IGBT开关的导通与关断特性
- 格式:rtf
- 大小:25.88 KB
- 文档页数:1
IGBT的结构与工作原理详解一、IGBT的结构图1所示为一个N沟道增强型绝缘栅双极晶体管结构,N+区称为源区,附于其上的电极称为源极。
N+区称为漏区。
器件的控制区为栅区,附于其上的电极称为栅极。
沟道在紧靠栅区边界形成。
在漏、源之间的P型区(包括P+和P-区,沟道在该区域形成),称为亚沟道区(Subchannel region)。
而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。
IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。
当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。
二、IGBT的工作特性1、静态特性IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。
输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。
它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。
在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。
如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。
它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。
在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。
变频器中IGBT模块的作用
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管.是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGB T 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。
当MOS FET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。
反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。
一种IGBT驱动电路的设计IGBT的概念是20世纪80年代初期提出的..IGBT具有复杂的集成结构;它的工作频率可以远高于双极晶体管..IGBT已经成为功率半导体器件的主流..在10~100 kHz的中高压大电流的范围内得到广泛应用..IGBT进一步简化了功率器件的驱动电路和减小驱动功率..1 IGBT的工作特性..IGBT的开通和关断是由栅极电压来控制的..当栅极施以正电压时;MOSFET内形成沟道;并为PNP晶体管提供基极电流;从而使IGBT导通..此时从N+区注入到N-区的空穴少子对N-区进行电导调制;减小Ⅳ区的电阻R dr ;使阻断电压高的IGBT也具有低的通态压降..当栅极上施以负电压时..MOSFET内的沟道消失;PNP晶体管的基极电流被切断;IGBT即被关断..在IGBT导通之后..若将栅极电压突然降至零;则沟道消失;通过沟道的电子电流为零;使集电极电流有所下降;但由于N-区中注入了大量的电子和空穴对;因而集电极电流不会马上为零;而出现一个拖尾时间..2 驱动电路的设计2.1 IGBT器件型号选择1IGBT承受的正反向峰值电压考虑到2-2.5倍的安全系数;可选IGBT的电压为1 200 V..2IGBT导通时承受的峰值电流..额定电流按380 V供电电压、额定功率30 kVA容量算..选用的IGBT型号为SEMIKRON公司的SKM400GA128D..2.2 IGBT驱动电路的设计要求对于大功率IGBT;选择驱动电路基于以下的参数要求:器件关断偏置、门极电荷、耐固性和电源情况等..门极电路的正偏压VGE负偏压-VGE和门极电阻RG的大小;对IGBT的通态压降、开关时间、开关损耗、承受短路能力以及dv /dt电流等参数有不同程度的影响..门极驱动条件与器件特性的关系见表1..栅极正电压的变化对IGBT的开通特性、负载短路能力和dVcE/dt电流有较大影响;而门极负偏压则对关断特性的影响比较大..在门极电路的设计中;还要注意开通特性、负载短路能力和由dVcE/dt 电流引起的误触发等问题见表1..表1 IGBT门极驱动条件与器件特性的关系由于IGBT的开关特性和安全工作区随着栅极驱动电路的变化而变化;因而驱动电路性能的好坏将直接影响IGBT 能否正常工作..为使IGBT能可靠工作..IGBT对其驱动电路提出了以下要求..1向IGBT提供适当的正向栅压..并且在IGBT导通后..栅极驱动电路提供给IGBT的驱动电压和电流要有足够的幅度;使IGBT的功率输出级总处于饱和状态..瞬时过载时;栅极驱动电路提供的驱动功率要足以保证IGBT不退出饱和区..IGBT导通后的管压降与所加栅源电压有关;在漏源电流一定的情况下;V GE越高;V DS傩就越低;器件的导通损耗就越小;这有利于充分发挥管子的工作能力..但是; V GE并非越高越好;一般不允许超过20 V;原因是一旦发生过流或短路;栅压越高;则电流幅值越高;IGBT损坏的可能性就越大..通常;综合考虑取+15 V为宜..2能向IGBT提供足够的反向栅压..在IGBT关断期间;由于电路中其他部分的工作;会在栅极电路中产生一些高频振荡信号;这些信号轻则会使本该截止的IGBT处于微通状态;增加管子的功耗..重则将使调压电路处于短路直通状态..因此;最好给处于截止状态的IGBT加一反向栅压f幅值一般为5~15 V;使IGBT在栅极出现开关噪声时仍能可靠截止..3具有栅极电压限幅电路;保护栅极不被击穿..IGBT栅极极限电压一般为+20 V;驱动信号超出此范围就可能破坏栅极..4由于IGBT多用于高压场合..要求有足够的输人、输出电隔离能力..所以驱动电路应与整个控制电路在电位上严格隔离;一般采用高速光耦合隔离或变压器耦合隔离..5IGBT的栅极驱动电路应尽可能的简单、实用..应具有IGBT的完整保护功能;很强的抗干扰能力;且输出阻抗应尽可能的低..2.3 驱动电路的设计隔离驱动产品大部分是使用光电耦合器来隔离输入的驱动信号和被驱动的绝缘栅;采用厚膜或PCB工艺支撑;部分阻容元件由引脚接入..这种产品主要用于IGBT的驱动;因IGBT具有电流拖尾效应;所以光耦驱动器无一例外都是负压关断..M57962L是日本三菱电气公司为驱动IGBT设计的厚膜集成电路;实质是隔离型放大器;采用光电耦合方法实现输入与输出的电气隔离;隔离电压高达2 500 V;并配置了短路/过载保护电路..M57962L可分别驱动600 V/200 A和600 V/400 A级IGBT模块;具有很高的性价比..本次课题设计中选用的IGBT最大电流400 A考虑其他隔离要求及保护措施;选用了M57962L设计了一种IGBT驱动电路..图1为M57962L内部结构框图;采用光耦实现电气隔离;光耦是快速型的;适合高频开关运行;光耦的原边已串联限流电阻约185 Ω;可将5 V的电压直接加到输入侧..它采用双电源驱动结构;内部集成有2 500 V高隔离电压的光耦合器和过电流保护电路、过电流保护输出信号端子和与TTL电平相兼容的输入接口;驱动电信号延迟最大为1.5us..图1 M57962L的结构框图当单独用M57962L来驱动IGBT时..有三点是应该考虑的..首先..驱动器的最大电流变化率应设置在最小的RG电阻的限制范围内;因为对许多IGBT来讲;使用的R G 偏大时;会增大t don 导通延迟时间; t doff截止延迟时间;t r上升时间和开关损耗;在高频应用超过5 kHz时;这种损耗应尽量避免..另外..驱动器本身的损耗也必须考虑..如果驱动器本身损耗过大;会引起驱动器过热;致使其损坏..最后;当M57962L被用在驱动大容量的IGBT时;它的慢关断将会增大损耗..引起这种现象的原因是通过IGBT的G res反向传输电容流到M57962L栅极的电流不能被驱动器吸收..它的阻抗不是足够低;这种慢关断时间将变得更慢和要求更大的缓冲电容器应用M57962L设计的驱动电路见图2..图2 IGBT驱动电路电源去耦电容C2 ~C7采用铝电解电容器;容量为100 uF/50 V;R1阻值取1 kΩ;R2阻值取1.5kΩ;R3取5.1 kΩ;电源采用正负l5 V电源模块分别接到M57962L的4脚与6脚;逻辑控制信号IN经l3脚输入驱动器M57962L..双向稳压管Z1选择为9.1 V;Z2为18V;Z3为30 V;防止IGBT的栅极、发射极击穿而损坏驱动电路;二极管采用快恢复的FR107管..2.4 栅极驱动电阻的选择使用M57962L;必须选择合适的驱动电阻..为了改善栅极控制脉冲的前后沿陡度和防止振荡;减小集电极电流的上升率di/dt;需要在栅极回路中串联电阻RG;若栅极电阻过大;则IGBT的开通与关断能耗均增加;若栅极电阻过小则使di c/dt 过大可能引发IGBT的误导通;同时R..上的能耗也有所增加..所以选择驱动电阻阻值时;要综合考虑这两方面的因素;并防止输出电流;IOP超过极限值5 A.RG 的选取可以依据公式:对大功率的IGBT模块来说;RGMIN数值一般按下式计算:这是因为对于大功率的IGBT模块;为了平衡模块内部栅极驱动和防止内部的振荡;模块内部的各个开关器件都会包含有栅极电阻器R GINT ;R GINT数值视模块种类不同而不同;一般在0.75—3Ω之间;而f的数值则依靠栅极驱动电路的寄生电感和驱动器的开关速度来决定;所以获得R GMIN的最佳办法就是在改变R G时监测I OP;当I OP达到最大值时;RG 达到极限值R GMIN ..但在使用中应注意;R G不能按前面的公式计算;而要略大于R GMIN ..如R G过小会造成IGBT栅极注入电流过大;使IGBT饱和;无法关断;即在驱动脉冲过去的一段时间内IGBT仍然导通..本设计中要驱动IGBT为大电流的功率器件;所以在选择R G时综合上述的要求;选取RG为3.5Ω ..3 结束语本设计电路已经成功应用在助航灯恒流调光器电源中;取得较好的实用效果..IGBT驱动电路的作用及IGBT对驱动电路的要求IGBT驱动电路的作用:IGBT驱动电路的作用主要是将单片机脉冲输出的功率进行放大;以达到驱动IGBT功率器件的目的..在保证IGBT器件可靠、稳定、安全工作的前提;驱动电路起到至关重要的作用..IGBT的工作特性:IGBT的等效电路及符合如图1所示;IGBT由栅极正负电压来控制..当加上正栅极电压时;管子导通;当加上负栅极电压时;管子关断..IGBT具有和双极型电力晶体管类似的伏安特性;随着控制电压UGE的增加;特性曲线上移..开关电源中的IGBT通过UGE电平的变化;使其在饱和与截止两种状态交替工作..IGBT对驱动电路的要求:1提供适当的正反向电压;使IGBT能可靠地开通和关断..当正偏压增大时IGBT通态压降和开通损耗均下降;但若UGE过大;则负载短路时其IC随UGE增大而增大;对其安全不利;使用中选UGEν15V为好..负偏电压可防止由于关断时浪涌电流过大而使IGBT误导通;一般选UGE=-5V为宜..2IGBT的开关时间应综合考虑..快速开通和关断有利于提高工作频率;减小开关损耗..但在大电感负载下;IGBT的开频率不宜过大;因为高速开断和关断会产生很高的尖峰电压;及有可能造成IGBT自身或其他元件击穿..3IGBT开通后;驱动电路应提供足够的电压、电流幅值;使IGBT在正常工作及过载情况下不致退出饱和而损坏..4IGBT驱动电路中的电阻RG对工作性能有较大的影响;RG较大;有利于抑制IGBT的电流上升率及电压上升率;但会增加IGBT的开关时间和开关损耗;RG较小;会引起电流上升率增大;使IGBT误导通或损坏..RG的具体数据与驱动电路的结构及IGBT的容量有关;一般在几欧~几十欧;小容量的IGBT其RG值较大..5驱动电路应具有较强的抗干扰能力及对IG2BT的保护功能..IGBT的控制、驱动及保护电路等应与其高速开关特性相匹配;另外;在未采取适当的防静电措施情况下;G—E断不能开路..。
IGBT的简介及IGBT在驱动方面的应用尚彤华北电力大学研电1302班学号:1132201006The introduction of the IGBT and its application in motor drivingNorth China Electric Power UniversityABSTRACT: IGBT (Insulated Gate Bipolar Transistor), insulated gate bipolar transistor, is a BJT (bipolar transistor) and MOS (insulated gate FET) composite full-controlled voltage-driven power semiconductor devices, both MOSFET GTR high input impedance and low conduction voltage drop of both worlds. GTR saturated pressure drop, the carrier density, but the drive current is larger; MOSFET drive power is small, fast switching speed, but the conduction voltage drop large carrier density. IGBT combines the advantages of these two devices, drive power is small and saturated pressure drop. Very suitable for DC voltage of 600V and above converter systems such as AC motor, inverter, switching power supply, electric lightingKEY WORDS:IGBT, full-controlled, motor, inverter摘要: IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
详细IGBT的开通过程(IGBT结构及工作原理)IGBT开通过程的分析IGBT作为具有开关速度快,导通损耗低的电压控制型开关器件被广泛应用于高压大容量变频器和直流输电等领域。
现在IGBT的使用比较关注的是较低的导通压降以及低的开关损耗。
作为开关器件,研究它的开通和关断过程当然是必不可少的,今天我们就来说说IGBT的开通过程。
一开始我们简单介绍过IGBT的基本结构和工作原理,不同的行业对使用IGBT时,对于其深入的程度可能不一样,但是作为一个开关器件,开通和关断的过程,我觉得有必要了解一下。
随着载流子寿命控制等技术的应用,IGBT关断损耗得到了明显改善; 此外,大功率IGBT 器件内部续流二极管的反向恢复过程,极大地增加了IGBT 的开通损耗,因此,IGBT的开通过程越来越引起重视。
分析IGBT 在不同工况条件下的开关波形,对器件华北电力大学学报2017 的开通损耗、可能承受的电气应力、电磁干扰噪声等进行评估,为驱动电路进行优化提供指导,从而改善IGBT 的开通特性。
由于实际运用中,我们遇到的大多负载都属于感性负载,所以今天我们就基于感性负载的情况下聊聊IGBT的开通过程,从IGBT 阻断状态下的空间电荷分布开始分析,研究了IGBT 输入电容随栅极电压变化的关系,揭示了栅极电压密勒平台形成的机理,分析了驱动电阻对栅极电压波形的影响。
研究了IGBT 集电极电流的上升特点; 分析了IGBT 集射极电压的下降特点,揭示了回路杂散电感对集射极电压的影响规律。
02IGBT的基本结构前面我们也简单的讲过了IGBT的基本结构,IGBT是由双极型功率晶体管(高耐压、大容量)和MOSFET(高开关速度)构成,所以IGBT具有了两种器件的特性,高耐压、大电流、高开关速度。
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V 及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+ 区称为源区,附于其上的电极称为源极。
N+ 区称为漏区。
器件的控制区为栅区,附于其上的电极称为栅极。
沟道在紧靠栅区边界形成。
在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。
而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。
反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。
IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。
当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。
IGBT 的工作特性包括静态和动态两类:1 .静态特性IGBT 的静态特性主要有伏安特性、转移特性和开关特性。
IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。
IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
目录结构工作特性发展历史输出特性与转移特性模块简介等效电路结构工作特性发展历史输出特性与转移特性模块简介等效电路展开编辑本段结构IGBT结构图左边所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。
P+ 区称为漏区。
器件的控制区为栅区,附于其上的电极称为栅极。
沟道在紧靠栅区边界形成。
在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。
而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。
附于漏注入区上的电极称为漏极。
IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。
反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。
IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。
当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。
IGBT的工作原理和工作特性IGBT 的开关作用是通过加正向栅极电压形成沟道,给 PNP 晶体管提供基极电流,使 IGBT 导通。
反之,加反向门极电压消除沟道,流过反向基极电流,使 IGBT 关断。
IGBT 的驱动方法和 MOSFET 基本相同,只需控制输入极 N 一沟道 MOSFET ,所以具有高输入阻抗特性。
当 MOSFET 的沟道形成后,从 P+ 基极注入到 N 一层的空穴(少子),对 N 一层进行电导调制,减小 N 一层的电阻,使 IGBT 在高电压 时,也具有低的通态电压。
IGBT 的工作特性包括静态和动态两类:1.静态特性 IGBT 的静态特性主要有伏安特性、转移特性和 开关特性。
IGBT 的伏安特性是指以栅源电压 Ugs 为参变量时,漏极电流与 栅极电压之间的关系曲线。
输出漏极电流比受栅源电压 Ugs 的控 制, Ugs 越高, Id 越大。
它与 GTR 的输出特性相似.也可分为饱和 区 1 、放大区 2 和击穿特性 3 部分。
在截止状态下的 IGBT ,正向电 压由 J2 结承担,反向电压由 J1 结承担。
如果无 N+ 缓冲区,则正反 向阻断电压可以做到同样水平,加入 N+ 缓冲区后,反向关断电压只 能达到几十伏水平,因此限制了 IGBT 的某些应用范围。
IGBT 的转移特性是指输出漏极电流 Id 与栅源电压 Ugs 之间的 关系曲线。
它与 MOSFET 的转移特性相同,当栅源电压小于开启电 压 Ugs(th) 时,IGBT 处于关断状态。
在 IGBT 导通后的大部分漏极电 流范围内, Id 与 Ugs 呈线性关系。
最高栅源电压受最大漏极电流限 制,其最佳值一般取为 15V 左右。
IGBT 的开关特性是指漏极电流与漏源电压之间的关系。
IGBT 处于导通态时,由于它的 PNP 晶体管为宽基区晶体管,所以其 B 值 极低。
尽管等效电路为达林顿结构,但流过 MOSFET 的电流成为 IGBT 总电流的主要部分。
IGBT驱动电路设计————————————————————————————————作者:————————————————————————————————日期:一种IGBT驱动电路的设计IGBT的概念是20世纪80年代初期提出的。
IGBT具有复杂的集成结构,它的工作频率可以远高于双极晶体管。
IGBT已经成为功率半导体器件的主流。
在10~100 kHz的中高压大电流的范围内得到广泛应用。
IGBT进一步简化了功率器件的驱动电路和减小驱动功率。
1 IGBT的工作特性。
IGBT的开通和关断是由栅极电压来控制的。
当栅极施以正电压时,MOSFET内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT导通。
此时从N+区注入到N-区的空穴(少子)对N-区进行电导调制,减小Ⅳ区的电阻R dr ,使阻断电压高的IGBT也具有低的通态压降。
当栅极上施以负电压时。
MOSFET内的沟道消失,PNP晶体管的基极电流被切断,IGBT即被关断。
在IGBT导通之后。
若将栅极电压突然降至零,则沟道消失,通过沟道的电子电流为零,使集电极电流有所下降,但由于N-区中注入了大量的电子和空穴对,因而集电极电流不会马上为零,而出现一个拖尾时间。
2 驱动电路的设计2.1 IGBT器件型号选择1)IGBT承受的正反向峰值电压考虑到2-2.5倍的安全系数,可选IGBT的电压为1 200 V。
2)IGBT导通时承受的峰值电流。
额定电流按380 V供电电压、额定功率30 kVA容量算。
选用的IGBT型号为SEMIKRON公司的SKM400GA128D。
2.2 IGBT驱动电路的设计要求对于大功率IGBT,选择驱动电路基于以下的参数要求:器件关断偏置、门极电荷、耐固性和电源情况等。
门极电路的正偏压VGE负偏压-VGE和门极电阻RG的大小,对IGBT的通态压降、开关时间、开关损耗、承受短路能力以及dv/dt电流等参数有不同程度的影响。
门极驱动条件与器件特性的关系见表1。
IGBT模块工作原理注意事项及检验方法一、IGBT模块工作原理:IGBT(Insulated Gate Bipolar Transistor)是一种功率半导体器件,结合了MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)和BJT(Bipolar Junction Transistor)的特点。
它具有MOSFET的高输入阻抗和低控制电流特性,以及BJT的低导通电压和高开关速度特性。
IGBT模块由一组IGBT晶片和驱动电路组成。
当输入电压施加在控制端时,驱动电路产生合适的电压和电流信号,控制晶片的导通与关断。
在导通状态下,IGBT模块能够承受大电流和高电压,而在关断状态下,则能够实现较低的能耗。
控制阶段:控制信号施加在控制端,通过驱动电路控制IGBT晶片的导通与关断。
开关阶段:当控制信号将IGBT晶片导通时,由于其结构上的PN结,会使其导通电压下降,其中增加的电流主要由N型补偿垒区供应。
导通阶段:一旦IGBT模块导通,其阻抗降低,电流将大量通过。
在导通状态下,其阻抗几乎只取决于N型补偿区的电阻。
关断阶段:当控制信号将IGBT晶片关断时,PN结上的耗尽层扩展,致使导通层的蓄积区被移出,电流迅速减少。
二、IGBT模块注意事项:1.温度控制:IGBT模块在高负载情况下产生较大的热量,需要结合设计要求和工况要求,进行散热措施,以防止超温。
2.静电防护:IGBT晶片非常敏感,需要采取静电防护措施,如使用防静电工作台、穿着导电手套等。
3.输入电压限制:IGBT模块的输入电压有一定的限制范围,超过此范围可能导致损坏。
因此,在使用时需要注意输入电压的范围。
4.输入信号控制:控制端输入信号的电压和电流要在规定范围内,以保证IGBT模块的正常工作。
5.导通和关断速度:IGBT模块的导通和关断速度会影响其性能,因此需要选择合适的驱动电路和控制信号。
6.绝缘耐压:IGBT模块需要具备良好的绝缘性能,以保证在高压环境下的安全性能。
详解IGBT开关过程IGBT的开关过程主要是由栅极电压VGE控制的,由于栅极和发射极之间存在着寄生电容艮,因此IGBT的开通与关断就相当于对CGE 进行充电与放电。
假设IGBT初始状态为关断状态,即VGE为负压VGC-,后级输出为阻感性负载,带有续流二极管。
由于寄生参数以及负载特性的影响,IGBT的实际开通与关断过程比较复杂,如图1为IGBT的开通关断过程示意图,图中栅极驱动波形较为理想化,集电极电流以及集电极-发射极电压的波形大致上是实际波形,只有细节被理想化。
图1IGBT开关时间示意图表1中列出了IGBT开关时间的定义,之后是对IGBT开关各个阶段的具体介绍。
开通时间tonICBT开通时,VGE上升到0V后,VCE下降到最大值10%时为止的时间开通延时时间td(on)IGBT开通时,从集电极电流上升到最大值的10%时开始,到VCE 下降到最大值的10%为止的时间上升时间trIGBT开通时,从集电极电流上升到最大值的10%时开始,到达90%为止的时间关断时间toffIGBT关断时,从VCE下降到最大值的90%开始,到集电极电流在下降电流的切线上下降到10%为止的时间下降时间tfIGBT关断时,集电极电流从最大值的90%开始,在下降电流的切线上下降到10%为止的时间拖尾时间tt到内置二极管中的反向恢复电流消失为止所需要的时间拖尾电流It到内置二极管中正方向电流断路时反方向流动的电流的峰值表1IGBT开关时间定义1开通时间ton开通时间还可以分为两个部分:开通延迟时间td(on)与上升时间tr,在此时间内IGBT主要工作在主动区域。
当栅极和发射极之向被加上一个阶跃式的正向驱动电压后,便对CGE开始充电,VGE开始上升,上升过程的时间常数由CGE和栅极驱动网路的电阻所决定,一旦VGE达到开启电压VGE(th)后,集电极电流IC则开始上升。
从VGE上升至VGE(th)开始,到IC上升至负载电流IL的10%为止,这段时间被定义为开通延迟时间td(on)。
IGBT知识,这次说明⽩了!IGBT的基本原理IGBT的基本原理IGBT(Insulated Gate Bipolar Transistor, 绝缘栅双极晶体管)是⼀种少数载流⼦器件,具有输⼊阻抗⾼,电流承载能⼒强的特点.从电路设计者的⾓度来看,IGBT具有MOS器件的输⼊特性且有双极器件的电流输出能⼒,是⼀种电压控制型双极型器件.IGBT被发明的⽬的是为了综合功率MOSFET与BJT两种器件的优点.可以讲IGBT是功率MOSFET与BJT合⼆为⼀的化⾝.两者优点集中在⼀体从⽽能有优异的性能.IGBT适合于功率电路中的很多种应⽤,尤其是PWM驱动,三相驱动这些需要⾼动态控制与低噪⾳的应⽤场景.其他应⽤UPS,开关电源等等需要⾼开关频率的场景也适合使⽤IGBT.IGBT的特点是能提供⾼的动态性能,转换效率,同时具有低的可听到的噪⾳.它也适⽤于谐振模式的转换/逆变电路.有专门为低传导损耗与低开关损耗优化的IGBT器件.IGBT对于功率MOSFET与BJT的主要优点体现在如下⼏点:1.具有⾮常低的导通压降与优秀的导通电流密度.所以可以使⽤更⼩尺⼨的器件从⽽降低成本.2.因为栅极结构使⽤MOS管的同类设计,所以驱动功率⾮常⼩,驱动电路也很简单.与可控硅/BJT这些电流控制型器件来⽐,在⾼压与⾼电流应⽤场景,IGBT⾮常易于控制.3.与BJT相⽐具有更好的电流传导能⼒.在正向与反向隔离⽅⾯参数也更优秀.除了优点,IGBT也有它的不⾜之处:1.开关速度低于功率MOSFET,但是⾼于BJT.因为是少数载流⼦器件,集电极电流残余导致关断速度较慢.2.因为内部的PNPN型可控硅结构,有⼀定概率会锁死.IGBT的长处在于增强电压隔断的能⼒.⽐如说对于MOSFET,随着击穿电压的增加,导通电阻会增加⾮常快,原因在于为了提⾼击穿电压,漂移区的厚度与本⾝电阻必须增加.所以实践中,⼀般不会设计同时具有⾼电流承载能⼒与⾼击穿电压的MOSFET.⽽对于IGBT,因为在导通时有⾼度集中的注⼊少数载流⼦,漂移区的电阻⼤⼤减⼩.故此漂移区的正向压降仅仅与其厚度相关⽽与其本⾝的电阻相对独⽴.基本结构图1所⽰为使⽤DMOS⼯艺制作的典型的N通道的IGBT的简化原理图.此结构只是可能选⽤的多种结构之⼀.可以看出除了P+注⼊层,IGBT的硅交叉区与垂直功率MOSFET基本⼀样.在栅极区与N+源区的P阱,IGBT与MOSFET⼏乎没有区别.顶部的N+曾是S极或者发射极,底部的P+曾是D极或者集电极.如果在掺杂时使⽤相反的顺序,那么制作出来的就是P通道IGBT.IGBT因为NPNP的结构所以会有⼀个寄⽣的可控硅(thyristor).⼀般不希望此可控硅导通.图1 典型的N通道IGBT结构图某些IGBT在制造的时候没有加上N+缓冲层,被称为⾮穿型(NPT)IGBT.相对的有这个缓冲层的被称之为穿型(PT)IGBT.如果掺杂与此层厚度设计恰当,此层能⼤⼤提升整个器件的性能.尽管在外形上IGBT类似于MOSFET,但在实际⼯作中IGBT更加类似于BJT.这是因为P+的漏层(注⼊层)能将少数载流⼦注⼊N-漂移区从⽽导致的导通调制特性.图2 IGBT的等效电路从上述分析可以画出IGBT的等效电路图(图2).等效电路包含MOSFET,JFET,NPN与PNP三极管.PNP的集电极与NPN的基极相连.NPN的集电极通过JFET与PNP的基极相连.NPN与PNP代表了寄⽣的可控硅,这个可控硅会带来⼀个再⽣型的反馈回路.RB为NPN的BE结电阻,其作⽤是保证寄⽣可控硅不⾄于锁定从⽽保证IGBT不锁定.JFET代表的是任意相邻的两个IGBT之间的收缩电流.JFET在⼤多数电压范围存在,使得MOSFET保持在低压从⽽导致低的RDS(on)值.图3所⽰为IGBT的电路符号.三个极分别叫做集电极(C),栅极(G)与发射极(E).图3 IGBT的电路符号IXYS的产品同时包括NPT与PT型IGBT.两种类型的物理结构如图4所⽰.如前⽂所述,PT类型有⼀个额外的层.这个曾有两个主要功能:(i)避免因为因为⾼电压⽽导致的耗尽区扩展,从⽽避免了穿通型失效.(ii)因为P+集电区注⼊的空⽳部分在此层重新组合⽽减⼩了关断时的残余电流,从⽽缩短了关断的下降时间.NPT型的IGBT,具有同样的正向与反向击穿电压,适合于交流应⽤.PT型的IGBT,反向击穿电压低于正向击穿电压,适合于直流电路(因为直流电路中器件⽆须再反向承担电压).图4 NPT与PT型的IGBT结构表1:NPT与PT型的IGBT特性对⽐⼯作模式正向关断与导通模式如图1所⽰,当集电极-发射极加上正向电压且栅极与发射极短路,IGBT进⼊正向关断模式.此时J1与J3结正向偏置,J2反向偏置.J2两端的耗尽区部分地扩散⾄P基极与N漂移区.当将栅极与发射极之间的短路移除,并且对栅极加已⾜够的电压以使P基极区的硅反向,IGBT从正向关断模式转移⾄正向导通模式.此种模式下,N+发射极与N-漂移区之间形成⼀个导通通道.N+发射极的电⼦通过此通道流向N-漂移区.流向N-漂移区的电⼦使得N-漂移区的电位降低,⽽P+集电极/N-漂移区的结被正向偏置.从⽽⾼密度的少数载流⼦空⽳从P+集电极注⼊到N-漂移区.当注⼊的载流⼦密度远远⾼于背景密度时,在N-漂移区建⽴起被称作空⽳离⼦流条件的情形.此种空⽳离⼦流将电⼦从发射极吸引⾄发射极以维持局部电荷中和.如此在N-漂移区建⽴起某种空⽳与电⼦的分区集中.此种分区集中⼤⼤提⾼N-漂移区的导电性能.这种机制被称作N-漂移区的导通调制.反向关断模式当如图1所⽰在集电极与发射极之间加上负电压,J1反向偏置,其耗尽区扩散⾄N-漂移区.反向关断的击穿电压由P+集电极/N-漂移区/P基极所形成的开基极BJT决定.如果N-漂移区的掺杂不⾜,此器件将易于被击穿.要获得所需要的击穿电压,必须控制N-漂移区的电阻与厚度.要获取反向击穿电压与正向压降的具体参数,以下是计算N-漂移区的宽度公式:其中:LP: 少数载流⼦杂散长度Vm: 最⼤关断电压εo: ⾃由区的介电常数εs: 硅的介质常数q: 电荷ND: N漂移区的掺杂密度注意: ⼤多数应⽤中IGBT的反向关断⾮常罕见,⽽是⼀般使⽤反并⼆极管(FRED)输出特性图5所⽰为⼀个NPT-IGBT的正向输出特性图.这是⼀个曲线群,每条代表不同的栅极-发射极电压情况.集电极电流(IC)在VGE固定时为VCE的⼀个函数.图5 NPT-IGBT的I-V输出曲线需要注意的是0.7V的偏移电压.这是因为对于P+集电极的IGBT,会有⼀个额外的PN结.这个PN结使得IGBT的特性与MOSFET区分开来.传输特性传输特性指的是不同温度下,⽐如25度,125度,-40度时,ICE对于VGE变化的响应函数.如图6所⽰.给定温度下传输特性的梯度被称作该器件在该温度下的跨导(gfs).图6 IGBT的传输特性⼀般来说较低栅极电压下要获取⾼的电流能⼒,希望gfs的值⽐较⼤.通道与栅极的结构决定了gfs 的值.gfs与RDS(on)均由通道的长度来控制,⽽通道的长度由P基与N+发射极的扩散深度的差值来决定.传输特性曲线上的切线决定了器件的阈值/门限电压(VGE(th)).图7 某IGBT的跨导特性图7所⽰为某IGBT的跨导特性(IC-gfs).当集电极电流增加,gfs随之增加,但是随着集电极电流继续增加,gfs的增长曲线慢慢平缓.这是因为寄⽣MOSFET的饱和现象减缓了PNP三极管的基极的驱动电流的增加.开关特性IGBT的开关特性与MOSFET的开关特性⾮常相似.主要差别在于:由于N-漂移区会储存电荷会导致⼀个残余集电极电流.此残余电流增加了关断损耗也需要半桥电路中两个器件关断之间的死区时间相应增加.图8显⽰了开关特性的测试电路.图9显⽰了相应的开启与关断的电压电流波形.IXYS的IGBT产品在测试时使⽤15V到0V的栅极电压.为了降低开关损耗,建议在关断时给栅极加⼀个负电压(⽐如-15V).图8 开关特性测试电路IGBT的开关速度受限于寄⽣PNP三极管的基极的N-漂移区的少数载流⼦的⽣命周期.此区对于外部来讲是不可操作的,故此没有外部⼿段来增加移除此电荷的速度以提⾼开关速度.此电荷移除的唯⼀途径是在IGBT内部重新中和.此外增加N+缓冲区以收集少数载流⼦电荷能够增加此电荷的中和速度.图9 IGBT的开启关断电压电流波形Eon表⽰导通能量,是IC*VCE在从10%的ICE到90%的VCE区间的积分.导通能量的⼤⼩取决于续流⼆极管的反向恢复特性,所以如果IGBT当中包含续流⼆极管时⼀定要特别注意.Eoff表⽰关断能量,是IC*VCE在10%的VCE到90%的IC区间的积分.Eoff是IGBT的开关损耗的主要组成部分.锁死/锁定(Latch-up)在导通状态,IGBT内部电流⾛向如图10所⽰.从P+集电极注⼊N-漂移区的空⽳形成两个电流路径.空⽳中的⼀部分因为与MOSFET通道的电⼦中和⽽消失.其他部分的空⽳受电⼦的负电荷所吸引⾄反向层的附近,从外延穿过P层,在体欧姆电阻区形成压降.如果这个电压⾜够⼤,将正向偏置N+P 结,同时⼤量的电⼦从发射极注⼊⽽在寄⽣NPN三极管将被开启.如果这种现象发⽣寄⽣的NPN与PNP三极管将被同时导通,故此两个管⼦组成的可控硅将被锁定(Latch up),从⽽使整个IGBT发⽣锁定.⼀旦锁定发⽣,栅极电压将失去对集电极的电流的控制作⽤,此时唯⼀关闭IGBT的⽅法是强制电换向,就像真正的可控硅中的情形⼀样.图10 IGBT导通状态的电流流向如果此种锁定状态不能快速被终⽌,IGBT将因为过⼤的耗散功率⽽被烧毁.IGBT能通过的最⼤的不引起锁定的尖峰电流称之为(ICM).器件的数据⼿册中都会写明这个参数.超过此电流值,⾜够⼤的外围电压降就会激活可控硅从⽽导致锁定.安全⼯作区(Safe Operating Area,SOA)所谓的安全⼯作区是指的电流-电压两者围成的⼀个区间,此区间内器件能安全⼯作不⾄于被损坏.对于IGBT,此区间由最⼤的集电极-发射极电压VCE与集电极电流Ic定义,此区间内IGBT能安全运转不⾄被损坏.IGBT的安全⼯作区有如下类型:正向偏置安全⼯作区(FBSOA),反向偏置安全⼯作区(RBSOA)与短路安全⼯作区(SCSOA).正向偏置安全⼯作区(FBSOA)对于感性负载的应⽤来说,FBSOA是个重要的特性.由最⼤的集电极-发射极电压与饱和的集电极电流来决定.此种模式下,电⼦与空⽳通过漂移区移动,并维持⽐较⾼的集电极电压.漂移区的电⼦与空⽳的密度与当前电流密度的关系为:其中Vsat,n与Vsat,p分别为电⼦与空⽳的饱和漂移速度.漂移区的净正电荷为:此电荷决定了漂移区的电场分布.在稳态的正向关断条件下,漂移区的电荷等于ND.正向安全⼯作区间中,净电荷要远远⼤于ND,这是因为空⽳的密度远远⼤于电⼦流的密度.正向安全⼯作区的击穿电压为:反向偏置安全⼯作区(RBSOA)对于关断的瞬态分析来讲,RBSOA为重要的状态.能关断的电流限于IGBT的额定电流的两倍.⽐如某额定电流为1200A的IGBT能关断的最⼤电流为2400A.最⼤电流为关断时集电极与发射极之间尖峰电压的函数.VCE的峰值等于直流电压与LбdIC/dt的乘积.Lб为功率电路的杂散电感.RBSOA 下的最⼤电流IC与VCE的关系参见图11.图11 IGBT的反向安全⼯作区此模式下,栅极的偏置为0或者负电压,如此⼀来漂移区的电流仅仅通过空⽳来进⾏(N通道的IGBT).空⽳增加了漂移区的电荷,因此P基/N漂移区节点的电场增加了.此条件下空电荷区的净电荷为:其中Jc为集电极电流总和.RBSOA的雪崩电压为:短路安全⼯作区(SCSOA)对于⼯作在电机控制应⽤的器件,⼀个关键要求是能够在负载短路时安全关断.当电流超载,集电极的电流迅速上升直⾄器件能承受的极限.器件能在此条件下不⾄于损坏的条件就是能在控制电路检测到短路状态并关断器件之前将电流幅度限制在⼀个安全的级别.IGBT的集电极电流IC为栅极-发射极电压VGE与温度T的函数.图6所⽰的传输特性表明了给定VGE时最⼤的IC值.对于15V的VGE,其值限定为80A,⼤约是额定值的1.5倍.考虑到短路电流经常是额定电流的6-7倍,这个值算是⾮常⼩了.图12 SCSOA测试电路图12展⽰了⼀个SCSOA的测试电路.短路电感值决定了电路的⼯作模式.当此值为uH级别,电路⼯作模式类似于正常的感性负载开关.当IGBT开启,VCE降⾄饱和电压.IC以dIC/dt的速率增加,IGBT 逐渐饱和.当集电极电流⾼于2倍的额定电流时不允许关断操作,因为这样做是超出RBSOA的.如果短路发⽣,必须等待设备达到活跃⼯作区.必须在10us内关闭IGBT以免器件因为过热⽽损坏.。
IGBT开关的导通与关断特性.txt什么叫乐观派?这个。。。。。。就象茶壶一样,屁股被烧得红
红的,还有心情吹口哨。生活其实很简单,过了今天就是明天。一生看一个女人是不科学的,
容易看出病来。IGBT开关的导通与关断特性
IGBT
IGBT(Insulated Gate Bipolar Transistor),绝缘栅极型功率管,是由BJT(双极型三极管)
和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。应用于交流电机、
变频器、开关电源、照明电路、牵引传动等领域
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较
高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率
MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最
新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要
比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同
一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
导通
IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+
缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个
MOSFET驱动两个双极器件。基片的应用在管体的P+和N+ 区之间创建了一个J1结。
当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照
功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将
处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导
通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的
电流拓扑:一个电子流(MOSFET 电流); 空穴电流(双极)。
关断
当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何
情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始
后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断
时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子
的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问
题,特别是在使用续流二极管的设备上,问题更加明显。
鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动
性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理
想效应是可行的。