当前位置:文档之家› 砷化镓高倍聚光电池介绍

砷化镓高倍聚光电池介绍

砷化镓高倍聚光电池介绍
砷化镓高倍聚光电池介绍

砷化镓太阳能光伏电池发展现状分析

作者:佚名日期:2009年09月07日来源:不详【字体:大中小】我要投稿近年来,基于硅材料的太阳能电池价格起伏不定,光伏产业巨大的泡沫由于经济危机而破裂,对产业的健康发展产生了较大影响。聚光型太阳电池可以减小对原料在量上的依赖程度,进而对降低光伏系统建造成本和产业多元化发展起到积极作用。较之薄膜电池和普通晶体硅电池,聚光型太阳电池的光电转化率较高,因此受到研究者的高度重视一、砷化镓电池基本介绍近年来,太阳能光伏发电在全球取得长足发展。常用光伏电池一般为多晶硅和单晶硅电池,然而由于原材料多晶硅的供应能力有限,加上国际炒家的炒作,导致国际市场上多晶硅价格一路攀升,最近一年来,由于受经济危机影响,价格有所下跌,但这种震荡的现状给光伏产业的健康发展带来困难。目前,技术上解决这一困难的途径有两条:一是采用薄膜太阳电池,二是采用聚光太

一、砷化镓电池基本介绍

近年来,基于硅材料的太阳能电池价格起伏不定,光伏产业巨大的泡沫由于经济危机而破裂,对产业的健康发展产生了较大影响。聚光型太阳电池可以减小对原料在量上的依赖程度,进而对降低光伏系统建造成本和产业多元化发展起到积极作用。较之薄膜电池和普通晶体硅电池,聚光型太阳电池的光电转化率较高,因此受到研究者的高度重视[1]。

聚光太阳电池是用凸透镜或抛物面镜把太阳光聚焦到几倍、几十倍,或几百倍甚至上千倍,然后投射到太阳电池上。这时太阳电池可能产生出相应倍数的电功率。它们具有转化率高,电池占地面积小和耗材少的优点。高倍聚光电池具有代表性的是砷化镓(GaAs)太阳电池。

二、砷化镓电池与硅光电池的比较[3]

1、光电转化率:

砷化镓的禁带较硅为宽,使得它的光谱响应性和空间太阳光谱匹配能力较硅好。目前,硅电池的理论效率大概为23%,而单结的砷化镓电池理论效率达到27%,而多结的砷化镓电池理论效率更超过50%。

2、耐温性

常规上,砷化镓电池的耐温性要好于硅电池,有实验数据表明,砷化镓电池在250℃的条件下仍可以正常工作,但是硅电池在200℃就已经无法正常运行。

3、机械强度和比重

砷化镓较硅质在物理性质上要更脆,这一点使得其加工时比容易碎裂,所以,目前常把其制成薄膜,并使用衬底(常为Ge [锗]),来对抗其在这一方面的不利,但是也增加了技术的复杂度。

三、砷化镓电池的技术发展现状

1、历程

GaAs 太阳电池的发展是从上世纪50年代开始的,至今已有已有50多年的历史。1954 年世界上首次发现GaAs 材料具有光伏效应。在1956 年,Loferski J. J.和他的团队探讨了制造太阳电池的最佳材料的物性,他们指出Eg 在1.2~1.6 eV 范围内的材料具有最高的转换效率。(GaAs 材料的Eg = 1.43 eV ,在上述高效率范围内,理论上估算,GaAs单结太阳电池的效率可达27%)。20世纪60 年代,Gobat等研制了第1个掺锌GaAs 太阳电池,不过转化率不高,仅为9 %~10 %,远低于27 %的理论值。20 世纪70年代,IBM公司和前苏联Ioffe 技术物理所等为代表的研究单位,采用LPE(液相外延)技术引入GaAlAs 异质窗口层,降低了GaAs 表面的复合速率,使GaAs 太阳电池的效率达16%。不久,美国的HRL(Hughes Research Lab)及Spectro lab 通过改进了LPE 技术使得电池的平均效率达到18%,并实现了批量生产,开创了高效率砷化镓太阳电池的新时代[4]。从上世纪80 年代后,GaAs 太阳电池技术经历了从LPE 到MOCVD,从同质外延到异质外延,从单结到多结叠层结构的几个发展阶段,其发展速度日益加快,效率也不断提高,目前实验室最高效率已达到50%(来自IBM公司数据),产业生产转化率可达30%以上。

2、几项基本技术介绍

GaAs生产方式有别于传统的硅晶圆生产方式,GaAs生产需要采用磊晶技术,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多,因此,制备其磊晶圆需要特殊的机台。目前,常用于GaAs

制备的技术有几种,主要有LPE 和MOVPE等。

2.1 LPE技术介绍

液相外延技术(Liquid Phase Epitaxy ,简称LPE)1963 年由Nelson 等人提出的,在GaAs的生产中,其以低熔点的Ga)镓)为溶剂,以待生长材料Ga、As(砷)和掺杂剂Zn(锌)、Te(碲)、Sn(锡)等为溶质,使溶质在溶剂中呈饱和或过饱和状态。通过降温冷却使石墨舟中的溶质从溶剂中析出,在单晶衬

底上定向生长一层晶体结构和晶格常数与单晶衬底(常为Ga)足够相似的GaAs晶体材料,使晶体结构得以延续,实现晶体的外延生长。

2.2 MOVPE技术介绍

金属有机化学汽相淀积(MOCVD)是由美国洛克威尔公司的H.M. Manasevit等在1968年首先提出的一种制备化合物半导体薄层单晶膜的新型汽相外延生长技术。在GaAs晶片的制备中,它采用Ga元素的有机化合物和As的氢化物等作为晶体生长原料,以热分解反应方式在衬底上进行汽相外延,生长GaAs化合物半导体以及它们的多元固溶体的薄膜层单晶材料。MOCVD是在常压或低压(≈10kPa)下于通H2的冷壁石英反应器中进行的,衬底温度为600-800℃,过程中需用射频加热石墨支架,让H2气通过温度可控的液体源鼓泡携带金属有机物到生长区。目前MOVPE方法制备GaAs薄膜电池受生长速率、生长温度和As/Ga 比、金属有机物和AsH3的纯度等诸多参数的影响[5]。

3、国内技术发展情况

在上世纪70 年代中期至90 年代中期,国内一般采用LPE技术研制GaAs 电池,单结GaAs/ GaAs 电池效可达20 %。1995年开始,国内开始采用MOCVD 技术研制GaAs 电池。“十五”初期,单结GaAs/Ge 电池进入量产(用于航天),量产平均效率达到18. 5 %~19. 0 %(AM0) 。我国首次GaAs 电池试验是在1988年9月时进行的,当时发射的FY21A 星上,在卫星的太阳方阵帆板上使用了20mm×20mm ×0.3mm 单结GaAs 电池,取得较好的效果。2001 年1 月发射的“神舟3号”飞船和2002 年5 月发射的“海洋21”卫星上,也应用了单结GaAs/ GaAs 电池[6]。

四、砷化镓电池产业发展现状

就世界的角度来说,砷化镓电池主要还是应用在宇宙空间探测利用等方面,在地面使用较少。目前全世界专业制作砷化镓聚光电池的工厂有美国的Emcore,SpectroLab(波音的子公司)和德国的Azur Space等,中国的产业化推广还未成形。

2007年8月开始,由于聚光技术的采用,砷化镓电池从卫星上的使用转变为聚光的太阳能发电站的规模应用。为此,Emcore公司花了1000万美元,将产能增加到目前的每年150兆瓦。

在2008年,全球的砷化镓电池的生产取得突破性的发展。4月,作为砷化镓生产的全球主要厂家之一Spectro Lab,获得350兆瓦,9300万美元(1000倍聚光)的电站订单。

在东亚地区,也有初步的生产推广,2008年5月,韩国电站就接到70兆瓦,2800万美元(500倍聚光)的订单。

五、砷化镓电池产业发展遇到的问题

砷化镓光伏电池有着较优的转化效率,有明显的发展优势,应该成为一种有效的光伏发电途径。但是,目前在中国产业化方面并不理想,出现了一些问题和阻碍。主要有以下几个方面:一是制备费用高居不下。据文献报道,砷化镓晶片的制备费用约为10000$/m2,比常规的硅晶电池相比高出不少,当然,这是几方面的因素造成的,一方面,由于镓元素在全球的储量不多,大概在两百万吨左右[7](中国约占一半),而且开采难度大(一般为铝土矿的伴生矿),在当今号召降低高耗能投资的要求下(电解铝项目得到严格控制),短期内要扩大粗镓的生产比较难。另一方面,由于半导体材料对纯度的要求很高,对半导体用镓的要求达到6—7个9,目前世界上掌握这样提纯技术的国家仅有美国、德国和日本少数几个,由于技术的垄断,对扩大再生产构成限制,总体上增加了制备费用。二是砷化镓的另一个组分砷有毒,对于环境安全和生产工人自身身体安全都是一个不小的威胁,在没有得到有力技术保证的前提下,一般的企业也不愿往这方面投产。第三,目前的砷化镓电池由于自身物理因素的限制(脆性),一般制成带衬底的薄膜电池,需要构造隧道结和防止形成寄生的p/n结[8],这增加了技术的难度。第四,由于砷化镓电池的高转化率,常把其制成高聚光电池,当然,这一方面可以缩小耗材,对于降低成本有利,但是也存在需要追日跟踪系统的问题,而且由于各地区的日照条件不一样据了解,目前对追日跟踪系统的要求也不一样,也增加系统的复杂度和实施的难度[9]。第五,国内市场这几年的注意力都集中在多晶硅市场,而且是进行的是一种90%以上原料依赖进口,90%以上产品依赖出口的一种模式,没有把注意力集中到本土化光伏发电推广,长此以往,整个光伏产业会缺乏动力需求,这对砷化镓电池产业的发展来说也是不利的。第六,对于产业化来说,民众认可是很重要的,这些年来,对于砷化镓光伏电池,民众认知度不够,媒介和研究机构的宣传推广工作有些不力。第七是国家政策,政府政策支持在光伏产业方面比较宏观,目前还没有做到对光伏电池行业进行分类别对待,支持产业发展,在成本竞争不具备优势的情况下,政策支持的不力使砷化镓产业化推进缓慢。以上这些原因的综合出现,对砷化镓电池产业的发展造成了障碍。

5、对策分析

针对目前出现的问题,笔者认为可以从以下几方面着手去努力解决。首先,需要在原料镓上做好功夫,虽然镓储量全球不太多,但是中国相对来说是较丰富的,目前的问题就是提纯技术不过关的问题,这就需要我们广大的相关科研机构合作攻关,做好镓的高纯提取。第二是要做好安全保障措施,提高工厂生产的

智能化、自动化,减少生产直接接触人员,保障安全化生产和人身安全,减小环境阻力。第三是加大技术攻关,简化制备工艺,减小电池系统复杂度,降低电池制备耗费。第四,新闻媒介和相关学术机构做好宣传推荐工作,提高民众认知度。第五是国家政策支持明细化,比如对光伏发电电池产业来说,对晶硅电池、薄膜电池、砷化镓电池、碲化铬电池等的产业化生产做好分类对待,培植一些有竞争力的砷化镓电池生产企业,同时鼓励各地新建光伏电站采用砷化镓光伏电池。

六、展望

目前由于资金、技术和社会认知等方面的不足,砷化镓电池在中国并没有走进大众生活,实现产业化生产。但是由于砷化镓电池具有很高的能量转化效率,是一种比较有前途的光伏发电装置,对促进未来人类新能源利用,创造洁净生存环境是一个好的备选项,相信通过业界的共同努力,政府政策上的得力支持,民众的开放性心里对待,砷化镓太阳能光伏电池产业化会逐步发展,稳步推进,在明天的广泛运用不是梦!

关于编制高倍聚光太阳能电站项目可行性研究报告编制说明

高倍聚光太阳能电站项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/ce14820766.html, 高级工程师:高建

关于编制高倍聚光太阳能电站项目可行性 研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国高倍聚光太阳能电站产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (12) 2.5高倍聚光太阳能电站项目发展概况 (12)

蓄电池基础知识

蓄电池基础知识 蓄电池是UPS电源中最关键、最昂贵、最易损坏的部件之一,它对UPS的品质有着重要的影响。正确的使用和维护好蓄电池,是延长蓄电池的寿命,提高放电效率的关键。下面再介绍一些铅蓄电池的小知识。 1. 铅酸蓄电池的结构及电动势的产生: 铅酸蓄电池的构造: 正极板(正极板上的活性物质为二氧化铅PbO2)、 负极板(负极板上的活性物质为海绵状纯铅Pb)、 电解液(电解液由水和硫酸[H2SO4]按一定的比例配制而成)、 电池槽等。 将制作好的正、负极板浸入装有电解液的电池槽中后,负板表面的铅离解产生二价的正铅离子和电子(Pb →Pb2+ + 2e),其中正二价的铅离子进入电解液中,电子留在负极板上,这样负极板和电解液之间形成电位差。 同样正极板上的二氧化铅在电解液中离解成正四价的铅离子和负氢氧根离子(PbO 2 + H2O →Pb4+ + OH- ),其中负的氢氧根离子进入电解液,正4价铅离子留在正极板上,这样在正极板和电解液之间形成电位差。 由于正、负极板与电解液都有电压差,所以正、负极板之间也存在电位差。正、负这间电压的高低与电解液的浓度有关,铅酸蓄电池的每单元电压值可用公式表示:E = 0. 85 + d(15℃) 式中0.85----表示铅酸蓄电池的电动势常数, d(15℃)---表示15℃时极板活性质物质微孔中电解液的比重。 UPS电源中常使用的铅酸蓄电池标称电压为12V,它由6个单元组成。 2. 铅酸蓄电池的放电及常用的充电方法: 2.1 蓄电池的放电:蓄电池向外电路供电叫蓄电池放电,放电时,负极板上的电子通过负载流向正极,随着放电的进行,负极板的铅和硫酸反应生成硫酸铅,正极上的氧化铅和硫酸反应生成硫酸铅,随着放电的进行,蓄电池的端电压逐惭下降,当端电压下降至临界电压时,就应终止放电,否则蓄电池的寿命将大缩短甚至损坏。临界电压是蓄电池制造商为保护蓄电池免受不正常的放电而影响蓄电池的寿命, 2.2 恒流充电:这种充电方法在整个充电过程中,流过蓄电池的电流不变,充电器输出的充电电压随蓄电池的端电压上升而上升。这种充电方法有以下特点:充电时间短,但耗能大,充电后期易产生过压充电而缩短电池使用寿命。目前在UPS电源中,不采用这种方法。 2.3 恒压充电充:使用这种方法充电时,整个过程中充电电压保持不变。常用的恒压充电方式中有高压恒压充电和低压恒压充电之分。

用于太阳能光伏发电的高倍聚光系统

第32卷第3期2011年5月 应 用 光 学 Journal of Applied Optics Vol 132No.3M ay 2011 文章编号:1002-2082(2011)03-0389-06 用于太阳能光伏发电的高倍聚光系统 张 平1,2 ,洪剑麟1 ,夏 念1 ,金小伟 1 (1.杭州永莹光电有限公司,浙江杭州310051;2.华中科技大学,湖北武汉430074) 摘 要:研究了基于三结型(InGaP/InGaAs/Ge)高效太阳能电池的太阳能光伏发电的高倍聚光系统。该系统采用高次非球面光学玻璃卡塞格林系统,运用Zem ax 和Tr acepro 光学设计软件完成200~500倍太阳能聚光系统的设计,同时设计了单片型高倍太阳能聚能光学组件,用热压成型方法研制了太阳能聚能透镜(副镜)。采用16个性能相同的聚光光学组件和相同数量的三结型太阳能电池组成高倍聚光型太阳能光伏组件,极大地提高了聚光比,为太阳能光伏发电的高倍聚光器设计提供参考和依据。 关键词:太阳能;高倍聚光器;热压成型;非球面透镜;光伏发电 中图分类号:T N29;T H 706 文献标志码:A Solar photovoltaic power generation with high -concentration -ratio system ZH ANG Ping 1,2,H ONG Jian -lin 1,XIA Nian 1,JIN Xiao -w ei 1 (1.Hang zhou Y ongy ing O pt ic &Electr onic Co.,L td.,H ang zho u 310051,China;2.Huazho ng U niver sity of Science and T echnolog y,W uhan 430074,China) Abstract:Based on three -junctio n (InGaP/InGaAs/Ge)high efficient solar cell,the PV conver -sion of a hig h pow er optical system w as achiev ed,which used hig h -order precision aspheric Cassegrain sy stem.Tw o so lar PV systems of 200-500times co ncentratio n -ratio w ere o btained w ith Zemax and Tracepro.One o f them w as a monolithic system w ith solar condenser compo -nent.Seco ndary m ir ror o f high pow er solar PV sy stem w as m anufactured using ho t -pr ess for ming.16sets of optical concentration elem ents co mbined w ith three -junction (InGaP/In -GaAs/Ge)hig h efficient solar cells of the same volumes w ere used to form a com plete unit of a hig h pow er solar condenser PV system.T he solar concentration ratio is greatly increased,w hich pr ovides a g ood refer ence for the desig n of solar PV pow er generation and high -conver -g ence -ratio facilities. Key words:solar energ y;high -pow er condenser;hot -press forming;aspheric lens;photovoltaic pow er generation 收稿日期:2010-10-16; 修回日期:2010-11-16 基金项目:浙江省重大科技专项(优先主题)研究与产业化项目(2008C11038)。作者简介:张平(1946-),女,浙江杭州人,教授、技术顾问,主要从事光电工程、光电光学系统设计和非球面光学应用研究工作。E -mail pzhang8@https://www.doczj.com/doc/ce14820766.html, 引言 光伏发电经历了第一代晶硅电池(17%左右的转换效率)和第二代薄膜电池,第三代高效H CPV 系统发电。CPV 采用多结的III -V 族化合物电池,具有全光谱、高转换效率(可达36%左右 的转换效率)等优点,采用廉价的聚光型光伏系统可减少给定功率所需的太阳能电池面积。 为了大幅度降低太阳能光伏发电成本,我们致力于太阳能光伏发电高倍聚光系统及采用热压成型方法研制500倍聚光太阳能聚能透镜(副镜),

高倍聚光的Ⅲ-Ⅴ太阳电池成本分析

高倍聚光的Ⅲ-Ⅴ太阳电池发电成本分析 Xinghun1201 2009年6月22日星期一 决定CPV发电成本的主要因素是:(1)产量规模;(2)聚光倍数;(3)电池效率 目前和今后,发展类似LEDs制造方法制造多结化合物太阳电池,可以使得多结化合物太阳电池的成本大大降低,具有竞争力的CPV市场需要使用1000倍或更高倍聚光的Ⅲ-Ⅴ太阳电池,因为市场上Si太阳电池已经做到几百倍太阳聚光,虽然效率只有25%。用更高倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。 另一个建议使用1000倍聚光的原因来源于CPV实际产业化实验成本分析,以西班牙NFLATCOM 项目为例,2000年完成的第一阶段实验,接近与完全聚光PV模块原型制造过程。使用RXI光学聚光器1000倍聚光,使用GaAs单结电池(25%);使用高效率高倍聚光系统实现了商业光伏系统安装(10MWp)成本为2.8欧元/Wp,另外,如果加上其他不过预期的成本估算为4.8欧元/Wp,由此可见,需要使用1000倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。 CPV在产业化实验的第二阶段,取得明显进展,实现了商业光伏系统成本为2.5欧元/Wp,据估算,工作在1000倍聚光,效率为30%的多结化合物太阳电池,光伏系统成本为2.5欧元/Wp,而对于工作在400倍聚光,效率为38%的多结化合物太阳电池,光伏系统成本为3.0欧元/Wp,对于工作在250倍聚光,效率为40%的多结化合物太阳电池,光伏系统成本为3.8欧元/Wp,对于工作在1000倍聚光,效率为26%的多结化合物太阳电池,光伏系统成本为2.8欧元/Wp,下图给出不同聚光条件和不同电池效率的光伏发电成本。 附图1:CPV系统发电成本与产量规模(上曲线10MWp,下曲线1GWp)、聚光倍数、电池效率的关系。(单位:欧元/Wp)

聚光条件下太阳能电池性能的理论研究

江西科技师范大学 毕业论文 题目(中文):聚光条件下太阳能电池性能的理论研究(外文):Study of the power characteristic of solar cells in concentration 院(系):xxxxxxxxxxxxxx 专业:xxxxxxxxxxxxxx 学生姓名:xxx 学号:xx xx 指导教师:x x 2016年4月20 日

目录 1.概述........................................................................................................................ - 1 - 2.聚光型太阳能材料及技术.................................................................................... - 1 - 2.1聚光用的太阳能电池原材料...................................................................... - 2 - 2.2产品构成与关键技术.................................................................................. - 2 - 3.聚光条件下太阳能电池发电的理论分析............................................................ - 3 - 3.1非聚光条件下的太阳能电池发电.............................................................. - 3 - 3.2聚光条件下的太阳能电池发电.................................................................. - 5 - 3.3聚光倍数与电池输出功率关系.................................................................. - 6 - 3.3.1 传热分析........................................................................................... - 6 - 3.3.2 聚光倍数与电池输出功率关系....................................................... - 7 - 3.3.3 计算实例......................................................................................... - 10 - 3.4聚光降低光伏发电成本............................................................................ - 11 - 3.4.1 聚光提高电池片转换效率............................................................. - 11 - 3.4.2 聚光减少昂贵的电池片消耗......................................................... - 11 - 4.总结与展望.......................................................................................................... - 12 - 结束语..................................................................................................................... - 14 - 参考文献................................................................................................................. - 15 -

高倍聚光光伏电池作为第三代太阳能发电技术

高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成 为太阳能领域的新焦点 经过30多年的发展,高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成为太阳能领域的新焦点,引起了行业内企业的追逐。在日光照射较好的几个欧美国家,已通过了优惠的上网电价法,随着具有40%转换效率的Ⅲ-V 族半导体多结太阳能电池的普及和成本下降,高倍聚光光伏电池市场进入快速增长期。与前两代电池相比,HCPV采用多结的砷化镓电池,具有宽光谱吸收、高转换效率、良好的温度特性、低耗能的制造过程等优点,使它能在高倍聚焦的高温环境下仍保持较高的光电转换效率。高倍聚光光伏系统技术门槛较高且行业跨度大,涵盖半导体材料及工艺制造、半导体封装、光学设计制造、自动化控制、机械设计制造、金属加工等领域。HCPV行业的产品包括了多结电池片外延材料、光电转换芯片、光接收器组件、聚光器、光伏模组、双轴跟踪器等。 电池芯片采用多结技术大幅提高光电转换效率 与硅基材料相比,基于III-V族半导体多结太阳能电池具有最高的光电转换效率,大致要比硅太阳能电池高50%左右。III-V族半导体具有比硅高得多的耐高温特性,在高照度下仍具有高的光电转换效率,因此可以采用高倍聚光技术,这意味着产生同样多的电能只需要很少的太阳电池芯片。多结技术一个独特的方面就是材料——可选择不同的材料进行组合使它们的吸收光谱和太阳光光谱接 近一致,相对晶硅,这是巨大的优势。后者的转换效率已近极限(25%),而多结器件理论上的转换效率可达68%。目前最多使用的是由锗、砷化镓、镓铟磷3种不同的半导体材料形成3个p-n结,在这种多结太阳能电池中,不但这3种材料的晶格常数基本匹配,而且每一种半导体材料具有不同的禁带宽度,分别吸收不同波段的太阳光光谱,从而可以对太阳光进行全谱线吸收。 HCPV芯片的生产过程如下,首先利用MOCVD技术在4英寸锗衬底上外延砷化镓和铟镓磷形成3结电池片的材料,然后在外延片上利用光刻、PECVD、蒸镀等技术,制备减反膜以及主要成份为银的金属电极,再经划片清洗等工艺,生产出HCPV芯片。HCPV芯片的主要生产商有美国的Spectrolab、Emcore,德国的Azurspace,加拿大Cyrium,中国台湾Arima、Epistar等。衬底剥离的芯片和量子点技术是目前HCPV芯片领域的新热点。 接收器要安全可靠稳定地应用于系统 聚光太阳能电池芯片被封装到光接收器中,接收器封装对太阳能电池进行保护,对会聚光均匀化,同时起到散热的作用。接收器组件还包括旁路二极管和引线端子。芯片的主要焊接工艺有回流焊和共晶焊,二者最主要的区别在于前者使用助焊剂焊接,在焊接后需要清洗去除残留助焊剂,而共晶焊使用无助焊剂的焊片焊接。为了将电从芯片导出,需要进行金带键合将芯片和外围电路连接起来。接收器组件的检验指标主要包括空洞率和电性能测试,空洞率是检验焊接良好与否的标准。电性能方面,5.5mm×5.5mm接收器组件在500倍太阳光下的光电 转换率高达38.5%以上。在实际使用中,还需要将接收器组件与二次光学器件、散热器封装在一起,组成完整的接收器。二次光学器件可以降低对跟踪器高精准度的要求,并使通过涅尔透镜聚焦后的光斑更加均匀地照射到电池芯片上。 二次光学元件通常是光学玻璃棱镜或中空的倒金字塔金属反射器。为了最大限度地利用太阳能资源,节省芯片材料以降低成本,可以提高电池的聚光倍数,

聚光太阳能发电的几种主要形式

聚光太阳能发电的几种主要形式 一、线性聚光系统 线性聚光太阳能发电采用线聚焦技术,线性聚光器包括抛物面槽式系统和线性菲涅耳反射系统2种,利用很大的反射镜来捕获太阳的能量,并把太阳光反射和对焦集中到焦线上,在这条焦线上安装有线性管状集热器,集热器吸收聚焦后的太阳辐射能,把吸热管内的流体加热,然后产生过热蒸汽,驱动涡轮发电机产生电力。线性集中聚光器系统通常由按南北向平行排列的大量聚光器组成,这样保证最大限度地聚集太阳能。 1.抛物面槽式系统 目前,在美国太阳能热发电领域中占主导地位的是抛物面槽式线性聚光系统,槽式太阳能发电系统由太阳能聚光器,以及吸热配件或接收器和跟踪机构组成。 其中太阳能聚光器由许多弯曲的反射镜组合装配而成,安装在支架上。吸热管或接收器管沿着每个抛物形反射镜的焦线固定安装,用以吸收太阳辐射能,传热工质(不管是传热流体还是水/蒸汽)都要从太阳能集热管中流过,从而产生过热蒸汽,直接输送到涡轮机用以发电。 2.线性菲涅尔反射器系统 第二种线性聚光技术是线性菲涅尔反射器系统,该系统由反射镜。聚光器和跟踪机构组成。把平坦的或略有弯曲的反射镜安装配置在跟踪器上,在反射镜上方的空间安装吸热管,反射镜把阳光反射到吸热管。有时在聚光器的顶部加装小型抛物面反射镜,以加强阳光的聚焦。 二、碟式引擎系统 与其他聚光太阳能发电技术相比,碟式引擎系统产生的电力功率相对较少,通常在3~25万kW的范围内,很适合分布式应用,如果将多个这样分布安装的

单元碟式。引擎系统整合成一簇,可以实现集中向电网供电,不但能缓解电力能源需求,还可以提高整个电网的运行安全性。整个发电系统安装在一个双轴跟踪支撑机构上,实现定日跟踪,连续发电,发电效率高达30%,在相同的运行温度下,发电效率明显高于槽式和塔式,是所有太阳能热发电系统中效率最高的。 缺点是碟式太阳能热发电系统的单元发电容量较小。 三、塔式系统 塔式太阳能热发电系统主要由日光反射镜子系统。接收器组成,见图。其中日光反射镜子系统由大量大型。平坦的太阳跟踪反射镜构成,对太阳进行实时跟踪,把太阳光聚焦到塔顶的接收器。在接收器中对传热流体进行加热,产生高温过热蒸汽,过热蒸汽推动常规涡轮发电机组发电。一些电力塔利用水。蒸汽作为传热流体。由于其卓越的传热和能量存储能力,在其他先进的设计中,对其进行了熔融硝酸盐试验。具有商业规模的工厂可以生产200MW的电力造价十分昂贵,建设电站的投资很高 聚光太阳能发电的基本原理 ?聚光太阳能发电使用抛物镜将光线聚集到充有合成油的吸热管上,再将加热到约400摄氏度的合成油输送到热交换器里,将热量通过此加热循环水,将水加热,产生水蒸气,推动涡轮转动使发电机运转,以此来发电。 聚光太阳能发电与太阳能电池不同,太阳能电池使用太阳电池板将太阳能直接变成电能,可以在阴天操作,CSP一般只能够在阳光充足、天气晴朗的地方进行。 聚光太阳能发电系统的组成 ?聚光太阳能发电系统由聚光太阳能接收器,聚光镜,阳跟踪机构组成.聚光太阳能接收器包括聚光太阳能电池,旁路二极管和散热系统等.聚光太阳能电池是将

聚光型太阳能电池技术及现状

摘要 近年来,多晶硅原材料的紧缺,已制约了单晶硅或多晶硅的硅级电池的规模生产。由于高昂的上游原料的成本导致光伏发电成本居高不下,与传统的电力价差悬殊是光伏并网发电市场尚不能全面启动的主要因素之一。高倍聚光电池及系统的规模应用,将在缓解太阳能电池对硅原料的依赖和降低成本方面有很大的改进和创新。 关键词:硅级电池高倍聚光电池低成本新型技术

绪言 (4) 一.聚光型太阳能材料及技术 (5) 1.1聚光用的太阳能电池原材料 (5) 1.2产品构成与关键技术 (5) 二.产品与技术发展模式 (5) 三.产品核心优势 (6) 3.1 光电转换效率高 (6) 3.2 单位面积输出功率高 (7) 3.3 市场应用现状 (7) 四.未来太阳能电池市场前景展望 (7) 4.1 聚光电池应用前景 (8) 五.行业重点技术和公司关注 (9) 参考文献13

聚光电池是降低太阳电池利用总成本的一种措施,通过聚光器使较大面积的阳光聚在一个较小的范围内,形成“焦斑”或“焦带”,并将太阳电池置于“焦斑”或“焦带”上,以增加光强克服太阳辐射能流密度低的缺陷,从而获得更多的电能输出。通常聚光器的倍率大于几十,其结构可采用反射式或透镜式。聚光器的跟踪一般用光电自动跟踪,散热方式可以是气冷或水冷,有的与热水器结合,既获得电能,又得到热水。用于聚光太阳电池的单体,与普通太阳电池略有不同,因需耐高倍率的太阳辐射,特别是在较高温度下的光电转换性能要得到保证,故在半导体材料选择、电池结构和栅线设计等方面都比较特殊。最理想的材料是砷化镓,其次是单晶硅材料。在电池结构方面,普通太阳电池多用平面结构,而聚光太阳电池常采用垂直结构,以减少串联电阻的影响。同时,聚光电池的栅线也较密,典型的聚光电池的栅线约占电池面积的1O%,以适应大电流密度需要。

聚光太阳能发电

聚光太阳能发电?聚光太阳能发电(CONcentrating Solar Power)简称CSP是采用反射镜把太阳光反射并聚集到接收器,该接收器能够聚集太阳能并将其转换为热能,利用这种热能生产的热蒸汽,推动涡轮发动机,从而驱动发电机发电,满足电力需求。太阳能到电能的高效率转换特性,使CSP技术成为具有吸引力的可再生能源项目。 目录 ?聚光太阳能发电的几种主要形式 ?聚光太阳能发电的基本原理 ?聚光太阳能发电系统的组成 ?聚光太阳能发电的发展现状 ?聚光太阳能发电的发展优势 聚光太阳能发电的几种主要形式 ?一、线性聚光系统 线性聚光太阳能发电采用线聚焦技术,线性聚光器包括抛物面槽式系统和线性菲涅耳反射系统2种,利用很大的反射镜来捕获太阳的能量,并把太阳光反射和对焦集中到焦线上,在这条焦线上安装有线性管状集热器,集热器吸收聚焦后的太阳辐射能,把吸热管内的流体加热,然后产生过热蒸汽,驱动涡轮发电机产生电力。线性集中聚光器系统通常由按南北向平行排列的大量聚光器组成,这样保证最大限度地聚集太阳能。 1.抛物面槽式系统 目前,在美国太阳能热发电领域中占主导地位的是抛物面槽式线性聚光系统,槽式太阳能发电系统由太阳能聚光器,以及吸热配件或接收器和跟踪机构组成。其中太阳能聚光器由许多弯曲的反射镜组合装配而成,安装在支架上。吸热管或接收

器管沿着每个抛物形反射镜的焦线固定安装,用以吸收太阳辐射能,传热工质(不管是传热流体还是水/蒸汽)都要从太阳能集热管中流过,从而产生过热蒸汽,直接输送到涡轮机用以发电。 2.线性菲涅尔反射器系统 第二种线性聚光技术是线性菲涅尔反射器系统,该系统由反射镜。聚光器和跟踪机构组成。把平坦的或略有弯曲的反射镜安装配置在跟踪器上,在反射镜上方的空间安装吸热管,反射镜把阳光反射到吸热管。有时在聚光器的顶部加装小型抛物面反射镜,以加强阳光的聚焦。 二、碟式引擎系统 与其他聚光太阳能发电技术相比,碟式引擎系统产生的电力功率相对较少,通常在3~25万kW的范围内,很适合分布式应用,如果将多个这样分布安装的单元碟式。引擎系统整合成一簇,可以实现集中向电网供电,不但能缓解电力能源需求,还可以提高整个电网的运行安全性。整个发电系统安装在一个双轴跟踪支撑机构上,实现定日跟踪,连续发电,发电效率高达30%,在相同的运行温度下,发电效率明显高于槽式和塔式,是所有太阳能热发电系统中效率最高的。缺点是碟式太阳能热发电系统的单元发电容量较小。 三、塔式系统 塔式太阳能热发电系统主要由日光反射镜子系统。接收器组成,见图。其中日光反射镜子系统由大量大型。平坦的太阳跟踪反射镜构成,对太阳进行实时跟踪,把太阳光聚焦到塔顶的接收器。在接收器中对传热流体进行加热,产生高温过热蒸汽,过热蒸汽推动常规涡轮发电机组发电。一些电力塔利用水。蒸汽作为传热流体。由于其卓越的传热和能量存储能力,在其他先进的设计中,对其进行了熔融硝酸盐试验。具有商业规模的工厂可以生产200MW的电力造价十分昂贵,建设电站的投资很高

高倍聚光光伏电站

中国首座高倍聚光光伏电站投入运营 source:中国工控网 中国首座商业化运营的并网高倍聚光光伏电站近日正式启动,该电站由上海聚恒太阳能有限公司在哈尔滨工业大学(威海)校园内建设。据悉,国家金太阳认证中心-国家计量科学院鉴衡认证中心也在此挂牌"金太阳高倍聚光光伏示范电站"。 该光伏列阵由48个聚光光伏组件组成, 不同于大家熟悉的通常呈蓝色或黑色的晶体硅平板太阳能电池板,聚光光伏组件是由透明的平板玻璃光学系统和太阳能电池组成的 被称之为第三代光伏技术的高倍聚光光伏发电技术使用高效率的多结三五族太阳能电池,光电转换效率已达41%,理论上可达70%。多结三五族太阳能电池也被称为砷化镓电池,是目前光电转换效率最高,达到晶体硅技术的两倍,同时也是效率增长潜力最大的太阳能电池。由于其价格非常昂贵,最早使用在太空领域为卫星和空间站提供能源,地面使用难以普及。但由于这种电池的转化效率可随着聚光倍数的增加而提高,因此利用低成本的聚光光学系统和此电池结合在一起,就能以低廉的成本获得高效率的发电系统。由于聚光太阳能电池转化效率高,一方面可以降低光伏发电成本,同时也可以大幅减少光伏电站的建设用地;因此,它也是最有希望在大型光伏电站中使用,将发电成本降低到可以和煤电成本相竞争的光伏技术。 由于高倍聚光光伏发电技术在国内才起步,在太阳能光伏几种技术中,参与的企业和影响力还很小。而在欧美聚光光伏已逐步成为主流技术,尤其是2010年以来,高倍聚光光伏已获得数个10MW及以上级别的光伏电站项目,此前,美国加州曾批准建造1GW聚光型太阳能电站。哈工大太阳能研究所的成立,利用哈工大在航 空航天技术领域的优势,及威海光照资源好、地处经济发达区域的特点,将聚光光伏技术的综合应用作为重点,优先开展聚光发电、聚光海水淡化等课题研究,促进高倍聚光光伏技术在中国的快速发展。 在哈尔滨工业大学威海校区建设的峰值功率11KW高倍聚光光伏电站(576倍聚光),是国内第一个按照商业化系统建设且并网发电、投入运营的高倍聚光光伏电站, 也是目前已报道的国内转换效率最高的并网光伏电站(直流效率25%)。据哈工大威海校区马校长透露,接下来会在威海建设1MW的聚光光伏电站,并在此基础上进行聚光太阳能海水淡化等能源综合利用。年内聚恒太阳能会在北京、内蒙古、新疆、吉林、四川、广东等地建设类似规模的聚光光伏试点电站,为在国内各类地区建设大规模聚光光伏电站做储备。

蓄电池基础知识介绍

蓄电池及铅酸蓄电池 蓄电池 理论上任何两种具差异性的导电体与电解质均可以组成简单的电池 铅酸蓄电池 以二氧化铅为活性材料组成的正极与以海绵状铅为活性组成的负极插入稀硫酸电解液中,形成的标称电压为2V的蓄电池 铅酸蓄电池作用 发动机起动时,向发动机、点火系统、电子燃油喷射和其他电子设备供电 当发动机没有运转或处于低速或怠速时,蓄电池可向整车用电设备供电 当电气设备用电量进过整车充电系统的输出时,蓄电池可以在有限的时间内供电 蓄电池可以稳定整车电气系统的电压 铅酸蓄电池工作原理 汽车起动及电器一般要求12V的工作电压 汽车用蓄电池由6单格串联形成称电压为12V的电池 24V电压可以串联2只12V蓄电池获得

铅酸蓄电池工作化学原理 放电 当蓄电池向汽车用电器供电时,它处于放电过程 化学能转化为电能 充电 当汽车发电机向蓄电池供电时,蓄电池处于充电过程电能转化为化学能 铅酸蓄电池基本结构 1端柱套6顶盖 2汇流排 7防爆片 3电池极板(正/负极) 8中间盖 4外壳 9极群组 5密度计/电眼(选装) 汽车用铅酸蓄电池的主要技术衡量指标 低温起动性能

寿命 汽车用铅顶到蓄电池的主要技术衡量指标容量

C5=0.8*C20近似对应关系 RC=0.83*C201.17其它指标 汽车用铅酸蓄电池的技术演变 传统加水蓄电池 结构特点 铸造铅锑合金板栅,有加水口 优劣势 自放电快,易失水 有酸液喷可能 更多熔化的铅与空气接触制造了超过 必要水平的铅排放

一般免维护蓄电池 结构特点 铸造或铸造铅钙合金板栅,无加水口 优劣势 拉网或铸造设计无论金属拉得多么均匀,最终产品总是存在,而导致板栅的不一致,从而影响了产品性能的稳定性 PowerFrame 结构特点 高速冲压锻造 优劣势 保留了铅自身的结构完整性——通过滚筒四次压制——增强了板栅优良的面朝久性 全程电脑化的工艺降低了可变性,提高了产品的一惯性 板栅少使用20%的能源,使流程更环保 汽车用铅酸蓄电池产品命名规则 铅酸蓄电池产品命名标准 由于产地的不同,铅酸蓄电池的产品命名遵循着不同的标准。通常而言包含如下的一些工业标准。 ICE:Intemational Electrotechnical Commission 国际电工委员会 BCI:Battery Council Intemational 国际蓄电池协会

聚光光伏发电系统的技术

聚光光伏发电系统的技术 摘要:聚光光伏发电系统的技术 关键字:CPV, 聚光光伏发电系统, 原理, 单晶硅 一、前言 太阳能发电系统的价格一直居高不下!主要原因是因为太阳能的密度低!太阳照射到地面上的平均光强为1千瓦/平米;单晶硅的转化率可以达到23%,多晶可以达到16%,薄膜只能可以达到8%。转换效率最高的砷化镓电池片能到35%以上,但是用砷化镓制造的太阳能发电系统整体转换效率只有25%左右。 所以为了降低太阳能发电系统的价格,增加太阳光强是一个好的解决办法,要想增大光强需要用凸透镜或者菲尼尔透镜或者反光板把光聚集起来;这样就能大大降低硅与砷化镓的使用量,从而降低太阳能发电系统的价格;这就是CPV(聚光光伏发电系统)的由来。来源:大比特半导体器件网 二、CPV系统的技术难点 CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做出特别稳定且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越高造价就越便宜但是使用聚光的方式就会出现以下问题。 1、让单晶硅承受较高倍聚光 虽然砷化镓可以承受1000倍的光强,但是现在砷化镓价格昂贵,并且砷化镓中的砷是剧毒物质,不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。为了达到10倍的聚光必须用特制的单晶硅。 2、散热: 普通的硅光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下时间一长就会起泡,在5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。来源:大比特半导体器件网

聚光型太阳能电池技术及现状

太阳能光电工程学院 《太阳能电池及其应用》 课程设计报告书 题目:聚光型太阳能电池技术及现状 姓名: 设计成绩: 指导教师: 摘要 本文概述了目前全球能源现状,以及聚光型太阳能电池的市场背景,表明了太阳能发电的重要性和前景,详细介绍了聚光型太阳能电池的技术、现状以及与普通太阳能电池的区别,并对普通太阳能电池与聚光型太阳能电池发电所需发电成本进行比较。详细介绍了塔式、槽式、碟式太阳能发电的原理及优缺点。

指出电池冷却技术的必要性和冷却技术。同时指出聚光型太阳能电池发展面临的困难和解决措施,以及今后的发展方向。通过改造电池制造工艺、提高转换效率、聚焦技术的应用等手段,可以有效降低光伏发电成本,也是国内外本领域研究的热点。其中采用聚焦技术是一个有效地方法。对常规太阳能电池进行聚光,使太阳电池工作在几倍乃至几百倍的光强条件下,一定程度上克服了太阳能量的分散性,可以提高单位面积太阳电池的输出功率,大大降低光伏发电成本,具有很好应用前景。 关键词:聚光型太阳能电池技术措施 目录 绪言 (2) 1.聚光型太阳能原理及技术 (3)

1.1聚光型太阳能电池的原理 (3) 1.2聚光型太阳能电池的关键技术 (4) 1.3塔式太阳能发电技术 (5) 1.4槽式太阳能发电 (6) 1.5碟式太阳能发电 (7) 1.6电池的冷却技术 (7) 2.产品的的核心优势 (10) 2.1光电转换效率高 (10) 2.2单位面积输出功率高 (10) 3.现状与展望 (10) 3.1我国聚光型太阳能电池的现状 (10) 3.2展望 (11) 参考文献 (12) 绪言 随着经济的发展,社会的进步,人们对能源提出了越来越高的要求,由于全球气候变迁、空气污染问题以及资源的日趋短缺之故,传统的燃料能源正在一天天减少,与此同时全球还有约20亿人得不到正常的能源供应。寻找新能源成

砷化镓高倍聚光电池介绍

砷化镓太阳能光伏电池发展现状分析 作者:佚名日期:2009年09月07日来源:不详【字体:大中小】我要投稿近年来,基于硅材料的太阳能电池价格起伏不定,光伏产业巨大的泡沫由于经济危机而破裂,对产业的健康发展产生了较大影响。聚光型太阳电池可以减小对原料在量上的依赖程度,进而对降低光伏系统建造成本和产业多元化发展起到积极作用。较之薄膜电池和普通晶体硅电池,聚光型太阳电池的光电转化率较高,因此受到研究者的高度重视一、砷化镓电池基本介绍近年来,太阳能光伏发电在全球取得长足发展。常用光伏电池一般为多晶硅和单晶硅电池,然而由于原材料多晶硅的供应能力有限,加上国际炒家的炒作,导致国际市场上多晶硅价格一路攀升,最近一年来,由于受经济危机影响,价格有所下跌,但这种震荡的现状给光伏产业的健康发展带来困难。目前,技术上解决这一困难的途径有两条:一是采用薄膜太阳电池,二是采用聚光太 一、砷化镓电池基本介绍 近年来,基于硅材料的太阳能电池价格起伏不定,光伏产业巨大的泡沫由于经济危机而破裂,对产业的健康发展产生了较大影响。聚光型太阳电池可以减小对原料在量上的依赖程度,进而对降低光伏系统建造成本和产业多元化发展起到积极作用。较之薄膜电池和普通晶体硅电池,聚光型太阳电池的光电转化率较高,因此受到研究者的高度重视[1]。 聚光太阳电池是用凸透镜或抛物面镜把太阳光聚焦到几倍、几十倍,或几百倍甚至上千倍,然后投射到太阳电池上。这时太阳电池可能产生出相应倍数的电功率。它们具有转化率高,电池占地面积小和耗材少的优点。高倍聚光电池具有代表性的是砷化镓(GaAs)太阳电池。 二、砷化镓电池与硅光电池的比较[3] 1、光电转化率: 砷化镓的禁带较硅为宽,使得它的光谱响应性和空间太阳光谱匹配能力较硅好。目前,硅电池的理论效率大概为23%,而单结的砷化镓电池理论效率达到27%,而多结的砷化镓电池理论效率更超过50%。 2、耐温性 常规上,砷化镓电池的耐温性要好于硅电池,有实验数据表明,砷化镓电池在250℃的条件下仍可以正常工作,但是硅电池在200℃就已经无法正常运行。

聚光光伏发电系统的技术难点分析(20210212095808)

聚光光伏发电系统的技术难点分析 因为太阳能的密度低!太阳照射到地面上的平均光强为1千瓦/平米:单晶硅的转化率可以达到23%,多晶可以达到16%,薄膜只能可以达到8眼转换效率最高的碎化稼电池片能到35$以上,但是用揶化稼制造的太阳能发电系统整体转换效率只有25%左右。 所以为了降低太阳能发电系统的价格,增加太阳光强是一个好的解决办法,要想增大光强需要用凸透镜或者菲尼尔透镜或者反光板把光汇聚起来:这样就能大大降低硅与碎化镣的使用量,从而降低太阳能发电系统的价格;这就是CPV(聚光光伏发电系统)的由来。 CPV系统的技术难点 CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做岀特别稳立且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越髙造价就越便宜但是使用聚光的方式就会出现以下问题。 1、让单晶硅承受较高倍聚光 虽然砌化稼可以承受1000倍的光强,但是现在呻化稼价格昂贵,并且碑化繚中的碎是剧毒物质,不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3 到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。为了达到10 倍的聚光必须用特制的单晶硅。 2、散热: 普通的硅led/'' target二''_blank'' >光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下时间一长就会起泡,任5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。 如果太阳能电池板使用铝或者铜制的散热片进行自然散热,需要大量的散热片,造价特别贵,贵到比硅光片还要贵;如果使用强制风冷,就要使用大量的电能,得不偿失, 并且风扇的寿命与可靠性不高,要想达到高可靠性必须有错误检査与冗余设置,这样就会成几倍增加造价,如果在夏天的中午风扇坏了,整个硅光电池板有可能被彻底烧坏。如果使用水冷除了

国内外太阳能高倍聚光光伏发电技术的比较

国内外太阳能高倍聚光光伏发电技术的比较 日前,美国Semprius公司宣布制成全球效率最高的太阳能高倍聚光光伏发电(CPV)模组,该模组采用的是微小三结砷化镓芯片,芯片制程采用基板复用技术,1100倍聚光比,无专门散热系统,效率达到33.9%,批量生产的价格折合到太阳能高倍聚光光伏发电后的上网电价会低于0.1美元/度。Semprius公司还特意声明他们的技术没有拿到政府的任何补贴,他们的产品可以竞争过中国制造的廉价太阳能电池板,该公司在今年6月开始量产(详见21世纪新能源网2012年2月8号的报道“Semprius宣布制成世界上最高效率太阳能电池板33.9%”)。这是即常州旭王新能源有限公司宣称在今年2月23号推出平价上网太阳能高倍聚光光伏电站后(详见21世纪新能源网2012年元月26号的报道“与火力发电同价的新型高倍聚光太阳能光伏电站”)又一家采用CPV技术生产光伏电站今年可以达到平价上网电价的公司。对此,我们专门资询了常州旭王新能源有限公司的总经理jimzhu先生,他说:“Semprius公司的太阳能高倍聚光电池模组达到33.9%的效率说明该公司(CPV)芯片技术水平很高并且和光学系统配合的很好(国内公司目前的水平最多做到31%,而批量生产的水平更是只有25-28%),我们可以通过报道来分析国内和国外在太阳能高倍聚光光伏发电模组技术上的差距。 1.Semprius公司采用了芯片基板复用技术,此项技术可以将太阳能砷化镓芯片的制造成本降低约20%,而我们国内的芯片生产厂目前还不具备此技术; 2.美国半导体太阳能砷化镓芯片的量产效率目前都在40%以上,而国内大概做到38%; 3.Semprius公司在芯片和光学玻璃的配合上,除了面积比例和图形相对应外,该公司可能还采用了半导体芯片设计工艺和光学系统特性的配合技术。我们国内公司大都仅采用买现成芯片再配光学系统的设计方法,甚至很多公司都不知道还有芯片工艺和不同光学系统特性的配合技术,因此无从谈起应用了; 4.在太阳能高倍聚光光伏模组芯片应用技术中,国际上存在向大芯片或小芯片两个方向发展的技术路线。采用小芯片的特点是模组薄重量轻,无需专门的散热系统,电站系统用料较少,在生产中可以采用现成的LED和半导体封装设备,做到全自动大规模生产,无需专门新的生产设备。但是小芯片对集成电路的生产工艺要求高一些,同时,由于切割线密集,芯片面积会有些损失,Semprius公司依仗其芯片技术的优势,采用的是小芯片模组方案。国内公司由于在半导体芯片上的技术和认识上的差距问题,大多选用朝大芯片大系统方向发展; 5.国外光学系统采用的材料可能好,设计技术成熟,而量产价格确比国内低很多 综上所述,太阳能高倍聚光光伏发电技术国内与国外比较最主要的差距在化合物半导体砷化镓芯片生产技术上,高效率的芯片再加上成熟的光学系统以及采用微小芯片聚光系统省材料的特点,使得国内和国外在太阳能高倍聚光光伏电站系统上相对应的材料成本相差在20-30%左右。” 谈及Semprius公司和常州旭王新能源有限公司比较时,jimzhu先生说:“Semprius公司和常州旭王新能源有限公司是两家很有特点的公司,Semprius公司的专长在CPV系统太阳能砷化镓芯片上,而常州旭王新能源有限公司则是国内唯一拥有CPV系统大芯片玻璃双反射光学技术和小芯片玻璃菲涅尔光学技术的公司,虽然芯片在CPV系统中占了约20%的比重,而光学只占了约13%的比重,但此两项无疑都属于CPV系统的核心技术,而常州旭王新能源有限公司更是难得的采用全玻璃光学技术以保证系统寿命。常州旭王新能源有限公司在CPV系统中,从芯片开发.芯片封装.散热方案.模组结构.支架系统.跟踪机构等都拥有自己的专有技术,在CPV系统的大芯片和小芯片方向上都有自己完整的低成本解决方案。同时, 公司初期已考虑到在CPV系统芯片技术进步过程中存在发电效率提升的问题,并有相对应的解决方法。常州旭王新能源有限公司是去年成立的完全个人合股的小公司,公司至今为止没有得到过政府的任何资助和扶持。Semprius公司的目标是能够竞争过中国制造的廉价太阳能电池板,而常州旭王新能源有限公司的目标是替代传统能源,两家公司都是以年产100兆瓦作为达标的规模。”jimzhu先生说:“公司设立时谈及我们目标,没人能相信,现在终于有了同样的公司出来讲话,我们相信还有公司没讲话。我们希望通过我们的努力,在CPV领域上不要输国外太多。同时希望那些准备大力投资火电的人,能够认真审视一下自己的方案,2015年太阳能光伏或光热发电技术将会达到替代传统能源的水平,自己不要因后期污染环境和浪费

相关主题
文本预览
相关文档 最新文档