2013年广州一模理科数学试题+答案word版
- 格式:doc
- 大小:2.00 MB
- 文档页数:20
-1-番禺区2013年九年级数学综合训练试题(1)本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项: 1.答卷前,考生务必在答题卡第1、3、5页上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.) 1.实数3-的相反数是(※). (A )13-(B )13(C )3- (D )32. 下列计算正确的是(※).(A )437()=a a (B )538a a a += (C )448a a a ⋅= (D )3(2)32ab a b -=- 3. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是(※).4.若一元二次方程220x x m ++=有实数根,则m 的取值范围是(※). (A )12m ≤(B )m ≥1 (C )m ≤1 (D )1m <5.在我国社会科学院发布的2013年《社会蓝皮书》中公布,2012年1~9月,全国城镇新增就业人数为1024万人,就业形势稳定,农民工和大学生就业未出现紧张局面.将1024万人用科学记数法可表示为(※). (A) 1.24×710 (B )1.024×710 (C )1.024×810 (D )1.24×310 6.已知10a ++=,则a b +=(※).(A )8 (B )0 (C )8- (D )6 7.已知a b >,若c 为实数,则下列不等式中成立的是(※). (A )a c b c ->- (B )a c b c > (C )a b c c> (D )a c b c +<+(A ) (B ) (C ) (D )-2-8.如图,已知∠ABC =90°,AB =πr ,AB =2BC ,半径为r 的⊙O 从点A 出发,沿A →B →C 方向滚动到点C 时停止.则在此运动过程中,圆心O 运动的总路程为(※). (A )2r π (B )3r π (C )32r π(D )52r π9. 二次函数22y x x =--的图象如图所示,则函数值0y <时,自变量x 的取值范围是(※). (A )2x > (B )12x -<< (C )1x <- (D )0x <10.如图,菱形A B C D 和菱形E C G F 的边长分别为2和3,120A ∠=°,则图中阴影部分的面积是(※). (A )3 (B )2 (C (D 第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.若二次根式x -1有意义,则x 的取值范围是 . 12.方程22x x =-错误!未找到引用源。
2013届华附、省实、广雅三校广州一模后联合适应性考试理科数学一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3,4},{1,2},{2,4},()U U A B C A B ===⋃=则 ( )A .}2{B .}3{DC .}4,2,1{D.}4,1{2.已知函数()12f x x =-,若3(log 0.8)a f =,131[()]2b f =,12(2)c f -=,则( )A .a b c <<B .b c a <<C .c a b <<D .a c b <<3.下列命题不正确...的是 A .如果一个平面内的一条直线垂直于另一个平面内的任意直线,则两平面垂直; B .如果一个平面内的任一条直线都平行于另一个平面,则两平面平行; C .如果两条不同的直线在一平面内的射影互相垂直,则这两条直线垂直;D .如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行x1)<的图象的大致形状是 ( )5. 设A 1、A 2为椭圆)0(12222>>=+b a by a x 的左右顶点,若在椭圆上存在异于A 1、A 2的点P ,使得02=⋅PA ,其中O 为坐标原点,则椭圆的离心率e 的取值范围是( ) A 、)21,0( B 、 )22,0( C 、)1,21( D 、)1,22(6在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF的长度的取值范围为 A. 1⎫⎪⎭ B.1, 25⎡⎫⎪⎢⎣⎭ C. 1,⎡⎣ D.7. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为A. 0.0324B.0.0434C.0.0528D.0.05628.任意a 、R b ∈,定义运算⎪⎩⎪⎨⎧>-≤⋅=*.0 , ,0, ab b a ab b a b a ,则xe x xf *=)(的A.最小值为e -B.最小值为e 1-C.最大值为e1- D.最大值为e二、填空题:本大题共7小题,每小题5分,满分30分。
2013年广东省佛山市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设i为虚数单位,则复数等于()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以2﹣i,然后整理成a+bi(a,b∈R)的形式即可.解答:解:=.故选A.点评:本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.2.(5分))命题“∀x∈R,x2+1≥1”的否定是()A.∀x∈R,x2+1<1 B.∃x∈R,x2+1≤1 C.∃x∈R,x2+1<1 D.∃x∈R,x2+1≥1考点:V enn图表达集合的关系及运算;交、并、补集的混合运算.专题:规律型.分析:全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,结合已知中原命题“∀x∈R,都有有x2+1≥1”,易得到答案.解答:解:∵原命题“∀x∈R,有x2+1≥1”∴命题“∀x∈R,有x2+1≥1”的否定是:∃x∈R,使x2+1<1.故选C.点评:本题考查的知识点是命题的否定,其中熟练掌握全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,是解答此类问题的关键.3.(5分)(2013•佛山一模)已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=()A.2B.﹣2 C.8D.﹣8考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由向量的坐标运算易得的坐标,进而由可得它们的数量积为0,可得关于k的方程,解之可得答案.解答:解:∵=(1,2),=(0,1),∴=(1,4),又因为,所以=k﹣8=0,解得k=8,故选C点评:本题考查平面向量数量积和向量的垂直关系,属基础题.4.(5分)(2013•淄博一模)一个直棱柱被一平面截去一部分所得几何体的三视图如下,则几何体的体积为()A.8B.9C.10 D.11考点:由三视图求面积、体积.专题:计算题.分析:三视图复原的几何体是四棱柱去掉一个三棱锥,的几何体,结合三视图的数据,求出体积即可.解答:解:三视图复原的几何体是底面是正方形边长为2,棱长垂直底面高为3,上底面是一个梯形一边长为1,四棱柱去掉一个三棱锥,所以几何体的体积是:2×2×3﹣=11故选D.点评:本题考查由三视图求体积,考查空间想象能力,计算能力,是中档题.5.(5分)(2013•佛山一模)为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分别是、,则下列说法正确的是()A.>,乙比甲成绩稳定,应选乙参加比赛B.>,甲比乙成绩稳定,应选甲参加比赛C.<,甲比乙成绩稳定,应选甲参加比赛D.<,乙比甲成绩稳定,应选乙参加比赛考点:茎叶图;众数、中位数、平均数.专题:计算题.分析:根据茎叶图所给的两组数据,做出甲和乙的平均数,把两个人的平均数进行比较,得到乙的平均数大于甲的平均数,得到结论.解答:解:由茎叶图知,甲的平均数是=82,乙的平均数是=87∴乙的平均数大于甲的平均数,从茎叶图可以看出乙的成绩比较稳定,故选D.点评:本题考查两组数据的平均数和稳定程度,这是经常出现的一个问题,对于两组数据通常比较他们的平均水平和稳定程度,注意运算要细心.6.(5分)(2013•潮州二模)已知实数x,y满足,则目标函数z=2x﹣y的最大值为()A.﹣3 B.C.5D.6考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x﹣y对应的直线进行平移,可得当x=2,y=﹣1时,z取得最大值5.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(﹣1,﹣1),B(2,﹣1),C(0.5,0.5)设z=F(x,y)=2x﹣y,将直线l:z=2x﹣y进行平移,当l经过点B时,目标函数z达到最大值∴z最大值=F(2,﹣1)=5故选:C点评:题给出二元一次不等式组,求目标函数z=2x﹣y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.7.(5分)(2013•佛山一模)已知集合M={x||x﹣4|+|x﹣1|<5},N={x|a<x<6},且M∩N={2,b},则a+b=()A.6B.7C.8D.9考点:交集及其运算.专题:计算题.分析:集合M中的不等式表示数轴上到1的距离与到4的距离之和小于5,求出x的范围,确定出M,由M与N的交集及N,确定出a与b的值,即可求出a+b的值.解答:解:由集合M中的不等式,解得:0<x<5,∴M={x|0<x<5},∵N={x|a<x<6},且M∩N=(2,b),∴a=2,b=5,则a+b=2+5=7.故选B点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.(5分)(2013•佛山一模)对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.若函数f(x)=存在“和谐区间”,则a的取值范围是()D.(1,3)A.(0,1)B.(0,2)C.()考点:函数单调性的判断与证明;函数的值域.专题:压轴题;新定义;函数的性质及应用.分析:易得函数在区间[m,n]是单调的,由f(m)=m,f(n)=n可得故m、n是方程ax2﹣(a+1)x+a=0的两个同号的实数根,由△=(a+1)2﹣4a2>0,解不等式即可.解答:解:由题意可得函数f(x)=在区间[m,n]是单调的,所以[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),则f(m)=m,f(n)=n,故m、n是方程的两个同号的实数根,即方程ax2﹣(a+1)x+a=0有两个同号的实数根,注意到mn==1>0,故只需△=(a+1)2﹣4a2>0,解得<a<1,结合a>0,可得0<a<1故选A点评:本题考查函数单调性的判断和一元二次方程的根的分布,属基础题.二、填空题:必做题(9~13题)每小题5分.9.(5分)(2013•佛山一模)已知函数y=f(x)是奇函数,当x>0时,f(x)=log2x,则f(f())的值等于﹣1.考点:对数的运算性质;函数的值.专题:计算题;函数的性质及应用.分析:由已知可得f(﹣x)=﹣f(x),结合已知可求f()=﹣2,然后再由f(﹣2)=﹣f(2),代入已知可求解答:解:∵y=f(x)是奇函数,∴f(﹣x)=﹣f(x)∵当x>0时,f(x)=log2x,∴=﹣2则f(f())=f(﹣2)=﹣f(2)=﹣1故答案为:﹣1点评:本题主要考查了奇函数的性质的简单应用,属于基础试题10.(5分)(2013•淄博一模)已知抛物线x2=4y上一点P到焦点F的距离是5,则点P的横坐标是±4.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据点P到焦点的距离为5利用抛物线的定义可推断出P到准线距离也为5.利用抛物线的方程求得准线方程,进而可求得P的坐标.解答:解:根据抛物线的定义可知P到焦点的距离为5,则其到准线距离也为5.又∵抛物线的准线为y=﹣1,∴P点的纵坐标为5﹣1=4.将y=4 代入抛物线方程得:4×4=x2,解得x=±4故答案为:±4.点评:活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.11.(5分)(2013•佛山一模)函数y=sinx+sin(x﹣)的最小正周期为2π,最大值是.考点:两角和与差的正弦函数;诱导公式的作用.专题:计算题;三角函数的图像与性质.分析:利用两角和与差的正弦函数化简函数我一个角的一个三角函数的形式,然后直接求出函数的周期与最大值.解答:解:因为函数y=sinx+sin(x﹣)=sinx+sinx﹣cosx=sin(x﹣).所以函数的周期为T==2π(2分);函数的最大值为:(3分)故答案为:2π;.点评:本题考查三角函数的化简求值,函数周期的求法,考查基本知识的应用.12.(5分)(2013•佛山一模)某学生在参加政、史、地三门课程的学业水平考试中,取得A等级的概率分别为、、,且三门课程的成绩是否取得A等级相互独立.记ξ为该生取得A等级的课程数,其分布列如表所示,则数学期望Eξ的值为.ξ0 1 2 3P a b考点:离散型随机变量的期望与方差.专题:概率与统计.分析:①学生在参加政、史、地三门课程的学业水平考试中,有两门取得A等级有以下3种情况:政、史;政、地;地、史.再利用相互独立事件的概率计算公式、互斥事件的概率计算公式即可得到P(ξ=2);②根据概率的规范性可得:P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=2)﹣P(ξ=3),据此即可得出P(ξ=1).利用离散型随机变量的数学期望即可得出Eξ.解答:解:①学生在参加政、史、地三门课程的学业水平考试中,有两门取得A等级有以下3种情况:政、史;政、地;地、史.∴P(ξ=2)=+=,②根据分布列的性质可得:P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=2)﹣P(ξ=3)==,∴Eξ=0×+==.故答案为.点评:熟练掌握相互独立事件的概率计算公式、互斥事件的概率计算公式、离散型随机变量的数学期望是解题的关键.13.(5分)(2013•佛山一模)观察下列不等式:①<1;②+;③;…则第5个不等式为.考点:归纳推理;进行简单的合情推理.专题:压轴题;规律型.分析:前3个不等式有这样的特点,第一个不等式含1项,第二个不等式含2项,第三个不等式含3项,且每一项的分子都是1,分母都含有根式,根号内数字的规律是2;2,6;2,12;由此可知,第n个不等式左边应含有n项,每一项分子都是1,分母中根号内的数的差构成等差数列,不等式的右边应是根号内的序号数.解答:解:由①<1;②+;③;归纳可知第四个不等式应为;第五个不等式应为.故答案为.点评:本题考查了合情推理中的归纳推理,归纳推理是根据已有的事实,经过观察、分析、比较、联想,再进行归纳,然后提出猜想的推理.是基础题.三、选做题(14~15题,考生只能从中选做一题)5分14.(5分)(2013•崇明县二模)在极坐标系中,直线过点(1,0)且与直线(ρ∈R)垂直,则直线的极坐标方程为.考点:简单曲线的极坐标方程.专题:计算题.分析:先将直线极坐标方程(ρ∈R)化成直角坐标方程,再利用直角坐标方程进行求解过点(1,0)且与直线(ρ∈R)垂直的直线方程,最后再化成极坐标方程即可.解答:解:由题意可知直线(ρ∈R)的直角坐标方程为:x﹣y=0,过点(1,0)且与直线x﹣y=0垂直的直线方程为:y=﹣(x﹣1),即所求直线普通方程为x+y﹣1=0,则其极坐标方程为.故答案为:.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.15.(2013•佛山一模)(几何证明选讲)如图,M是平行四边形ABCD的边AB的中点,直线l过点M分别交AD,AC于点E,F.若AD=3AE,则AF:FC=1:4.考点:向量在几何中的应用.专题:压轴题.分析:利用平行四边形的性质和平行线分线段成比例定理即可得出.解答:解:如图所示,设直线l交CD的延长线于点N.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M是边AB的中点,∴.∴,∴.故答案为1:4.点评:熟练掌握平行四边形的性质和平行线分线段成比例定理是解题的关键.四、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)(2013•崇明县二模)如图,在△ABC中,∠C=45°,D为BC中点,BC=2.记锐角∠ADB=α.且满足cos2α=.(1)求cosα;(2)求BC边上高的值.考点:正弦定理;二倍角的余弦.专题:计算题;解三角形.分析:(1)由二倍角公式cos2α=2cos2α﹣1,可求cosα(2)方法一、由可求sinα,而∠CAD=∠ADB﹣∠C=α﹣45°,利用sin∠CAD=sin()=sin,代入可求sin∠CAD,最后再由正弦定理,可求AD,从而可由h=ADsin∠ADB求解方法二、作BC 边上的高为AH,在直角△ADH中,由(1)可得,设出AD,则可表示DH,AH,结合△AHC为等腰直角三角形,可得CD+DH=AH,代入可求解答:解:(1)∵cos2α=2cos2α﹣1=,∴,∵,∴cosα=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)方法一、由(1)得=,∵∠CAD=∠ADB﹣∠C=α﹣45°,∴sin∠CAD=sin()=sin==,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)在△ACD中,由正弦定理得:,∴AD==,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)则高h=ADsin∠ADB==4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)方法二、如图,作BC 边上的高为AH在直角△△ADH中,由(1)可得=,则不妨设AD=5m则DH=3m,AH=4m﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)注意到C=45°,则△AHC为等腰直角三角形,所以CD+DH=AH,则1+3m=4m﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)所以m=1,即AH=4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题主要考查了同角平方关系、和差角公式及正弦定理在求解三角形中的应用,解题的关键是熟练应用基本公式17.(12分)(2013•佛山一模)数列{a n}的前n项和为S n=2n+1﹣2,数列{b n}是首项为a1,公差为d (d≠0)的等差数列,且b1,b3,b11成等比数列.(1)求数列{a n}与{b n}的通项公式;(2)设,求数列{c n}的前n项和T n.考点:数列的求和;等差数列的通项公式;等比数列的通项公式.专题:等差数列与等比数列.分析:(1)利用、等差数列的通项公式、等比数列的定义即可得出;(2)利用“错位相减法”即可得出.解答:解析:(1)当n≥2时,a n=S n﹣S n﹣1=2n+1﹣2n=2n,又,也满足上式,所以数列{a n}的通项公式为.b1=a1=2,设公差为d,由b1,b3,b11成等比数列,得(2+2d)2=2×(2+10d),化为d2﹣3d=0.解得d=0(舍去)d=3,所以数列{b n}的通项公式为b n=3n﹣1.(2)由(1)可得T n=,∴2T n=,两式相减得T n=,==.点评:熟练掌握、等差数列的通项公式、等比数列的定义、“错位相减法”是解题的关键.18.(14分)(2013•潮州二模)如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=DB,点C为圆O上一点,且BC=AC.点P在圆O所在平面上的正投影为点D,PD=DB.(1)求证:PA⊥CD;(2)求二面角C﹣PB﹣A的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)先利用平面几何知识与线面垂直的性质证线线垂直,由线线垂直⇒线面垂直,再由线面垂直⇒线线垂直;(2)通过作出二面角的平面角,证明符合定义,再在三角形中求解.解答:解析:(1)连接OC,由3AD=BD知,点D为AO的中点,又∵AB为圆的直径,∴AC⊥BC,∵AC=BC,∴∠CAB=60°,∴△ACO为等边三角形,∴CD⊥AO.∵点P在圆O所在平面上的正投影为点D,∴PD⊥平面ABC,又CD⊂平面ABC,∴PD⊥CD,PD∩AO=D,∴CD⊥平面PAB,PA⊂平面PAB,∴PA⊥CD.(2)过点D作DE⊥PB,垂足为E,连接CE,由(1)知CD⊥平面PAB,又PB⊂平面PAB,∴CD⊥PB,又DE∩CD=D,∴PB⊥平面CDE,又CE⊂平面CDE,∴CE⊥PB,∴∠DEC为二面角C﹣PB﹣A的平面角.由(1)可知CD=,PD=BD=3,∴PB=3,则DE==,∴在Rt△CDE中,tan∠DEC==,∴cos∠DEC=,即二面角C﹣PB﹣A的余弦值为.点评:本题考查线线垂直的判定、二面角的平面角及求法.二面角的求法:法1、作角(根据定义作二面角的平面角)﹣﹣证角(符合定义)﹣﹣求角(解三角形);法2、空间向量法,求得两平面的法向量,再利用向量的数量积公式求夹角的余弦值.19.(14分)(2013•佛山一模)某工厂生产某种产品,每日的成本C(单位:元)与日产里x(单位:吨)满足函数关系式C=3+x,每日的销售额R(单位:元)与日产量x满足函数关系式,已知每日的利润L=S﹣C,且当x=2时,L=3(I)求k的值;(II)当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值.考点:函数模型的选择与应用;函数最值的应用.专题:计算题;应用题.分析:(I)根据每日的利润L=S﹣C建立函数关系,然后根据当x=2时,L=3可求出k的值;(II)当0<x<6时,利用基本不等式求出函数的最大值,当x≥6时利用函数单调性求出函数的最大值,比较两最大值即可得到所求.解答:解:(I)由题意可得:L=因为x=2时,L=3所以3=2×2++2所以k=18(II)当0<x<6时,L=2x++2所以L=2(x﹣8)++18=﹣[2(8﹣x)+]+18≤﹣2+18=6当且仅当2(8﹣x)=即x=5时取等号当x≥6时,L=11﹣x≤5所以当x=5时,L取得最大值6所以当日产量为5吨时,毎日的利润可以达到最大值6.点评:本题主要考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,同时考查了计算能力,属于中档题.20.(14分)(2013•潮州二模)设椭圆的左右顶点分别为A(﹣2,0),B (2,0),离心率e=.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且|QP|=|PC|.(1)求椭圆的方程;(2)求动点C的轨迹E的方程;(3)设直线AC(C点不同于A,B)与直线x=2交于点R,D为线段RB的中点,试判断直线CD 与曲线E的位置关系,并证明你的结论.考点:轨迹方程;椭圆的标准方程;直线与圆锥曲线的关系.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)根据题意建立关于a、c的方程组,解出a=2,c=,从而得到b2的值,即可求出椭圆的方程;(2)设C(x,y)、P(x0,y0),可得x0=x且y0=y,结合点P(x0,y0)在椭圆上代入化简得到x2+y2=4,即为动点C的轨迹E的方程;(3)设C(m,n)、R(2,t),根据三点共线得到4n=t(m+2),得R的坐标进而得到D(2,).由CD斜率和点C在圆x2+y2=4上,解出直线CD方程为mx+ny﹣4=0,最后用点到直线的距离公式即可算出直线CD与圆x2+y2=4相切,即CD与曲线E相切.解答:解:(1)由题意,可得a=2,e==,可得c=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴b2=a2﹣c2=1,因此,椭圆的方程为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)设C(x,y),P(x0,y0),由题意得,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)又,代入得,即x2+y2=4.即动点C的轨迹E的方程为x2+y2=4.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(3)设C(m,n),点R的坐标为(2,t),∵A、C、R三点共线,∴∥,而=(m+2,n),=(4,t),则4n=t(m+2),∴t=,可得点R的坐标为(2,),点D的坐标为(2,),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴直线CD的斜率为k==,而m2+n2=4,∴﹣n2=m2﹣4,代入上式可得k==﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)∴直线CD的方程为y﹣n=﹣(x﹣m),化简得mx+ny﹣4=0,∴圆心O到直线CD的距离d===2=r,因此,直线CD与圆O相切,即CD与曲线E相切.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题给出椭圆及其上的动点,求椭圆的方程并用此探索直线CD与曲线E的位置关系,着重考查了椭圆的简单几何性质、直线与圆的位置关系和轨迹方程的求法等知识,属于中档题.21.(14分)(2013•佛山一模)设g(x)=e x,f(x)=g[λx+(1﹣λ)a]﹣λg(x),其中a,λ是常数,且0<λ<1.(1)求函数f(x)的极值;(2)证明:对任意正数a,存在正数x,使不等式成立;(3)设,且λ1+λ2=1,证明:对任意正数a1,a2都有:.考点:函数在某点取得极值的条件;导数在最大值、最小值问题中的应用.专题:压轴题;导数的综合应用.分析:(1)首先对函数求导,使得导函数等于0,解出x的值,分两种情况讨论:当f′(x)>0,当f′(x)<0,做出函数的极值点,求出极值.(2)由于,再将原不等式化为,即e x﹣(1+a)x﹣1<0,令g(x)=e x﹣(1+a)x﹣1,利用导数研究此函数的极值,从而得出存在正数x=ln (a+1),使原不等式成立.(3)对任意正数a1,a2,存在实数x1,x2使a1=e,a2=e,则•=,,将原不等式⇔≤⇔g(λ1x1+λ2x2)≤λ1g (x1)+λ2g(x2),下面利用(1)的结论得出≤即可.解答:解:(1)∵f′(x)=λg[λx+(1﹣λ)a]﹣λg′(x),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)由f′(x)>0得,g[λx+(1﹣λ)a]>g′(x),∴λx+(1﹣λ)a>x,即(1﹣λ)(x﹣a)<0,解得x<a,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)故当x<a时,f′(x)>0;当x>a时,f′(x)<0;∴当x=a时,f(x)取极大值,但f(x)没有极小值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)∵,又当x>0时,令h(x)=e x﹣x﹣1,则h′(x)=e x﹣1>0,故h(x)>h(0)=0,因此原不等式化为,即e x﹣(1+a)x﹣1<0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)令g(x)=e x﹣(1+a)x﹣1,则g′(x)=e x﹣(1+a),由g′(x)=0得:e x=(1+a),解得x=ln(a+1),当0<x<ln(a+1)时,g′(x)<0;当x>ln(a+1)时,g′(x)>0.故当x=ln(a+1)时,g(x)取最小值g[ln(a+1)]=a﹣(1+a)ln(a+1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)令s(a)=,则s′(a)=.故s(a)<s(0)=0,即g[ln(a+1)]=a﹣(1+a)ln(a+1)<0.因此,存在正数x=ln(a+1),使原不等式成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(3)对任意正数a1,a2,存在实数x1,x2使a1=e,a2=e,则•=,,原不等式⇔≤,⇔g(λ1x1+λ2x2)≤λ1g(x1)+λ2g(x2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)由(1)f(x)≤(1﹣λ)g(a)故g[λa+(1﹣λ)a]≤λg(x)+(1﹣λ)g(a)令x=x1,a=x2,λ=λ1,1﹣λ=λ2从而g(λ1x1+λ2x2)≤λ1g(x1)+λ2g(x2)故≤成立,得证(14分)点评:本小题主要考查函数在某点取得极值的条件、导数在最大值、最小值问题中的应用及应用所学导数的知识、思想和方法解决问题的能力,属于中档题.。
222N广州市2013届高三年级调研测试数学(理科)试题解析 2013-1-9一、选择题1. A分析:2i(23i)=2i3i2i332i,其对应的点为(3,2),位于第一象限2. D分析:{0,1,2,3,4}A=,{|2,}{0,2,4,6,8}B x x n n A∴==∈=,{0,2,4}A B∴=3. B分析:22211log log2244f-⎛⎫===-⎪⎝⎭,()2112349f f f-⎛⎫⎛⎫=-==⎪⎪⎝⎭⎝⎭4. A分析:当//a b时,有24(1)(1)0x x,解得3x=±;所以3//x a b=⇒,但//3a b x=,故“3x=”是“//a b”的充分不必要条件5. B分析:逆推法,将sin2y x=的图象向左平移6π个单位即得()y f x=的图象,即()sin2()sin(2)cos[(2)]cos(2)cos(2)632366f x x x x x xππππππ=+=+=-+=-+=-6. C分析:三棱锥如图所示,3PM=,142PDCS∆=⨯=,12332PBC PAD S S ∆∆==⨯⨯=,14362PAB S ∆=⨯⨯= 7. B分析:方程22221x y a b表示焦点在x 轴且离心率小于3的椭圆时,有222232a b c a b e a a ⎧>⎪⎨-==<⎪⎩,即22224a b a b⎧>⎨<⎩,化简得2a b a b >⎧⎨<⎩,又[1,5]a ∈,[2,4]b ∈, 画出满足不等式组的平面区域,如右图阴影部分所示,求得阴影部分的面积为154,故152432S P ==⨯阴影8. C分析:由题意得()()(1)x a x x a x ,故不等式()2x a x a 化为()(1)2x a x a ,化简得2(1)220x a x a -+++,故原题等价于2(1)220x a x a -+++在(2,)+∞上恒成立,由二次函数2()(1)22f x x a x a =-+++图象,其对称轴为12a x +=,讨论得 122(2)0a f +⎧⎪⎨⎪⎩ 或 1221()02a a f +⎧>⎪⎪⎨+⎪⎪⎩,解得3a 或 37a <, 综上可得7a二、填空题 9.28分析:方法一、(基本量法)由34512a a a 得11123412a d a d a d ,即13912a d += ,化简得134a d,故7117677(3)73282S a d a d方法二、等差数列中由173542a a a a a 可将34512a a a 化为173()122a a ,即178a a ,故1777()282a a S10.1分析:299183991C ()(1)C rr rr r rrax a x x,令6r =,得其常数项为6369(1)C 84a ,即38484a =,解得1a =11.e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x xx x''==+=+得0ln 1k x =+, 故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-, 与2y x m =+比较得00ln 12x x m +=⎧⎨-=⎩,解得0e x =,故em =-503(1592009)503(59132013)=-+++++++++50315032013=-++ 12. 4分析:圆方程2224150x y x y +++-=化为标准式为22(1)(2)20x y +++=,其圆心坐标(1,2)--,半径r =,由点到直线的距离公式得圆心到直线20x y -=的距离d ==,由右图 所示,圆上到直线20x y -=413.3018 分析:由题意11cos112a π=⨯+=,222cos112a π=⨯+=-,333cos 112a π=⨯+=,444cos152a π=⨯+=,555cos 112a π=⨯+=,666cos 152a π=⨯+=-,777cos112a π=⨯+=,888cos 192a π=⨯+=,…20091a =, 20102009a =-, 20111a =,20122013a =;以上共503行, 输出的122012S a a a =+++3018=14.分析:如图,因为PC OP ⊥ ,所以P 是弦CD 中点,由相交弦定理知2PA PB PC =, 即28PC =,故PC =分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==故圆C 截直线l 所得的弦长为三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查同角三角函数的关系、正弦定理、二倍角、两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵123a b B ,,π===,依据正弦定理得:a bA Bsin sin =, …………… 1分即1A sin =,解得A sin =4. …………… 3分 (2)解:∵a b <, ∴02A B π<<<. …………… 4分∴A cos ==…………… 5分∴228A A A sin sin cos ==, …………… 6分 252128A A cos sin =-=. …………… 7分 ∵ABC π++=, ∴23C A π=-. …………… 8分 ∴4223C A cos cos π⎛⎫=-⎪⎝⎭…………… 9分442233A A cos cos sin sin ππ=+ …………… 10分1528=-⨯-⨯=-…………… 12分17.(本小题满分12分)(本小题主要考查分层抽样、概率、离散型随机变量的分布列等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名, 抽取的样本容量与总体个数的比值为5011002=. ∴应从,,,A B C D 四所中学抽取的学生人数分别为15,20,10,5. …………… 4分 (2)解:设“从参加问卷调查的50名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件M ,从参加问卷调查的50名学生中随机抽取两名学生的取法共有C 250=1225种,… 5分这两名学生来自同一所中学的取法共有C 215+C 220+C 210+C 25=350. (6)分∴()3501225P M ==27. 答:从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为27. …………… 7分(3) 解:由(1)知,在参加问卷调查的50名学生中,来自,A C 两所中学的学生人数分别为15,10.依题意得,ξ的可能取值为0,1,2, (8)分()0 Pξ==210225CC960=,()1Pξ==111510225C CC=12,()2Pξ==215225CC720=. (11)分∴ξ的分布列为:EMNDCBAPNAP…………… 12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) (1)证法1:取PA 的中点E ,连接DE EN ,, ∵点N 是PB 的中点,∴12EN AB EN AB //,=. …………… 1分 ∵点M 是CD 的中点,底面ABCD 是正方形,∴12DM AB DM AB //,=. …………… 2分 ∴EN DM EN DM //,=. ∴四边形EDMN 是平行四边形.∴MN DE //. …………… 3分 ∵DE ⊂平面PAD ,MN ⊄平面PAD , ∴MN //面PAD . …………… 4分 证法2:连接BM 并延长交AD 的延长线于点E ,连接PE ,P∵点M 是CD 的中点,∴12DM AB DM AB //,=, …………… 1分 ∴点M 是BE 的中点. …………… 2分∵点N 是PB 的中点,∴MN PE //. …………… 3分∵PE ⊂面PAD ,MN ⊄平面PAD ,∴MN //面PAD . …………… 4分 证法3:取AB 的中点E ,连接NE ME ,,∵点M 是CD 的中点,点N 是PB 的中点,∴ME AD //,NE PA //. ∵AD ⊂面PAD ,ME ⊄平面PAD ,∴ME //面PAD . …………… 1分∵PA ⊂面PAD ,NE ⊄平面PAD ,∴NE //面PAD . …………… 2分 ∵MENE E =,NE ⊂平面MEN ,ME ⊂平面MEN ,∴平面MEN//面PAD. …………… 3分∵MN 平面MEN,∴MN//面PAD. …………… 4分(2)解法1:∵NE PA //,PA 面ABCD ,∴NE面ABCD . …………… 5分∵AM ⊂面ABCD ,∴NE AM ⊥. …………… 6分 过E 作EF AM ⊥,垂足为F ,连接NF , ∵NEEF E =,NE ⊂面NEF ,EF ⊂面NEF ,∴AM ⊥面NEF . …………… 7分∵NF ⊂面NEF ,∴AM NF ⊥. …………… 8分∴NFE ∠是二面角N AM B 的平面角. (9)分在Rt △NEM 中,5MN,3ME AD ==,得4NE ==,…………… 10分在Rt △MEA 中,32AE,得AM ==355AE ME EF AM . …………… 11分在Rt △NEF 中,5NF ==, …………… 12分 389cos 89EF NFE NF . …………… 13分∴二面角NAM B的余弦值为89. …………… 14分 解法2:∵NE PA //,PA 面ABCD ,∴NE面ABCD .在Rt △NEM 中,5MN ,3ME AD ==,得4NE ==, (5)分以点A 为原点,AD 所在直线为x 轴,AB 所在直线为y 轴,AP 所在直线为z 轴,建立空间直角坐标系A xyz -, …………… 6分则()333000300004222A M E N ,,,,,,,,,,,⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴()004EN ,,=,3302AM ,,⎛⎫= ⎪⎝⎭,3042AN ,,⎛⎫= ⎪⎝⎭. …………… 8分设平面AMN 的法向量为n ()x y z ,,=, 由n 0AM ⋅=,n 0AN ⋅=,得33023402x y y z ,.⎧+=⎪⎪⎨⎪+=⎪⎩令1x =,得2y =-,34z =. ∴n 3124,,⎛⎫=- ⎪⎝⎭是平面AMN 的一个法向量. …………… 11分又()004EN ,,=是平面AMB 的一个法向量, …………… 12分cos ,n EN ==n ENn EN. …………… 13分∴二面角N AM B . …………… 14分 19. (本小题满分14分)(本小题主要考查抛物线、求曲线的轨迹、均值不等式等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,, ∵OA OB OC +=,∴M 是线段AB 的中点. …………… 2分∴()222121212222y y y y y y x +-+==,① …………… 3分122y y y +=. ② …………… 4分 ∵OA OB ⊥, ∴0OA OB ⋅=.∴2212120y y y y +=. …………… 5分依题意知120y y ≠,∴121y y =-. ③ …………… 6分把②、③代入①得:2422y x +=,即()2112y x =-. …………… 7分∴点M 的轨迹方程为()2112yx =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为==⋅ (9)S OA OB分=== (11)分∵22121222y y y y +≥=,当且仅当12y y =时,等号成立, (12)分∴2S ≥=. …………… 13分∴四边形AOBC 的面积的最小值为2. …………… 14分解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-. …………… 1分 故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=.解得0x =或21x k =. …………… 2分∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭. …………… 3分 同理得点B 的坐标为()2k k ,-. …………… 4分∵OA OB OC +=,∴M 是线段AB 的中点. …………… 5分 设点M 的坐标为()x y ,,则221212k k x k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩ …………… 6分消去k ,得()2112yx =-. …………… 7分 ∴点M 的轨迹方程为()2112y x =-. …………… 8分 (2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC的面积为S OA OB ==⋅…………… 9分=…………… 10分≥…………… 11分2=. …………… 12分 当且仅当221kk=,即21k =时,等号成立. …………… 13分 ∴四边形AOBC 的面积的最小值为2. …………… 14分20. (本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1)解法1:设1232n b b b b ,,,,+构成等比数列,其中1212n b b ,+==,依题意,1212n n n A b b b b ++=⋅⋅⋅⋅, ① …………… 1分2121n n n A b b b b ++=⋅⋅⋅⋅, ② …………… 2分由于12213212n n n n b b b b b b b b +++⋅=⋅=⋅==⋅=, …………… 3分①⨯②得()()()()212211221n n n n n A b b b b b b b b ++++=⋅⋅⋅⋅22n +=.…………… 4分∵0n A >,∴222n n A +=. …………… 5分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,的等比数列. …………… 7分∴n S =(41⎡⎤=+-⎢⎥⎣⎦. …………… 8分 解法2: 设1232n b b b b ,,,,+构成等比数列,其中1212n b b ,+==,公比为q ,则121n n b b q ++=,即12n q +=. …………… 1分依题意,得1212n n n A b b b b ++=⋅⋅⋅⋅()()()211111n b b q b q b q +=⋅⋅⋅⋅ (2)分()()212311n n b q++++++=⋅ (3)分()()122n n q ++= (4)分222n +=. (5)分∵3212222n n n nA A +++==…………… 6分∴数列{}n A是首项为1A =,的等比数列. …………… 7分∴n S =(41⎡⎤=+-⎢⎥⎣⎦. …………… 8分 (2)解: 由(1)得2n n a A log =222222n n log ++==, …………… 9分∵()()()11111n nn n n ntan tan tan tan tan tan +-⎡⎤=+-=⎣⎦++⋅, ……………10分∴()()1111n nn n tan tan tan tan tan +-⋅+=-,n ∈N *. ……………11分∴2446222n n n T a a a a a a tan tan tan tan tan tan +=⋅+⋅++⋅2334tan tan tan tan tan =⋅+⋅++()()12n n tan +⋅+()()213243111111n n tan tan tan tan tan tan tan tan tan ⎛⎫+-+⎛⎫⎛⎫--=-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()221n n tan tan tan +--. (14)分21.(本小题满分14分)(本小题主要考查函数、绝对值不等式等基础知识,考查函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1) 解:()sin g x x =是R 上的“平缓函数”,但2()h x x x =-不是区间R 的“平缓函数”;设()sin x x x ϕ=-,则()1cos 0x x ϕ'=-≥,则()sin x x x ϕ=-是实数集R 上的增函数,不妨设12x x <,则12()()x x ϕϕ<,即1122sin sin x x x x -<-,则2121sin sin x x x x -<-. ① …………… 1分 又sin y x x =+也是R 上的增函数,则1122sin sin x x x x +<+,即2112sin sin x x x x ->-, ② …………… 2分由①、②得 212121()sin sin x x x x x x --<-<-.因此,2121sin sin x x x x -<-,对12x x <都成立. …………… 3分当12x x >时,同理有2121sin sin x x x x -<-成立 又当12x x =时,不等式2121sin sin 0x x x x -=-=,故对任意的实数1x ,2x ∈R ,均有2121sin sin x x x x -≤-.因此 ()sin g x x =是R 上的“平缓函数”. …………… 5分由于121212()()()(1)h x h x x x x x -=-+- …………… 6分取13x =,22x =,则1212()()4h x h x x x -=>-, …………… 7分因此, 2()h x x x =-不是区间R 的“平缓函数”. …………… 8分(2)证明:由(1)得:()sin g x x =是R 上的“平缓函数”,则11sin sin n n n n x x x x ++-≤-, 所以 11n n n n y y x x ++-≤-. …………… 9分而121(21)n n x x n +-≤+, ∴ 12211111()(21)4441n n y y n n n n n +-≤<=-+++. …………… 10分 ∵11111221()()()()n n n n n n n y y y y y y y y y y ++----=-+-+-++-,……… 11分∴1111221n n n n n y y y y y y y y ++---≤-+-++-. …………… 12分∴11111111[()()(1)]4112n y y n n n n+-≤-+-++-+-11141n ⎛⎫=- ⎪+⎝⎭ (13)分14<. …………… 14分友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
广东省11大市2013年高三数学(理)一模试题分类汇编 平面向量 一、选择、填空题 1、(肇庆市2013届高三3月第一次模拟考试)已知向量.若为实数,,则A. B. C.D. ,,,若,则 A. B. C. D. 答案:C 3、(江门市2013届高三2月高考模拟)在复平面内,是原点,向量对应的复数是(其中,是虚数单位),如果点关于实轴的对称点为点,则向量对应的复数是 A.B.C.D. 在四边形ABCD中,,且四边形ABCD是 A. B. C. D. 6、(韶关市2013届高三调研考试)若向量满足条件=30,则x=___ 答案:4 7、(茂名市2013届高三第一次高考模拟考试)已知向量,则的充要条件是( ) A.B.C.D. ,|x+1|+|x-2|>a,则a<3”;命题q:“设M为平面内任意一点,则A、B、C三点共线的充要条件是存在角,使”,则A、为真命题B、为假命题C、为假命题D、为真命题 答案:C 解析:P正确,q错误:,BA=MA-MB=(cosa)^2*(MC-MB)=(cosa)^2*BC,==>A,B,C三点共线。
反之,不成立。
例如,A(0,0),B(1,0),C(2,0),BA=(-1,0),BC=(1,0),不存在角a,使向量MA=(sina)^2*向量MB+(cosa)^2*向量 MC。
所以这个命题是假的。
, ,且。
(I)求角A的大小; (II)若且△ABC的面积为,求b十c的值。
解:(1) …………………… …(2分) ……………… ………(4分) 又 ………………………………………………(6分) (2) …………………………………(8分) ……………………………………………………………………(9分) 由余弦定理得:………………………………………(10分) …………………………………………………………(11分) …………………………………………………………………(12分) 2、(梅州市2013届高三3月总复习质检)已知△ABC的内角A,B,C的对边分别为a,b,c,满足。
2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |<x,则( ). A .A ∩B = B .A ∪B =R C .B ⊆A D .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ). A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,ABBC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y =f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x +a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±. 5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2. 14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=- 则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2)上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2)上为减函数.∴f (-2=[1-(-22][(-22+8(-2)+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2)=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA . (2)设∠PBA =α,由已知得PB =sin α.在△PBA sin sin(30)αα=︒-,cos α=4sin α.所以tan αtan ∠PBA 18.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(00),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-1,0),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11A CA C⋅n n =. 所以A 1C 与平面BB 1C 1C 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l:y =k (x +4).由l 与圆M,解得k =4±. 当k =4时,将4y x =+22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=. 当4k =-时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1).x-4x1-2=-x1(x1+2)≥0.而F(x1)=2x1+2-21故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C2的普通方程为x2+y2-2y=0.由2222810160,20x y x yx y y⎧+--+=⎨+-=⎩解得1,1xy=⎧⎨=⎩或0,2.xy=⎧⎨=⎩所以C1与C2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫⎪⎝⎭.24.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=1 5,,212,1,236, 1.x xx xx x⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0. 所以原不等式的解集是{x|0<x<2}.(2)当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)=1+a.不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a-2对x∈1,22a⎡⎫-⎪⎢⎣⎭都成立.故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
广东省11大市2013年高三数学(理)一模试题分类汇编 排列组合二项式定理 1、(揭阳市2013届高三3月第一次高考模拟)若二项式的展开式中,第4项与第7项的二项式系数相等,则展开式中的系数为 .展开式中的常数项为____ 答案:-672 3、(汕头市2013届高三3月教学质量测评)给一个正方体的六个面涂上四种不同颜色(红、黄、绿、兰),要求相邻两个面涂不同的颜色,则共有涂色方法(涂色后,任意翻转正方体,能使正方体各面颜色一致,我们认为是同一种涂色方法( )A. 6种B. 12种C. 24种D. 48种 答案:A 4、(韶关市2013届高三调研考试)在实验员进行一项实验中,先后要实施5个程序,其中程度A只能出现在第一步或最后一步,程序C或D实施时必须相邻,请问实验顺序的编排方法共有( )A、15种B、18种C、24种D、44种 答案:C 5、(深圳市2013届高三2月第一次调研考试)我们把各位数字之和为6 的四位数称为“六合数”(如2013 是“六合数”),则“六合数”中首位为2 的“六合数”共有 A.个 B.个 C.个 D. 个 答案:B 【解析】设满足条件的“六合数”为,则于是满足条件的可分以下几种情形: (1)一个为,两个为,共有种; (2)一个为,一个为,一个为,共有种; (3)两个为,一个为,共有种; (4)一个为,两个为,共有种. 6、(茂名市2013届高三第一次高考模拟考试末)若n的展开式中所有二项式系数之和为64,则展开式的常数项为 . 7、(湛江市2013届高三高考测试(一)) 若,则=A、1B、32C、-1D、-32 答案:B 8、(深圳市2013届高三2月第一次调研考试) 若,则 答案: 【解析】所以。
绝密★启用前2013年普通高等学校招生全国统一考试(广东卷)理科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.M∪N=())))7.(5分)(2013•广东)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于,则C 的方程是y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. 9.(5分)(2013•广东)不等式x 2+x ﹣2<0的解集为 _________ . 10.(5分)(2013•广东)若曲线y=kx+lnx 在点(1,k )处的切线平行于x 轴,则k= _________ . 11.(5分)(2013•广东)执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为 _________ .12.(5分)(2013•广东)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a7= _________ . 13.(5分)(2013•广东)给定区域D :.令点集T={(x 0,y 0)∈D|x 0,y 0∈Z ,(x 0,y 0)是z=x+y 在D上取得最大值或最小值的点},则T 中的点共确定 _________ 条不同的直线. 14.(5分)(2013•广东)(坐标系与参数方程选做题) 已知曲线C 的参数方程为(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 _________ . 15.(2013•广东)(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC=CD ,过C 作圆O 的切线交AD 于E .若AB=6,ED=2,则BC= _________ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2013•广东)已知函数,x∈R.(1)求的值;(2)若,,求.17.(12分)(2013•广东)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18.(14分)(2013•广东)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O=.(1)证明:A′O⊥平面BCDE;(2)求二面角A′﹣CD﹣B的平面角的余弦值.19.(14分)(2013•广东)设数列{a n}的前n项和为S n,已知a1=1,,n∈N*.(1)求a2的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.20.(14分)(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.21.(14分)(2013•广东)设函数f(x)=(x﹣1)e x﹣kx2(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当时,求函数f(x)在[0,k]上的最大值M.2013年普通高等学校招生全国统一考试(广东卷) 理科数学(参考答案)==4,﹣2),故选==,,.故选=k+解:由的圆.,即或(填或(填C,∴∠ACE=,又.)因为,所以=,,,同理得.,.所以为二面角A′﹣CD﹣B的平面角....的平面角的余弦值为时,,解得①时,,即,时,{所以,即的通项公式为)因为=的距离,的方程为,,所以切线的斜率分别为,:的坐标为,即,的斜率为,整理得的斜率的方程为整理得,即的方程为)根据抛物线的定义,有,所以所以所以当时,的最小值为,,)在,)<因为,所以对任意的,。
广东省11大市2013年高三数学(理)一模试题分类汇编 坐标系与参数方程 1、(广州市2013届高三3月毕业班综合测试试题(一))在极坐标系中,定点,点在直线上运动,当线段最短时,点的极坐标为 . 2、(江门市2013届高三2月高考模拟)在极坐标系()中,曲线与的交点的极坐标为 . 答案: 3、(揭阳市2013届高三3月第一次高考模拟)已知曲线:和曲线:,则上到的距离等于的点的个数为 . 答案:将方程与化为直角坐标方程得 与,知为圆心在坐标原点,半径为的圆, 为直线,因圆心到直线的距离为,故满足条件的点的个数. 4、(梅州市2013届高三3月总复习质检)在极坐标系中,圆=2上的点到直线=3的距离的最小值是____ 答案:1 5、(汕头市2013届高三3月教学质量测评)已知直线l方程是(t为参数),以坐标原点为极点.x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为=2,则圆C上的点到直线l的距离最小值是___ 答案: 6、(韶关市2013届高三调研考试)在直角坐标系xoy中,圆C1的参数方程为(为参数)在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴的正半轴为极轴)中,圆C2的极坐标方程为,则C1与C2的位置关系是_____(在“相交,相离,内切,外切,内含”中选择一个你认为正确的填上) 答案:内切 7、(深圳市2013届高三2月第一次调研考试)在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的参数方程为(为参数),曲线的极坐标方程为,则与交点在直角坐标系中的坐标为 ____。
答案: 【解析】为,所以,解得因此 8、(肇庆市2013届高三3月第一次模拟考试)已知直线与直线相交于点,又点,则 答案: 9、(佛山市2013届高三教学质量检测(一))在极坐标系中,直线过点且与直线()垂直,则直线极坐标方程为 . 答案:(或、) 10、(茂名市2013届高三第一次高考模拟考试)已知曲线C的参数方程为 (θ为参数),则曲线C上的点到直线34y+4=0的距离的最大值为 答案:3 11、(湛江市2013届高三高考测试(一))在极坐标系中,直线与圆相交的弦长为____ 答案:。
第 1 页 共 20 页 试卷类型:A 2013年广州市普通高中毕业班综合测试(一) 数学(理科) 2013.3 本试卷共4页,21小题, 满分150分。考试用时120分钟。 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效。 5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
参考公式: 如果事件AB,相互独立,那么PABPAPB.
线性回归方程ybxa中系数计算公121niiiniixxyybaybxxx()(),(), 其中yx,表示样本均值. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集123456U,,,,,,集合135A,,,24B,,则
A.UAB B.UUAðB C.UAUBð D.UUAðUBð
2. 已知11abii,其中ab,是实数,i是虚数单位,则abi A.12i B.2i C.2i D.12i
3.已知变量xy,满足约束条件21110xyxyy,,.则2zxy的最大值为 A.3 B.0 C.1 D.3 4. 直线30xy截圆2224xy所得劣弧所对的圆心角是 第 2 页 共 20 页
A B水流方向
图1俯视图侧视图正视图22
112
A.6 B.3 C.2 D.23 5. 某空间几何体的三视图及尺寸如图1,则该几何体的体积是 A.2 B.1 C. 23 D. 13
6. 函数yxxxxsincossincos是
A.奇函数且在02,上单调递增 B.奇函数且在2,上单调递增 C.偶函数且在02,上单调递增 D.偶函数且在2,上单调递增 7.已知e是自然对数的底数,函数fxe2xx的零点为a,函数ln2gxxx 的零点为b,则下列不等式中成立的是 A.1faffb B. 1fafbf
C. 1ffafb D. 1fbffa 8.如图2,一条河的两岸平行,河的宽度600dm, 一艘客船从码头A出发匀速驶往河对岸的码头B.
已知AB1km,水流速度为2km/h, 若客船行 驶完航程所用最短时间为6分钟,则客船在静水中 的速度大小为
A.8 km/h B.62km/h 图2
C.234km/h D.10km/h 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)
9. 不等式1xx的解集是 .
10.10xcosdx . 11.某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)有下表的统计资料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0 第 3 页 共 20 页
图3ODCBA
根据上表可得回归方程ˆˆ1.23yxa,据此模型估计,该型号机器使用年限为10年时维修费用约 万元(结果保留两位小数).
12.已知01aa,,函数11xaxfxxax,,若函数fx在02,上的最大值比最小值
大52,则a的值为 . 13. 已知经过同一点的nn(N3n*,)个平面,任意三个平面不经过同一条直线.若这n个平面将空间分成fn个部分,则3f ,fn . (二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题) 在极坐标系中,定点32,2A,点B在直线cos3sin0上运动,当线段AB最短时,点B的极坐标为 . 15.(几何证明选讲选做题) 如图3,AB是O的直径,BC是O的切线,AC与O交于点D, 若3BC,165AD,则AB的长为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin()4fxAx(其中xR,0A,0)的最大值为2,最小正周期为8. (1)求函数()fx的解析式;
(2)若函数()fx图象上的两点,PQ的横坐标依次为2,4,O为坐标原点,求△POQ 的面积.
17.(本小题满分12分)甲,乙,丙三位学生独立地解同一道题,甲做对的概率为12,乙,丙做对的概率分别为m,n (m>n),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为: 0 1 2 3
P 14 a b
1
24 第 4 页 共 20 页
图4ABC
A1C
1
B1
D
E
(1) 求至少有一位学生做对该题的概率; (2) 求m,n的值; (3) 求的数学期望. 18.(本小题满分14分) 如图4,在三棱柱111ABCABC中,△ABC是边长为2的等边三角形,
1AA平面ABC,D,E分别是1CC,AB的中点.
(1)求证:CE∥平面1ABD;
(2)若H为1AB上的动点,当CH与平面1AAB所成最大角的正切值为152时, 求平面1ABD 与平面ABC所成二面角(锐角)的余弦值. 19.(本小题满分14分) 已知数列{}na的前n项和为nS,且 12323(1)2(nnaaananSnnN*).
(1) 求数列{}na的通项公式; (2)若pqr,,是三个互不相等的正整数,且pqr,,成等差数列,试判断 111pqraaa,,是否成等比数列?并说明理由.
20.(本小题满分14分) 已知椭圆1C的中心在坐标原点,两个焦点分别为1(2,0)F,2F20,,点(2,3)A在椭圆1C 上,过点
A的直线L与抛物线22:4Cxy交于BC,两点,抛物线2C在点BC,处的切线分别为12ll,,且1l与
2l
交于点P. (1) 求椭圆1C的方程;
(2) 是否存在满足1212PFPFAFAF的点P? 若存在,指出这样的点P有几个(不必求出点P的坐标); 若不存在,说明理由.
21.(本小题满分14分) 已知二次函数21fxxaxm,关于x的不等式2211fxmxm
的解集为1mm,,其中m为非零常数.设1fxgxx. (1)求a的值; 第 5 页 共 20 页
(2)kk(R)如何取值时,函数xgx1kxln存在极值点,并求出极值点; (3)若1m,且x0,求证:1122nnngxgxn(N*).
2013年广州市普通高中毕业班综合测试(一) 数学(理科)试题参考答案及评分标准 说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数. 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.
一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分. 题号 1 2 3 4 5 6 7 8 答案 D B C D A C A B
二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.
9.1,2 10.1sin 11.12.38 12.12或72 13.8,22nn
14.1116, 15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126kk,(Z). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)
(1)解:∵()fx的最大值为2,且0A, ∴2A. „„„„„1分
∵()fx的最小正周期为8, ∴28T,得4. „„„„„2分 ∴()2sin()44fxx. „„„„„3分