标分别为−3、−6,若在数轴上找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离( )A.0B.2C.4D.614.规定图形表示运算a ﹣b ﹣c ,图形表示运算x+z ﹣y ﹣w ,则+的值是( )A .﹣8B .﹣6C .0D .215.下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,2-()212-0102-图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形……依此规律,图中黑色正方形的个数是( )A .32B .29C .28D .26二、填空题16.计算:(-1)6+(-1)7=____________。
2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。
2023年江苏省盐城市中考数学专题练——6四边形一.选择题(共7小题)1.(2021•建湖县一模)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD 交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4 2.(2022•滨海县一模)下列多边形中,内角和最大的是()A.B.C.D.3.(2022•滨海县一模)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°4.(2021•滨海县二模)如图,菱形ABCD中,∠B=60°,AB=3,则以AC为边长的正方形ACEF的面积为()A.9B.12C.15D.20 5.(2021•滨海县一模)如图,矩形ABCD的对角线AC、BD相交于点O,∠ABO=60°,若矩形的对角线长为6.则线段AD的长是()A.3√3B.4C.2√3D.3 6.(2021•盐城模拟)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是()A.4B.8C.16D.24 7.(2021•盐都区三模)如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9B.12C.24D.32二.填空题(共7小题)8.(2022•建湖县二模)一个正多边形的一个内角是与其相邻的一个外角的3倍,则这个正多边形的边数是.9.(2021•盐城二模)如图,点A是边长为2的正方形DEFG的中心,在△ABC中,∠ABC =90°,AB=2,BC=4,DG∥BC,点P为正方形边上的一动点,在BP的右侧作∠PBH =90°且BH=2PB,则AH的最大值为.10.(2021•射阳县二模)如图,菱形ABCD中,AB=5,AC=6,E为AD上一点且AE=1,连接BE、AC交于点F,过点F作FG⊥BC于点G,则FG=.11.(2021•盐都区二模)如图,在矩形ABCD中,AB=13,BC=17,点E是线段AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,AE的长为.12.(2021•射阳县模拟)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△ABC的面积是16,则△BEO的面积为.13.(2021•亭湖区校级模拟)如图,在平行四边形ABCD中,AB=AE.若AE平分∠DAB,∠EAC=25°,则∠AED的度数为.14.(2021•阜宁县二模)已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE =DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.三.解答题(共8小题)15.(2022•亭湖区校级三模)如图,在△ABC中,点D是BC边的中点,点F,E分别是AD及其延长线上的点,CF∥BE,连接BF,CE.(1)求证:四边形BECF是平行四边形.(2)当△ABC满足条件时,四边形BECF为菱形.(填写序号)①AB=AC.②∠BAC=90°,③AB=BC,④∠BCA=90°.16.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.17.(2022•滨海县模拟)如图,在矩形ABCD中,AB=6,BC=8,点E是AD边上的动点,将矩形ABCD沿BE折叠,点A落在点A′处,连接BD.(1)如图1,当A′点恰好落在BC上,则折痕BE的长为;(2)如图2,若点A′恰好落在BD上.①求证:∠DEA′=2∠ABE;②求tan∠ABE的值;(3)如图3,若将图1中的四边形ABA′E剪下,在AE上取中点F,将△ABF沿BF折叠得到△MBF,点P、Q分别是边A′E、A′B上的动点(均不与顶点重合),将△A′PQ沿PQ折叠,点A′的对应点N恰好落在BM上,当△A′PQ的一个内角与∠A′BM 相等时,请直接写出A′Q的长度.18.(2022•亭湖区校级一模)小明学习了图形的旋转之后,积极思考,利用两个大小不同的直角三角形与同学做起了数学探究活动.如图1,在△ABC与△DEF中,AC=BC=a,∠C=90°,DF=EF=b,(a>b),∠F=90°.【探索发现】将两个三角形顶点C与顶点F重合,如图2,将△DEF绕点C旋转,他发现BE与AD的数量关系一直不变,则线段BE与AD具有怎样的数量关系,请说明理由;【深入思考】将两个三角形的顶点C与顶点D重合,如图3所示将△DEF绕点C旋转.①当B、F、E三点共线时,连接BF、AE,线段BF、CF、AE之间的数量关系为;②如图4所示,连接AF、AE,若线段AC、EF交于点O,试探究四边形AECF能否为平行四边形?如果能,求出a、b之间的数量关系,如果不能,试说明理由.【拓展延伸】如图5,将△DEF绕点C旋转,连接AF,取AF的中点M,连接EM,则EM的取值范围为(用含a、b的不等式表示).19.(2022•滨海县一模)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)推理证明:如图1,若∠DAB=120°,且∠D=90°,求证:AD+AB=AC;(2)问题探究:如图2,若∠DAB=120°,试探究AD、AB、AC之间的数量关系,(3)迁移应用:如图3,若∠DAB=90°,AD=2,AB=4,求线段AC的长度.20.(2022•滨海县一模)如图,在正方形ABCD中,对角线AC、BD相交于点O,点E、F 是对角线AC上的两点,且AE=CF.连接DE、DF、BE、BF.(1)证明:△ADE≌△CBF;(2)若AB=5√2,AE=3,求四边形BEDF的周长.21.(2022•东台市模拟)小明在学习矩形知识后,进一步开展探究活动:将一个矩形ABCD 绕点A顺时针旋转α(0°<α≤90°),得到矩形AB'C'D',连结BD.【探究1】如图1,当a=90°时,点C'恰好在DB延长线上.若AB=1,求BC的长.【探究2】如图2,连结AC',过点D'作D'M∥AC'交BD于点M.线段D'M与DM相等吗?请说明理由.【探究3】在探究2的条件下,射线DB分别交AD',AC'于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.22.(2022•建湖县一模)【问题再现】苏科版《数学》八年级下册第94页有这样一题:如图1,在正方形ABCD中,E,F,G分别是BC,CD,AD上的点,GE⊥BF,垂足为M,那么GE BF.(填“<”、“=”或“>”)【迁移尝试】如图2,在5×6的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点M .求∠AMC 的度数;【拓展应用】如图3,点P 是线段AB 上的动点,分别以AP ,BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC ,PC 于点M ,N .①求∠DMC 的度数;②连接AC 交DE 于点H ,直接写出DH BC的值为 .2023年江苏省盐城市中考数学专题练——6四边形参考答案与试题解析一.选择题(共7小题)1.(2021•建湖县一模)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD 交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=6.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=6.同理可得DE=DC=6.∴EF=AF+DE﹣AD=6+6﹣10=2.故选:B.2.(2022•滨海县一模)下列多边形中,内角和最大的是()A.B.C.D.【解答】解:A.三角形的内角和为180°;B.四边形的内角和为360°;C.五边形的内角和为:(5﹣2)×180°=540°;D.六边形的内角和为:(6﹣2)×180°=720°;故选:D.3.(2022•滨海县一模)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°【解答】解:∵∠DCE=132°,∴∠DCB=180°﹣∠DCE=180°﹣132°=48°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=48°,故选:B.4.(2021•滨海县二模)如图,菱形ABCD中,∠B=60°,AB=3,则以AC为边长的正方形ACEF的面积为()A.9B.12C.15D.20【解答】解:∵菱形ABCD,∴AB=BC=3,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=3,∴正方形ACEF的边长为3,∴正方形ACEF的面积为9,故选:A.5.(2021•滨海县一模)如图,矩形ABCD的对角线AC、BD相交于点O,∠ABO=60°,若矩形的对角线长为6.则线段AD的长是()A.3√3B.4C.2√3D.3【解答】解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD=6,∴AO=OB=3,∵∠ABO=60°,∴△AOB是等边三角形,∴AB=3=OA,∴AD=√BD2−AB2=√36−9=3√3,故选:A.6.(2021•盐城模拟)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是()A.4B.8C.16D.24【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故选:C.7.(2021•盐都区三模)如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9B.12C.24D.32【解答】解:∵点E、F分别是AB、AC的中点,EF=4,∴BC=2EF=8,∵四边形ABCD是菱形,∴菱形ABCD 的周长是:4×8=32.故选:D .二.填空题(共7小题)8.(2022•建湖县二模)一个正多边形的一个内角是与其相邻的一个外角的3倍,则这个正多边形的边数是 8 .【解答】解:设正多边形的一个外角等于x °,∵一个内角的度数恰好等于它相邻的外角的3倍,∴这个正多边形的一个内角为:3x °,∴x +3x =180,解得:x =45,∴这个正多边形的边数是:360°÷45°=8.故答案为:8.9.(2021•盐城二模)如图,点A 是边长为2的正方形DEFG 的中心,在△ABC 中,∠ABC =90°,AB =2,BC =4,DG ∥BC ,点P 为正方形边上的一动点,在BP 的右侧作∠PBH =90°且BH =2PB ,则AH 的最大值为 2√13 .【解答】解:连结AP ,CH ,并延长P A ,HC 交于点M ,P A 交BH 于点N ,∵∠PBH =∠ABC =90°,∴∠PBA =∠HBC ,∴PB BA =AB BC =12, ∴△PBA ∽△HBC ,∴CH =2P A ,∠BP A =∠BHC ,∴∠MAH +∠AHM=∠MAH +∠AHB +∠BHC=∠PNB +∠BP A =90°,∴∠M =90°,∴CH ⊥P A ,∵P 是以点A 为中心的正方形DEFG 的边上的动点,∴H 的轨迹为以C 为中心的正方形E ′F ′G ′D ′,且正方形E ′F ′G ′D ′的边长为正方形DEFG 的两倍,如下图所示:当H 与F '重合时,AH 最大,延长AB ,F 'G '交于点K ,则AK =4,KF '=6,∴AF ′=√42+62=2√13,∴AH 的最大值为2√13.10.(2021•射阳县二模)如图,菱形ABCD 中,AB =5,AC =6,E 为AD 上一点且AE =1,连接BE 、AC 交于点F ,过点F 作FG ⊥BC 于点G ,则FG = 4 .【解答】解:如图,连接BD ,交AC 于点O ,∵四边形ABCD 是菱形,∴AB =BC =5,AC ⊥BD ,AO =CO =3,AD ∥BC ,∴BO =√AB2−AO 2=√25−9=4, ∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC=AF CF , ∴15=6−CF CF ,∴CF =5,∵sin ∠ACB =BO BC =FG FC , ∴45=FG 5,∴FG =4,故答案为:4.11.(2021•盐都区二模)如图,在矩形ABCD 中,AB =13,BC =17,点E 是线段AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,AE 的长为 135或263 .【解答】解:由翻折的性质可得,A 1B =AB =13,A 1E =AE ,∵CA 1平分∠BCD ,∠BCD =90°,∴∠DCA 1=∠BCA 1=45°,过点A 1作A 1F ⊥BC 于点F ,如图,则△A 1CF 是等腰直角三角形,∴A 1F =CF ,设CF =m ,则A 1F =m ,BF =17﹣m ,在Rt △A 1BF 中,由勾股定理可得,A 1B 2=A 1F 2+BF 2,即132=m 2+(17﹣m )2,解得m =5或m =12,当m =12时,延长F A 1交AD 于点G ,如图1;此时A 1F =CF =12,BF =5,∴A 1G =FG ﹣A 1F =1,设AE =t ,则A 1E =t ,∵∠A 1GE =∠A 1FB =90°,∠EA 1B =∠A =90°,∴∠EA 1G +∠GEA 1=90°,∠BA 1F +∠EA 1G =90°,∴∠GEA 1=∠BA 1F ,∴△A 1EG ∽△BA 1F ,∴A 1E :A 1G =BA 1:BF ,即t :1=13:5,∴t =135,即AE =135;当m =5时,延长F A 1交AD 于点G ,如图2;此时A 1F =CF =5,BF =12,∴A 1G =FG ﹣A 1F =8,设AE =a ,则A 1E =a ,∵∠A 1GE =∠A 1FB =90°,∠EA 1B =∠A =90°,∴∠EA 1G +∠GEA 1=90°,∠BA 1F +∠EA 1G =90°,∴∠GEA 1=∠BA 1F ,∴△A 1EG ∽△BA 1F ,∴A 1E :A 1G =BA 1:BF ,即a :8=13:12,∴a =263,即AE =263;故答案为:135或263.12.(2021•射阳县模拟)如图,▱ABCD 的对角线AC 、BD 相交于点O ,点E 是AB 的中点,△ABC 的面积是16,则△BEO 的面积为 4 .【解答】解:∵▱ABCD 的对角线AC 、BD 相交于点O ,∴OA =OC ,∵点E 是AB 的中点,∴OE =12BC ,OE ∥BC ,∴△AOE ∽△ACB ,∴S △AOES △ACB =(OE BC )2=14,∵△ABC 的面积是16,∴S △AOE =4,∴S △BEO =4.故答案为:4.13.(2021•亭湖区校级模拟)如图,在平行四边形ABCD 中,AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠AED 的度数为 85° .【解答】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC .∴∠DAE =∠AEB .∵AB =AE ,∴∠AEB =∠B .∴∠B =∠DAE .∵在△ABC 和△AED 中,{AB =AE ∠B =∠DAE AD =BC,∴△ABC ≌△EAD (SAS ),∴∠AED =∠BAC ,∵AE 平分∠DAB (已知),∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°,∴∠AED=85°.故答案为:85°14.(2021•阜宁县二模)已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为52.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵{AB=AD∠BAE=∠D AE=DF,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=12BF,∵BC=4、CF=CD﹣DF=4﹣1=3,∴BF=√BC2+CF2=5,∴GH =12BF =52,故答案为:52.三.解答题(共8小题)15.(2022•亭湖区校级三模)如图,在△ABC 中,点D 是BC 边的中点,点F ,E 分别是AD 及其延长线上的点,CF ∥BE ,连接BF ,CE .(1)求证:四边形BECF 是平行四边形.(2)当△ABC 满足 ① 条件时,四边形BECF 为菱形.(填写序号)①AB =AC .②∠BAC =90°,③AB =BC ,④∠BCA =90°.【解答】(1)证明:在△ABC 中,D 是BC 边的中点,∴BD =CD ,∵CF ∥BE ,∴∠CFD =∠BED ,在△CFD 和△BED 中,{∠CFD =∠BED CD =BD ∠FDC =∠EDB∴△CFD ≌△BED (AAS ),∴CF =BE ,∴四边形BFCE 是平行四边形;(2)解:满足条件①时四边形BECF 为菱形.理由:若AB =AC 时,△ABC 为等腰三角形,∵AD 为中线,∴AD ⊥BC ,即FE ⊥BC ,由(1)知,△CFD≌△BED,∴BD=CD,ED=FD,∴平行四边形BECF为菱形.故答案为:①.16.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB =AC ,AD 是△ABC 的角平分线,∴BD =CD ,∵DE =4BE ,∴BD =CD =5BE ,∴CE =CD +DE =9BE ,∵∠EDF =90°,点M 是EF 的中点,∴DM =ME ,∴∠MDE =∠MED ,∵AB =AC ,∴∠B =∠C ,∴△DBQ ∽△ECN ,∴QB NC =BD CE =59, ∵QB =6,∴NC =545, ∵AN =CN , ∴AC =2CN =1085, ∴AB =AC =1085. 17.(2022•滨海县模拟)如图,在矩形ABCD 中,AB =6,BC =8,点E 是AD 边上的动点,将矩形ABCD 沿BE 折叠,点A 落在点A ′处,连接BD .(1)如图1,当A ′点恰好落在BC 上,则折痕BE 的长为 6√2 ;(2)如图2,若点A ′恰好落在BD 上.①求证:∠DEA ′=2∠ABE ;②求tan ∠ABE 的值;(3)如图3,若将图1中的四边形ABA ′E 剪下,在AE 上取中点F ,将△ABF 沿BF 折叠得到△MBF ,点P 、Q 分别是边A ′E 、A ′B 上的动点(均不与顶点重合),将△A ′PQ 沿PQ 折叠,点A ′的对应点N 恰好落在BM 上,当△A ′PQ 的一个内角与∠A ′BM 相等时,请直接写出A ′Q 的长度.【解答】(1)解:如图1,∵将矩形ABCD沿BE折叠,A′点恰好落在BC上,∴BA′=BA=6,∠EBA′=∠EBA=12∠ABC=12×90°=45°,∠BA′E=∠BAE=90°,∴△BEA′是等腰直角三角形,∴BE=√2BA′=6√2,故答案为:6√2;(2)①证明:如图2,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD∥BC,∴∠ADB+∠ABD=90°,由折叠得:∠ABE=∠DBE=12∠ABD,∠BA′E=∠A=90°,∴∠ADB+∠DEA′=90°,∴∠DEA′=∠ABD,∴∠DEA′=2∠ABE;②解:∵矩形ABCD中,AB=6,BC=8,∴∠A=90°,AD=BC=8,∴由勾股定理得:BD=10,∵矩形ABCD沿BE折叠,点A恰好落在BD上点A′处,∴∠BA′E=∠A=90°,BA′=BA=6,A′E=AE,∴∠DA′E=90°,A′D=BD﹣BA′=10﹣6=4,设A′E=AE=m,则DE=8﹣m,在Rt△DA′E中,由勾股定理列方程得:m2+42=(8﹣m)2,解得:m=3,即AE=3,∴tan ∠ABE =AE AB =36=12; (3)解:由(1)可知△BEA ′是等腰直角三角形,∴∠BA ′E =90°,BA =BA ′,∵∠A ′BM <90°,∴∠A ′≠∠A ′BM ,当∠A ′QP =∠A ′BM 时,如图3,连接A ′N 交PQ 于点H ,∵将△A ′PQ 沿PQ 折叠,点A ′的对应点N 恰好落在BM 上,∴点 A ′与点N 关于直线PQ 对称,∴PQ 垂直平分A ′N ,∵∠A ′QP =∠A ′BM ,∴PQ ∥BM ,∴A′Q A′B =A′H A′N=12, ∴A ′Q =12A ′B =12×6=3;当∠A ′PQ =∠A ′BM 时,如图4,过点N 作NG ⊥A ′B 于点G ,连接FG 、A ′N ,∵将△A ′PQ 沿PQ 折叠,点A ′的对应点N 恰好落在BM 上,∴点 A ′与点N 关于直线PQ 对称,∴PQ 垂直平分A ′N ,∴∠A ′PQ +∠P A ′N =90°,∵∠BA ′N +∠P A ′N =90°,∴∠A ′PQ =∠BA ′N ,∴∠A ′BM =∠BA ′N ,∵NG ⊥A ′B ,∴BG =12BA ′=3,∵AF =BG =3,AF ∥BG ,∠A =90°,∴四边形ABGF 是矩形,∴∠BGF =90°,∴F 、N 、G 在同一条直线上,∴FG ∥AB ,∴∠BFG =∠ABF =∠FBM ,∴BN =FN ,设NG =x ,则BN =FN =6﹣x ,∵BG 2+NG 2=BN 2,∴32+x 2=(6﹣x )2,解得:x =94,∴NG =94,BN =6−94=154,∵PQ 垂直平分A ′N ,∴A ′Q =NQ ,设A ′Q =NQ =n ,则GQ =3﹣n ,在Rt △NGQ 中,GQ 2+NG 2=NQ 2,∴(3﹣n )2+(94)2=n 2, 解得:n =7532, ∴A ′Q =7532; 综上所述,A ′Q 的长度为3或7532.18.(2022•亭湖区校级一模)小明学习了图形的旋转之后,积极思考,利用两个大小不同的直角三角形与同学做起了数学探究活动.如图1,在△ABC 与△DEF 中,AC =BC =a ,∠C =90°,DF =EF =b ,(a >b ),∠F =90°.【探索发现】将两个三角形顶点C 与顶点F 重合,如图2,将△DEF 绕点C 旋转,他发现BE 与AD 的数量关系一直不变,则线段BE 与AD 具有怎样的数量关系,请说明理由;【深入思考】将两个三角形的顶点C 与顶点D 重合,如图3所示将△DEF 绕点C 旋转. ①当B 、F 、E 三点共线时,连接BF 、AE ,线段BF 、CF 、AE 之间的数量关系为 BF=AE +CF ;②如图4所示,连接AF 、AE ,若线段AC 、EF 交于点O ,试探究四边形AECF 能否为平行四边形?如果能,求出a 、b 之间的数量关系,如果不能,试说明理由.【拓展延伸】如图5,将△DEF 绕点C 旋转,连接AF ,取AF 的中点M ,连接EM ,则EM 的取值范围为 |a−√5b|2≤EM ≤a+√5b 2(用含a 、b 的不等式表示).【解答】解:【探究发现】BE =AD ,BE ⊥AD ,理由如下:如图1,∵∠ACB =∠AFD =90°,∴∠ACB ﹣∠ACE =∠AFD ﹣∠ACE ,∴∠BCE =∠AFD ,在△BCE 和△AFD 中,{BC =AC ∠BCE =∠AFD CE =FD,∴△BCE ≌△AFD (SAS ),∴BE =AD ;【深入思考】①BF =AE +CF ,理由如下:如图2,在FB 上截取FG =EF ,可得△CGE 是等腰直角三角形,∴CF =FG =EF ,由【探究发现】得:BG =AE ,∴BF =BG +GF =AE +CF ;故答案为:BF =AE +CF ;②四边形AECF 可以为平行四边形,此时OF =OE =12b ,OC =OA =12a ,∵∠CFO =90°,∴OC 2=CF 2+OF 2=b 2+(12b)22=54b 2, ∴14a 2=54b 2,∴a =√5b ;【拓展延伸】如图3,延长FE 至O ,是EO =EF ,连接OA ,∴EM =12AO ,在Rt △COF 中,OF =2EF =2b ,CF =b ,∴OC =√5b ,∴点O 在以C 为圆心,√5b 的圆上运动,∴当点O 在AC 的延长线上时,AO 最大,最大值为:a +√5b ,当点O 在射线CA 上时,AO 最小,最小值为|a −√5b |,∴EM 最大=a+√5b 2,EM 最小=|a−√5b|2, 故答案为:|a−√5b|2≤EM ≤a+√5b 2. 19.(2022•滨海县一模)在四边形ABCD 中,∠B +∠D =180°,对角线AC 平分∠BAD .(1)推理证明:如图1,若∠DAB =120°,且∠D =90°,求证:AD +AB =AC ;(2)问题探究:如图2,若∠DAB =120°,试探究AD 、AB 、AC 之间的数量关系,(3)迁移应用:如图3,若∠DAB =90°,AD =2,AB =4,求线段AC 的长度.【解答】(1)证明:∵AC 平分∠BAD ,∴∠DAC =∠BAC =12∠BAD .∵∠DAB =120°,∴∠DAC =∠BAC =60°,又∵∠B +∠D =180°,∠D =90°,∴∠B =180°﹣∠D =180°﹣90°=90°,∴∠ACD =∠ACB =30°,∴AD =12AC ,AB =12AC ,∴AD +AB =12AC +12AC =AC .(2)解:AD +AB =AC ,理由如下:在图2中,过点C 作CE ⊥AD 于点E ,过点C 作CF ⊥AB 的延长线于点F .∵AC 平分∠BAD ,∴CE =CF ,∠DEC =∠CFB =90°.∵∠D +∠ABC =180°,∠ABC +∠FBC =180°,∴∠D =∠FBC . 在△BFC 与△DEC 中,{∠D =∠FBC∠DEC =∠BFC CE =CF,∴△BFC ≌∠DEC (AAS ),∴DF =BF ,∴AD+AB=AE+DE+AF﹣BF=AE+AF.由(1)可知:AE+AF=AC,∴AD+AB=AC.(3)解:在图3中,过点C作CM⊥AB于点M,过点C作CN⊥AD的延长线于点N.由(2)知:△CDN≌△CBM,∴DN=BM,∴AD+AB=AN﹣DN+AM+BM=AN+AM.∵∠DAB=90°,AC平分∠BAD,∴∠NAC=∠MAC=∠ACN=45°,∴△ACN,△ACM均为等腰直角三角形,∴AN=AM=CN=√22AC,∴AD+AB=AN+AM=√22AC+√22AC=√2AC.又∵AD=2,AB=4,∴AC=AD+AB√2=2+4√2=3√2.20.(2022•滨海县一模)如图,在正方形ABCD中,对角线AC、BD相交于点O,点E、F 是对角线AC上的两点,且AE=CF.连接DE、DF、BE、BF.(1)证明:△ADE ≌△CBF ;(2)若AB =5√2,AE =3,求四边形BEDF 的周长.【解答】(1)证明:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠ADC =∠ABC =90°,∠DAC =∠BCA =45°,在△ADE 与△BCF 中,{AD =BC ∠DAC =∠BCA AE =CF,∴△ADE ≌△CBF (SAS );(2)解:∵四边形ABCD 是正方形,∴AC ⊥BD ,OA =OC ,OB =OD ,又∵AE =CF ,∴OE =OF ,∴四边形DEBF 为平行四边形,又∵AC ⊥BD ,∴平行四边形DEBF 为菱形,∵AB =5√2,∴OA =OB =√22AB =5,又∵AE =3,∴OE =2,∴BE =√OE 2+OB 2=√29,∴四边形DEBF 的周长为4BE =4√29.21.(2022•东台市模拟)小明在学习矩形知识后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转α(0°<α≤90°),得到矩形AB 'C 'D ',连结BD .【探究1】如图1,当a =90°时,点C '恰好在DB 延长线上.若AB =1,求BC 的长.【探究2】如图2,连结AC ',过点D '作D 'M ∥AC '交BD 于点M .线段D 'M 与DM 相等吗?请说明理由.【探究3】在探究2的条件下,射线DB 分别交AD ',AC '于点P ,N (如图3),发现线段DN ,MN ,PN 存在一定的数量关系,请写出这个关系式,并加以证明.【解答】解:(1)如图1,设BC =x ,∵矩形ABCD 绕点A 顺时针旋转90°得到矩形AB ′C ′D ′,∴点A ,B ,D '在一条线上,∴AD '=AD =BC =x ,D 'C '=AB '=AB =1,∴D 'B =AD '﹣AB =x ﹣1,∵∠BAD =∠D '=90°,∴D 'C '∥DA ,又∵点C '在DB 的延长线上,∴△D 'C 'B ∽△ADB ,∴D′C′AD=D′B AB , ∴1x =x−11,解得x 1=1+√52,x 2=1−√52(不合题意,舍去), ∴BC =1+√52; (2)D 'M =DM ,理由如下:如图2,连接DD ',∵D'M∥AC',∴∠AD'M=∠D'AC',∵AD'=AD,∠AD'C'=∠DAB=90°,D'C'=AB,∴△AC'D'≌△DBA(SAS),∴∠D'AC'=∠ADB,∴∠ADB=∠AD'M,∵AD'=AD,∴∠ADD'=∠AD'D,∴∠MDD'=∠MD'D,∴D'M=DM;(3)关系式为MN2=PN•DN,理由如下:如图3,连接AM,∵D'M=DM,AD'=AD,AM=AM,∴△AD'M≌△ADM(SSS),∴∠MAD'=∠MAD,∵∠AMN=∠MAD+∠NDA,∠NAM=∠MAD'+∠NAP,∵∠NDA=∠NAP,∴∠AMN=∠NAM,∴MN=AN,在△NAP和△NDA中,∠ANP=∠DNA,∠NAP=∠NDA,∴△NP A ∽△NAD ,∴PN AN =AN DN ,∴AN 2=PN •DN ,∴MN 2=PN •DN .22.(2022•建湖县一模)【问题再现】苏科版《数学》八年级下册第94页有这样一题: 如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,CD ,AD 上的点,GE ⊥BF ,垂足为M ,那么GE = BF .(填“<”、“=”或“>”)【迁移尝试】如图2,在5×6的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点M .求∠AMC 的度数;【拓展应用】如图3,点P 是线段AB 上的动点,分别以AP ,BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC ,PC 于点M ,N .①求∠DMC 的度数;②连接AC 交DE 于点H ,直接写出DH BC 的值为 √22.【解答】解:【问题再现】∵GE ⊥BF ,∴∠BMG =90°,将线段GE 向左平移至AL 处,交BF 于I ,∴AL =GE ,∠AIB =∠BMG =90°,∴∠BAL +∠ABI =90°,∵四边形ABCD 为正方形,∴AB =BC ,∠ABC =∠C =90°,∴∠CBF +∠ABI =90°,∴∠BAL =∠CBF ,∴△ABL ≌△BCF (ASA ),∴AL =BF ,∴GE =BF ,故答案为:=;【迁移尝试】将线段AB 向右平移至ND 处,使得点B 与点D 重合,连接PN ,如图2所示:∴∠AMC =∠NDC ,设正方形网格的边长为单位1,则由勾股定理可得:DN =√22+42=2√5,PD =√12+32=√10,PN =√12+32=√10,∴PN 2+PD 2=DN 2,∴△DPN 是直角三角形,∠DPN =90°,且PN =PD ,∴∠AMC =∠NDC =45°;【拓展应用】①平移线段BC 至DK 处,连接KE ,如图3所示:则∠DMC =∠KDE ,四边形DKBC 是平行四边形,∴DC =KB ,∵四边形ADCP 与四边形PBEF 都是正方形,∴DC =AD =AP ,BP =BE ,∠DAK =∠KBE =90°∴DC =AD =AP =KB ,∴AG =BP =BE ,在△AKD 和△BEK 中,{AK =BE ∠DAK =∠KBE AD =KB,∴△AKD ≌△BEK (SAS ),∴DK =EK ,∠ADK =∠EKB ,∴∠EKB +∠AKD =∠ADK +∠AKD =90°,∴∠EKD =90°,∴∠KDE =∠KED =45°,∴∠DMC =∠KDE =45°;②如备用图所示:∵AC 为正方形ADCP 的对角线, ∴∠DAC =∠P AC =∠DMC =45°, ∴AC =√2AD ,∵∠HCM =∠BCA ,∴∠AHD =∠CHM =∠ABC , ∴△ADH ∽△ACB ,∴DH BC =AD AC =√2AD =√22, 故答案为√22.。
中考数学考前50天得分专练6一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的.) 1. 36的算术平方根是A .6B .±6C .6D .±62.下列计算正确的是A. 5-2= 3B.(3+2)(3-2)=1C. 27÷3=3D. (-3)2=-3 3.若两圆的半径分别为5cm 和3cm ,圆心距为2cm ,则这两个圆的位置关系是 A .外切 B .内切 C .内含 D .相交 4.已知□ABCD. 下列结论中,不正确的是A .当AB=BC 时,它是菱形B .当AC⊥BD 时,它是菱形C .当AC=BD 时,它是正方形 D .当∠ABC=900时,它是矩形5.众志诚城抗干旱,某小组7名同学积极捐出自己的零花钱支援西部灾区,他们捐款的数额是(单位:元)50、20、50、30、50、25、135这组数据的众数和中位数分别是( ) A .50、50 B .50、30 C .50、20 D .135、506.函数3-=x x y 中,自变量x 的取值范围是( )A .0≥xB .3≠xC .0≥x 且3≠xD .0>x 且3≠x 7.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD ,若︒=∠35CAB ,则AD C ∠的度数为 A .35° B .55°C .65°D .70°8.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如 图).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是 A .31B .41 C .51D .55二、填空题(本大题共10题,每题3分,共30分.把答案填在答题卡中对应的横线上). 9.已知分式1x 1x -+的值为0,那么x 的值为 .B 第7题图第8题图DABCEF GH10.一种病毒长度约为0.000058mm ,用科学记数法表示这个数为 mm. 11.已知2a b +=,则224a b b -+的值 .12.已知扇形的半径为30cm ,圆心角为120º,用它做成一个圆锥模型的侧面,这个圆锥的底面半径为 cm .13.某公司2009年盈利额为200万元,预计2011年盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为 万元. 14.在△ABC 中,AB=AC=5,BC=8,那么sinB= .15.如图,将⊙O沿着弦AB 翻折,劣弧恰好经过圆心Ο,若⊙O的半径为4cm ,则弦AB 的长度等于 cm.16.为方便行人,打算修建一座高5米的过街天桥,若天桥的斜面的坡度为i =1:1.5,则斜坡的长度为______________米(结果保留根号).第15题图 第16题图 第17题图17.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 长为半径的圆与BC 相切于点M ,交AB 于点E ,若AD=2,BC=6,则图中阴影部分的面积为_______(结果保留π). 18. 如右图是抛物线y=ax 2+bx+c 的一部分,其对称轴为直线x=1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c >0的解集是 .三、解答题19.先化简,再求值.(本题满分7分)3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-20.(本题满分7分)如图,AB AD =,A C A E =,12∠=∠, 求证:B C D E =B DEABB5mi =1:1.5三、解答题19.解:3-++÷-a b a b ab ab(2)(2)()222=-+-······································································································· 4分4()a b b(答对22ab ab b÷-=-给2分)()a b a b a b-+=-给2分,答对32(2)(2)422=-···················································································································· 5分a b5当a=1b=-时,原式22=-⨯-5(1)=- ···························································································································· 7分320.证明:12∠∠=∴+=+∠∠∠∠D AC D AC12即:BAC D AE∠∠·································································································· 2分=又AB AD==,A C A E∴△≌△ ···································································································· 5分A B C A D E∴= 7分B C D E。