当前位置:文档之家› 搅拌器设计

搅拌器设计

搅拌器设计
搅拌器设计

黄河科技学院毕业设计(论文)第 1 页

小型搅拌器的设计

摘要

搅拌设备使用历史悠久,应用范围广。在化学工业、石油工业、建筑行业等等传统工业中均有广泛的使用。搅拌操作看来似乎简单,但实际上,它所涉及的因素却极为复杂。本文介绍了小型搅拌器设计的基本思路和基本理论,分析了搅拌器的基本结构及其相关内容阐述了搅拌器的运动及其动力装置。通过对搅拌器的基本设备的描述和对其基本工作原理、作用和功能等相关文献的参考,从而对小型搅拌器的设计加以综述。

关键词:传动装置,联轴器,支承装置,电动机,减速器。

The design of small-scale agitator

The equipment of pulsator have a long history and are used in most areas. meawhile pulsator are used in tradition industry such as chemistry industry,petroleum industry,architecture industry and so on. The operation of mix round looks as if simpleness,but actually,the ingredient it involved are plaguy complexity. Tht text introduces the basic consider way and th e basic theoretics of small pulsator design,and analyzed the basic configuration of pulsator and interfix content and analyzed the athletics and motivity equipment of pulsator.Overpass describe the basic fixture of pulsator and consult its basi c employment principle,function and operation,thereby summarize the design of small pulsator. Key word: gearing,join shaft ware,bearing device,electromotor,reducer.

搅拌器的设计

前言

1.1 毕业设计课题的目的、意义、国内外现状 1.1.1 毕业设计课题的目的、意义

化工反应中搅拌器的目的是借助搅拌器的作用使化工生产中的液体充分混合,以满足化学反应能够最大程度的进行。该设备可以代替手动搅拌对人体有毒或对皮肤有伤害的化工原料,结构简单,使用方便,在化工生产应用比较广泛。本课题要求设计一个小型搅拌器,容积在500升左右,工作平稳灵活,使用方便。本题目主要涉及化工生产中搅拌器的设备设计,主要解决的问题是化工生产中该设备的设计,包括:搅拌器的选择、电动机及减速器的选型、支撑装置的设计、轴的选择及密封设置、搅拌容器的设计,并画出相应的设备图。 1.1.2 搅拌器的发展史及现状

搅拌混合设备是一种应用广泛、品种繁多的流体机械产品,适用于化工、冶金、医药、食品和饲料等领域。搅拌操作是工业反应过程的重要环节,它的原理涉及流体力学、传热、传质及化学反应等多种过程,而搅拌器是为了使搅拌介质获得适宜的流动场而向其输入机械能量的装置。因此搅拌器也叫做Mixer,或叫做Agitator,Stirrer。广义的搅拌还包括将固体微粒分散悬浮在溶液里面或将溶液变成均匀的乳化液,因此它包括分散器和均质机。某些搅拌器能产生极大的剪切力,以获得细化的粒子比胶体磨大10倍以上的亚微米悬浮体,因此,可用于制造色拉酱、美容乳之类的精细食品和化学品。石化工业常用于聚氯乙烯合金、顺丁橡胶合釜、反应釜、汽提釜等统称为搅拌容器(Agitatored Vessels,或Stirred Vessels)。

近年来,搅拌器和搅拌容器获得飞速发展的同时,正面临着满足合理利用资源、

黄河科技学院毕业设计(论文)第 3 页

节能降耗和对环境保护要求的严峻挑战。搅拌器和搅拌容器在服从装置规模经济化和品种多样化的同时,正日趋大型化。日立制作所自1949年生产搅拌反应釜以来已为聚氯乙烯、对苯二甲酸、苯乙烯单体、聚丙烯等装置生产了搅拌反应釜近4000台,容器的最大容量达576m ,最大直径达7620 mm,圆筒部分最大长度达 44380 mm,设计压力最大 28 MPa,设

计温度最高 530 cI二,电机最大功率达 1100 kW。基于节能的要求,开发出变频调速电机、小剪切阻力桨叶、以新型密封代替机械密封和填料密封,以磁力驱动代替机械传动。基于降低产品总体成本、减少维修保养成本和提高设备平均维修间隔时间的要求,大大提高了设备运行寿命。基于满足卫生和降低清洗和杀菌成本的要求,实现了CIP(就地清洗 )和 SIP(就地杀菌),提高了自动化水平,避免了人与产品的接触,减少了人工操作和待机时间,大大提高了产品的卫生水平。 1.1.3 搅拌器的主要类型及其发展概况

根据搅拌器的形状可以分成直叶浆式、开启涡轮式、推进式、圆盘涡轮式、锚式、螺带式、螺旋式等;根据不同液体的粘度可以分为低粘度液搅拌器、中高粘度液搅拌器。低粘度液搅拌器,如:三叶推进式叶轮,折叶浆式 (2~4折叶),6直叶涡轮式,超级混合叶轮式 (HR]O0,HV200)等;中高粘度液搅拌器如:锚式、螺杆叶轮式,双螺旋螺带叶轮型,超混台搅拌器 (MR205,305)等。为了达到成品高精度、高品质化要求,国外,特别是日本开发了新型的搅拌装置,以满足高粘度产品的生产需要。如倒圆锥形螺带翼式搅拌器、超混合搅拌器、高性能浮动搅拌槽、超振动α型搅拌器等。

在对物料的搅拌操作中,人们希望实现多种搅拌目的,因此了解各种搅拌器的特点,选择适宜的叶轮型式,设计出符合流动状态特性的搅拌器是非常重要的。搅拌槽内的液体进行着三维流动,为了区分搅拌浆叶排液的流向特点,根据主要排液方向,按圆柱坐标把典型浆叶分成径向流叶轮和轴向流叶轮。齿片式、平叶浆式、直叶圆盘涡轮式和弯曲叶涡轮式在无挡板搅拌槽中除了使液体产生与叶轮一起回转的周向流外,还由于叶轮的离心力是液体沿叶片向槽壁射出,形成强大有力的径向流,故称这些叶轮为径向流叶轮。径向流叶轮搅拌器旋转时,将物料由轴向吸入再径向排出,叶轮功率消耗大,搅拌速度较快,剪切力强。如图3、图4所示,是典型的径向流叶轮型式。

黄河科技学院毕业设计(论文)第 4 页

在湍流状态下,推进式叶轮除了产生周向流动外,还产生大量轴向流动,是典型的轴向流叶轮。折叶涡轮式叶轮与直叶圆盘涡轮和弯曲叶涡轮式叶轮相比,轴向流成分较多,多用于轴向流的场合。螺带式和螺杆式叶轮使高粘度物料产生轴向流动,也属轴向流叶轮型式。轴向流叶轮搅拌器不存在分区循环,单位功率产生的流量大,剪切速率小且在浆叶附近较大范围内分布均匀,具有较强的最大防脱流能力。如图5、图 6所示,是典型的轴向流叶轮型式。

新型轴向流叶轮

在通常情况下,大量的搅拌设备用于低粘物系的混合和固一液悬浮操作,要求叶轮能以低的能耗提供高的轴向循环流量。由于传统的推进式叶轮叶片为复杂的立体曲面,虽能满足要求,但制造却很困难,亦不易大型化。因此竞相开发节能高效、造价低廉且易于大型化的第二代高效轴流搅拌器成为混合设备公司的目标。美国莱宁公司开发了 A310和A315系列(如图7,图8所示)。黄河科技学院毕业设计(论文)第 5 页

国内如北京化工大学和华东理工大学等也分别开发了CBY轴流浆和翼型浆;中国石油化工学院的沈惠平教授等人还研制开发了一种新型高效易于加工的轴流式搅拌叶轮。它是一种空间扭曲板材型浆叶,从叶片端部看,它由许多相似的拱组成,与其所处半径有关,且具有合理的叶片倾角、拱度及叶片宽度。新型搅拌混合设备

近年来欧洲和Et本开发了很多种适用于高粘和超高粘物系的卧式自清洁搅拌设备。瑞士卧式双轴全相(AllPhase)型搅拌机就是典型的一例。如图 l2所示。

黄河科技学院毕业设计(论文)第 6 页

另外,北京燕山石油化工有限公司设计院针对在大直径、低转速、介质较粘稠的场合,设计了一种复合式搅拌器,很好地解决了无法配备大功率的电机,存在制造、检修以及安装的困难等问题。复合式搅拌器的结构如图 l3所示。设备设计智能化的实现

根据混合专家的经验和常识,将搅拌混合设备与自动控制技术相结合,在混合设备选型和设计中运用人工智能技术(AJ)和基于知识的系统(KBS),即实现了混合设备选型和设计的智能化。

如图 l4所示,搅拌设备设计专家系统采用总设计任务控制各阶段设计分任务,分任务调度相应的设计知识和数据,实现混合设备的专家系统设计的组织方法。通过仔细的分析、归属,用智能化设计系统原型阶段性地实现混合设备的设计过程,可以把其表示为一系列的设计过程的链式序列。各阶段相对独立又相互连续,其中每一个设计阶段都将设计结构传递给后继设计过程L6j。该系统从搅拌叶轮的选型、过程设计、机械设计和经济分析评价,到最终机械绘图的全过程的都给出了智能化的计算机辅助设计。它可应用于牛顿流体和非牛顿流体,液一液体系、固一液体系和气一液体系,并且可以处理容积超过上百立方米的应用体系。20世纪90年代以来,有关搅拌设备选型和设计的专家系统在国外已有少量报道。如 1994年美国 Chemineer公司报道了该公司有一个用于涡轮式搅拌设备设计

黄河科技学院毕业设计(论文)第 7 页

的知识库软件 AgDesign,据称该公司90%顶伸人搅拌器的设备均已用此软件进行设计。芬兰的Lappeenranta工业大学在1994年发表了有关混合设备初步设计的知识库系统的论文。在国内,浙江大学也正与大型石化企业合作开发搅拌槽式反应器的智能化辅助选型和设计软件。

1.1.4结束语

搅拌操作是工业反应过程的重要环节,搅拌混合设备在化学工业中担当着非常重要的角色。现代化学工业要求有更高更好的搅拌混合技术,因此必须改进传统搅拌装置、研制新型混合设备;同时使用 LDV、PIV和 EPT等先进量测技术,运用计算流体动力学知识,深入分析搅拌反应器内的流体流动机理和微观混合,安全和优化设计、提高过程效率性能和降低失败风险,并最终提高反应产率。在这些现代先进技术的推动下,搅拌混合技术一定会向一个更新的阶段发展。 1.2 搅拌器的工作原理

黄河科技学院毕业设计(论文)第 8 页

通常搅拌装置由作为原动机的马达(电动、风动或液压),减速机与其输出轴相连的搅拌抽,和安装在搅拌轴上的叶轮组成减速机体通过一个支架或底板与搅拌容器相连。当容器内部有压力时,搅拌轴穿过底板进入容器时应有一个密封装置,常用填料密封或机械密封。通常马达与密封均外购,研究的重点是叶轮。叶轮的搅拌作用表现为“泵送”和涡流”,即产生流体速度和流体剪切,前者导至全容器中的回流,介质易位,防止固体的沉淀并产生对换热热管束 (如果有)的冲刷;剪切是一种大回流中的微混合,可以打碎气泡或不可溶的液滴,造成“均匀”。

1.3 化工反应中的搅拌设备

根据搅拌器叶轮的形状可以分成直叶桨式、开启涡轮式、推进式、圆盘涡轮式、锚式、螺带式、螺旋式等}根据处理的掖体牯度不同可以分为低粘度液搅拌器。低粘度液搅拌器,如:三叶推进式、折叶桨叶,6直叶涡轮式、超级混合叶轮式 HR 100,HV 100等;中高粘度液搅拌器如:锚式、螺杆叶轮式、双螺旋螺带叶轮型,MR 205,305超混合搅拌器等等。 1.4 化工搅拌器的适应条件和构造 1.4.1 化工搅拌器的适应条件

搅拌加速传热和传质,在化工设备中广泛运用。化工搅拌器的作用使化工生产中的液体充分

混合,以满足化学反应能够最大程度的进行,该设备可以代替手动搅拌对人体有毒或对皮肤有伤害的化工原料减少对人体的危害,同时通过电动机带动轴加速搅拌,提高生产率。搅拌加速传热和传质,在化工设备中广泛运用。搅拌的对象可以是液体、固体和气体,其中液体是必不可少的。最常见的液体是水,其粘度很低。液体也可能很粘,如黄油在室温下可达 l,000,000 cP。液体中如加入过多的固体,如泥沙,会失去流动性,成为泥团。这种物料也可搅拌,但不在本文叙述的范围内。 1.4.2 化工搅拌器的构造

化工生产过程中,通常用到的搅拌器种类有桨式搅拌器、涡轮式搅拌器、推进式搅拌器、锚式搅拌器、框式搅拌器、螺带式搅拌器等。各类搅拌器由于其构造,性能等差异,使其能够分别适用于化工生产中各种不同的工况。桨式搅拌器又可分为平直叶和折叶搅拌器两种。这类搅拌器的结构和加工都比较简单。搅拌

黄河科技学院毕业设计(论文)第 8 页

通常搅拌装置由作为原动机的马达(电动、风动或液压),减速机与其输出轴相连的搅拌抽,和安装在搅拌轴上的叶轮组成减速机体通过一个支架或底板与搅拌容器相连。当容器内部有压力时,搅拌轴穿过底板进入容器时应有一个密封装置,常用填料密封或机械密封。通常马达与密封均外购,研究的重点是叶轮。叶轮的搅拌作用表现为“泵送”和涡流”,即产生流体速度和流体剪切,前者导至全容器中的回流,介质易位,防止固体的沉淀并产生对换热热管束 (如果有)的冲刷;剪切是一种大回流中的微混合,可以打碎气泡或不可溶的液滴,造成“均匀”。

1.3 化工反应中的搅拌设备

根据搅拌器叶轮的形状可以分成直叶桨式、开启涡轮式、推进式、圆盘涡轮式、锚式、螺带式、螺旋式等}根据处理的掖体牯度不同可以分为低粘度液搅拌器。低粘度液搅拌器,如:三叶推进式、折叶桨叶,6直叶涡轮式、超级混合叶轮式 HR 100,HV 100等;中高粘度液搅拌器如:锚式、螺杆叶轮式、双螺旋螺带叶轮型,MR 205,305超混合搅拌器等等。 1.4 化工搅拌器的适应条件和构造 1.4.1 化工搅拌器的适应条件

搅拌加速传热和传质,在化工设备中广泛运用。化工搅拌器的作用使化工生产中的液体充分混合,以满足化学反应能够最大程度的进行,该设备可以代替手动搅拌对人体有毒或对皮肤有伤害的化工原料减少对人体的危害,同时通过电动机带动轴加速搅拌,提高生产率。搅拌加速传热和传质,在化工设备中广泛运用。搅拌的对象可以是液体、固体和气体,其中液体是必不可少的。最常见的液体是水,其粘度很低。液体也可能很粘,如黄油在室温下可达 l,000,000 cP。液体中如加入过多的固体,如泥沙,会失去流动性,成为泥团。这种物料也可搅拌,但不在本文叙述的范围内。 1.4.2 化工搅拌器的构造

化工生产过程中,通常用到的搅拌器种类有桨式搅拌器、涡轮式搅拌器、推进式搅拌器、锚式搅拌器、框式搅拌器、螺带式搅拌器等。各类搅拌器由于其构造,性能等差异,使其能够分别适用于化工生产中各种不同的工况。桨式搅拌器又可分为平直叶和折叶搅拌器两种。这类搅拌器的结构和加工都比较简单。搅拌

黄河科技学院毕业设计(论文)第 10 页

2.1 搅拌容器的设计探讨

根据设计要求,要求搅拌器的容积在500升左右,液体粘度为0.3Pa.s,液体的密度为ρ=1500kg/m3,运转速度为40r/min,v=5m/s。结合实际条件,本课题选用筒式搅拌器。将搅拌器的外壳设计成圆筒形,搅拌器旋转时,把机械能传递给流体,在搅拌器附近形成高湍动的充分混和区,并产生一股高速射流,使流体具有较高的压头,推动液体在搅拌容器内循环流动。在圆筒的导流作用下,介质从简体的顶部和底部流入筒内,完成一个循环,使介质产生高速的径向流和轴向流,同时加大介质流量,介质流动更均匀。

通过筒式搅拌器与涡轮式搅拌器和推进式搅拌器的功率对比试验,在相同的拌

情况下,筒式搅拌器将电能转化为机械能的效率更高,如图所示。

(1) 筒式搅拌器的搅拌流型适于低黏度液体的搅拌,搅拌釜内的搅拌死角较少。

(2) 筒式搅拌器对电能的利用率高,在相同的情况下,筒式搅拌器的功率准数较小,耗能少,表明筒式搅拌器在节能方面具有非常好的效果。

(3) 筒式搅拌器的搅拌混合效率高,在相同的情况下,是涡轮式和推进式搅拌器的2~3倍。因此,本课题选用的筒式搅拌器能够满足设计的要求。 3 总体设计方案的确定及动力元件选择 3.1 总体设计方案

化工生产过程中,通常用到的搅拌器种类有桨式搅拌器、涡轮式搅拌器、推进式搅拌器、锚式搅拌器、框式搅拌器、螺带式搅拌器等。各类搅拌器由于其构造,性能等差异,使其能够分别适用于化工生产中各种不同的工况。由于本次设计的

黄河科技学院毕业设计(论文)第 11 页

搅拌器是低粘度、低速度、液—液混合的小功率设备,容积为500L,根据搅拌器对这些因素的要求,本次设计选用斜浆式搅拌器。倾斜浆式搅拌器结构上,叶桨与搅拌轴的安装角<90°,在旋转搅拌时,阻力将碱小;另一方面,倾斜旋转的叶桨能使容器内的液料形成涡流,搅拌效果好,特别是当轴正向旋转时,可使沉淀物搅动上翻,对物料的搅拌效果相当好;当轴反向旋转时,又可使悬浮物搅至底部,对有悬浮物的液料搅拌十分有利.但转轴受扭矩和弯矩复合作用,对其强度、剐度及安装的要求较高,多用于低速、低粘度、小功率( = 30~40r /min)

符合设计的要求。 3.2 搅拌容器的设计计算 3.2.1确定筒体的几何参数(1)筒体型式选择圆柱形筒体

(2)确定内筒筒体的直径和高度

由于搅拌过程是液—液相混合,一般来说搅拌装置的高径比(H/D)为1~1.3,本次设计选用高径比为1.2。已知搅拌容积是500L,根据公式

D=

3

/4DHV

(1)

可以计算处筒体的直径D=0.80m,筒体高H=0.96 m。(3)筒体材料的选择及估算筒体钢板的厚度

根据冶金手册产品的标准,我们选用普通碳素钢,根据GB150—1998中对碳素钢的要求和钢板之间的差别,我们选用Q235—B热轧钢板,厚度尺寸选用9mm。

(4)计算筒体的壁厚及强度校核

按照材料力学中的强度理论,对于钢制容器适宜采用第三、第四强度理论,但是由于第一强度理论在容器设计史上使用最早,有成熟的实践经验,而且由于强度条件不同而引起的误差已考虑在安全系数内,所以至今在容器常规设计中仍采用第一强度理论,即

σ1≤[σ]

式中是器壁中σ1三个主应力中最大一个主应力。对于内压薄壁容器的回转壳体,

黄河科技学院毕业设计(论文)第 12 页

周向应力σθ为第一主应力,径向应力σψ为第二主应力,而另一个主应力σz是径向应力,由于σθ、σψ与相比壳忽略不计,即σ3=σz=0,所以第三强度理论与第一强度理论趋于一致。因此在对容器个元件进行强度计算时,主要确定σ1,并将其控制在许用应力范围内,进而求取容器的壁厚。

容器圆筒承受均匀内压作用时,其器壁中产生的如下薄膜应力(圆筒的平均直径为D,壁厚

σθ=

t

PD2

σψ=t

PD4

很显然,σ1=σθ,故按照第一强度理论,有

σ1 =

t

PD2≤〔σ〕t

(2)

在容器设计中,一般只给出内径值Di,则D=Di + t,将其代入上式,得

P(Di+t)/2t≤〔σ〕t

(3)

容器圆筒在制造时由钢板卷焊而成,焊缝区金属强度一般低于木材,所以上式

中的〔σ〕t

应乘以系数Ф。所以,考虑容器内部介质和周围大气腐蚀、供货钢

板厚度的负偏差等原因,设计厚度应比计算厚度大。设t为圆筒的计算厚度,则由上式可得(4)

式中p——设计内压力,Mpa

Di——圆筒内直径,mm t ——计算厚度,mm Ф——焊缝系数,Ф≤1.0

〔σ〕t

——设计温度下圆筒材料的作用应力,Mpa。

式(4)即为内压圆筒厚度的计算公式。已知Q235—B 钢的设计内压力P<1.6

黄河科技学院毕业设计(论文)第 13 页

Mpa,选用P=1.0Mpa,许用应力〔σ〕t

=125 Mpa,〔σ〕=125 Mpa,Ф=0.5,

所以计算厚度t=(1.0×800)/(2×125×0.5—0.2)=7mm。代入(2)式验算得σ1=61.4<〔σ〕=125 Mpa,符合要求。 3.2.2 封头的设计(1)封头的选型及计算

最常用容器封头包括半球形封头、椭圆形封头、碟形封头和无折边封头等凸形封头以及圆锥形封头、平板封头等数种。这些封头都是压力容器的主要受压元件,由于与圆筒筒体的连接处有较为复杂的边界条件,故有不同性质的应力存在,所以在对承受均匀内压封头进行强度计算时,除了要考虑封头自身的薄膜应力外,还要考虑封头与圆筒筒体连接处的不连续应力。

综上所述,根据本次设计的要求,从各个封头的受力分析、制造工艺和的应用场合等各个方面综合考虑,我们选用标准椭圆行封头。如下图所示

椭圆形封头是由半个椭球面和一圆筒直边组成,其结构设计充分吸取了半球形封头受力好和碟形封头深度浅的优点,其应用最为广泛。由于椭圆形封头几何特征造成经线曲率平滑连续,故封头中的应力分布比较均匀。椭圆形封头中的应力,包括由内压引起的薄膜应力和封头与圆筒体连接处的不连续应力两部分。对于标准椭圆形封头,其Di/2hi=2,K=1,则封头的厚度计算公式为

T=Pdi/(2[σ]t

φ-0.5p) (5)

则t=7mm。其中长轴为2a=D=0.80m,h1/D=0.25,所以h=0.2m,短轴之半b=h=0.2m。从式(5)可知,标准椭圆形封头的厚度与筒体基本相同,若因Ф值有所不同,则相差也不会很大,为焊接方便,常取两者等厚。

黄河科技学院毕业设计(论文)第 14 页

(2)封头的强度校核

封头的厚度为7mm,椭圆形封头的当量球壳内半径R1=KD=1ⅹ800=800mm,用式(6)A= 1

125.0Re =0.0015,查得B=120Mpa,由式(7)

[P]=

R

B (7)

得[P]=1.05Mpa>1.0125 Mpa。故封头壁厚取7mm可以满足稳定性的要求。 3.2.3搅拌器功率的计算

在计算功率之前,首先计算搅拌过程的雷诺准数,计算公式为

Re=

2j

nd

(8)

已知η=40 r/min,dj=0.42m,μ=0.3Pa.s,ρ=1500kg/m3所以雷诺数Re=588。搅拌所需动力为

P=

1000

5

3

dnNP (9)

其中Np为动力系数,利用Rushton的算图,查得Np=0.75,代入上式得P=4.4KW,所需电动机的功率为Pe=P/η=4.4KW,所以选择5.5KW的电动机就可满足要求。 3.3搅拌轴的结构及材料 3.3.1轴的结构

搅拌轴主要用来支承搅拌器的,并从减速器输出轴取得动力使搅拌器旋转,达到搅拌的目的。因此,搅拌轴的结构就是以这些要求为依据进行设计的。搅拌轴上端应同减速器输出轴相连。它们是通过联轴器相联接的,因此,搅拌轴上端必须复合联轴器的联接结构要求。轴上相应的位置应加工出同搅拌器相配合的结构尺寸。目前常用的搅拌器大都采用平键、穿轴销钉或穿轴螺钉固定。其结构如下图所示。

黄河科技学院毕业设计(论文)第 15 页

1—搅拌器2—防锈螺母

3.3.2轴的材料

搅拌器轴的材料通常选用45号钢,还应进行正火或调质处理。同时由于化工反应中有腐蚀,所以还要进行防腐蚀处理。 3.3.3搅拌轴的计算

搅拌轴的计算主要是确定轴的最小截面尺寸(轴径),需要进行强度、刚度计算或校核,验

算轴的临界转速和挠度等,以便保证搅拌轴能安全可靠的运转。搅拌轴的特点是细而长,搅拌器设在轴的一端,轴受到扭转、弯曲和轴向等组合载荷,其中以扭转载荷为主。工程应用中常用近似的方法进行强度计算,即假定轴只受到扭矩作用,然后用增加安全系数以降低材料许用应力的办法来补偿其他载荷的影响。(1)轴的强度计算轴的扭转强度条件是: max =

P

TWM (10)

由上式可知,只要知道了搅拌轴上所传递的扭矩MT和轴材料的许用剪应力[ ]值后,就可求出轴的抗扭截面模量,即:

WP=

T

M

(11)

已知MT可由轴传递的功率P和转速n求出,即:

MT=9.55×106

P/n (12)

然后再根据抗扭截面模量Wp同轴径d的关系求出搅拌轴的最小直径。因为

Wp=

16

3

d (13)

黄河科技学院毕业设计(论文)第 16 页

将(12)(13)式代入(11)式得

d≥3

6

10

55.916

×

3

nP≈365.09×

3

nPmm

已知搅拌轴的功率为4.4KW,轴的转数n=40r/min,[ ]=40Mpa,代入上式得d=51.2mm。考虑到腐蚀,故搅拌轴的直径为55mm。(2)轴的刚度的计算

为了防止搅拌轴产生过大的扭转变形,从而在运转中引起振动,造成动密封失效,应该把轴的扭转变形限制在一个允许的范围内,这就是设计中的扭转刚度条件。为此搅拌轴要进行刚度计算。

工程上是以单位长度的扭转角θ不得超过许用扭转角[θ]作为刚度条件的,即:

θmax=

P

TGI

Mmax×103

×

180

≤[θ] (14)

θ—轴扭转变形的扭转角,°/m; G—剪切弹性模量,Mpa;G=8.1х104

Mpa; Ip—截面的极惯性矩。一般情况下Ip =

32

4

d 。

从(14)式可以看出,扭转角θ的大小与扭矩MTmax成正比,与扭转刚度GIp成反比。许用扭转角[θ]值是根据实际情况确定的,一般搅拌轴选用[θ]=(0.5—1.0)°/m。取[θ]=0.8。代入下式

d≥1537×

4

GnPmm (15)

得d=53.2mm。

轴径应同时满足刚度和强度两个条件。一般按刚度计算的轴径较按强度计算的轴径大,所以对搅拌轴来说,主要以刚度条件确定轴径。考虑到腐蚀,所以取轴径为d=55mm。

3.3.4搅拌轴的形位公差和表面粗糙度要求

由于要求运转平稳,防止轴的弯曲对轴封处的不利影响,因此轴安装和加工要

黄河科技学院毕业设计(论文)第 17 页

控制轴的直度,当转速n<100r/min时,直线度允差为1000:0.15。轴的配合面的配合公差和表面粗糙度可按所配零件的标准要求选取。 3.4 搅拌器及传动装置等的设计及计算 3.4.1 搅拌器的选择

根据工艺要求,选用直径为800mm,轴径Ф55mm的浆式搅拌器,标记符号为800—55 3.4.2 电动机的选型

根据搅拌器的结构及电动机的安装方式,我们选用Y系列V1型立式电动机,电动机的型号 Y132S—4 同步转速 1500 r/min 额定功率 5.5KW 满载转速 1440r/min 最大转矩 2.2 质量 68Kg

其结构尺寸参照《机械设计课程设计手册》表12—5。 3.4.3 减速器的选型

根据我国目前情况,反应釜用的立式减速机主要有,摆线针轮减速机、两级齿轮减速机、V 带减速机、蜗杆减速机等几种,这几种减速机已由有关工业部门订有标准系列,根据本次设计情况和查阅有关手册,我们选用摆线针轮减速机,如下图所示。

黄河科技学院毕业设计(论文)第 18 页

摆线针轮减速机

根据《单支点机架》(HG21566—95)标准的附录中列有常用的“釜用传动装置减速机型号及技术参数”可以根据公称直径和搅拌轴转速来选择减速机的型号。我们选用BLD3—1—29Q型减速器。其安装尺寸参照《化工设备设计基础》表18—12(a)。 3.4.4轴承的选择

轴承是机器中重要的部件,它的功用主要是支承轴及轴上的零件,并使轴保持一定的旋转精度,减少转轴与支承之间的摩擦与磨损。一般的工作情况下,滚动轴承的摩擦阻力较滑动轴承的摩擦阻力小,其功率损耗也小,容易起动,润滑与维护简单,而且滚动轴承是标准件,

可由专门工厂大批生产,选用方便。所以在各种机械设备中应用广泛。所以本次设计我们选用滚动轴承。

滚动轴承通常由四种元件组成,即外圈1、内圈3、滚动体2和保持架4,如下图。外圈和内圈都制有一定形状的滚道,以保证滚动体在其间作精确的运转。滚动体有球形、圆柱体、圆锥形、针形等,保持架的作用是把滚动体彼此隔开并沿滚道均匀分布,通常内圈装配在轴颈上,随轴一起转动;外圈装在轴承座里不转动。由于滚动体和内圈、外圈的接触面积很小,接触应力很大,所以它们都是由合金钢制造的,经热处理使硬度达到60HRC以上,保持架多用软钢冲压而成,也有用钢合金、塑料和其他材料制成的。

黄河科技学院毕业设计(论文)第 19 页

根据轴承所承受载荷的大小、方向和性质,我们选用深沟球轴承,主要承受径向载荷,也可同时承受一定的的轴向载荷。其结构如下图,其代号为6211。其安装尺寸参照《机械设计课程设计》(机械工业出版社)表12.1。轴承的润滑选用脂润滑,密封用毡圈式密封。

3.4.5 联轴器的选择

立式搅拌反应器常用的联轴器主要有JQ型夹壳式联轴器、GT型凸缘联轴器和TK型弹性块式联轴器。根据有关要求,我们选用弹性块式联轴器。这种联轴器适用于工作温度-20°—+60°,且有油或有弱碱、弱酸的介质浸蚀下的变载荷的连接,并能缓和一部分冲击,以及补偿少量的轴线偏差。弹性块式联轴器已经作为化工设备立式减速器HG标准的附件,应用较为广泛。弹性块式联轴器的结构如下图所示。上方与减速器轴相连的凸半联轴器,有4—12片弧形凸块。下方与搅拌轴相连的凹半联轴器上则制有凹槽,可以容放相应数量的弹性块和凸半联轴器上的凸块。联轴器与轴则以固定螺钉和键固定。当主动轴转动时,凸半联轴器即通过弹性块来带动凹半联轴器旋转。联轴器材料采用不比HT200差的铸铁,弹性块采用能在-20°—+60°范围内工作,且耐油、弱酸及弱碱的橡胶

黄河科技学院毕业设计(论文)第 20 页

制成。

其尺寸参考《化工设备机械基础》(第二版)表11—2。 3.5 传动装置的机架

反应釜立式传动装置是通过机架安装在反应釜封头的底座上的,机架上端需与减速机装配,下端则与底座装配。在机架上一般还需要有容纳联轴器、轴封装置等部件及其安装操纵所需要的空间。按照《搅拌传动装置系统组合》HG21563—95标准系列中选取机架。选用时,首先考虑上述要求,然后根据所选减速机的输出轴轴径及其安装定位面的结构尺寸选配合适的机架。根据上述条件,选用J—A55型单支点机架,机架的公称直径为300mm。如下图:黄河科技学院毕业设计(论文)第 21 页

其尺寸参照《化工设备设计基础》表18—14,机架的材料选用和加工,选用灰铸铁HT200铸造毛坯再进行加工。 3.6 底座的设计

为了易于保证底座既与减速机座连接又使穿过轴封装置的搅拌轴运转顺利,要求轴封装置与减速机架安装时有一定的同心度,一般都将两者的定位安装面做在同一块底座上。根据《搅拌传动装置系统组合、选用及技术要求》(HG21563—95中),我们选用下面的平底底座:

3.7搅拌器的轴封装置

解决化工设备的跑、冒、滴、漏,特别是防止有毒、易燃介质的泄露,是一个

黄河科技学院毕业设计(论文)第 22 页

很重要的问题。因此,在搅拌器的设计过程中选择合理的密封装置是很重要的。在反应釜中使用的轴封装置主要是填料箱密封和机械密封两种。通过下表填料箱密封和机械密封的比较,我们选取机械密封作为搅拌器的轴封装置。

机械密封系指两块环形密封元件,在其光洁面平直的端面上,依靠介质压力或弹簧力的作用,在相互贴合的情况下作相对转动,从而构成密封结构。图1是一种釜用机械密封装置的简单结构图。当轴转动时,带动了弹簧座、弹簧、弹簧压板、动环等零件一起旋转。由于弹簧力的作用使动环紧紧压在静环上。当轴旋转时,动环与轴一起旋转,而静环则固定于座架上静止不动,动环与静环相接触的环形密封端面阻止了介质的泄露。因此,从结构上看,机械密封主要是将较易泄露的轴向密封,改为不易泄露的端面密封。

比较项目填料箱密封机械密封

泄露量 180~450ml/h

一般平均泄露量为填料箱密封的1%

磨损功损失机械密封为填料箱密封的10%~50%

轴磨损

有磨损,用久后轴要换几乎无磨损

维护及寿命需要经常维护,更换填料

寿命0.5~1年或更长,很少需要维护高参数高压、高温、高真空、高转速、大直径密封很难解决

可以加工及安装加工要求一段,填料更换方便

动环、静环表面光洁程度及平直度要求高,不易加工,成本高,装卸不便对材料要求一般动环、静环要求较高减磨性能

黄河科技学院毕业设计(论文)第 23 页

图1

化工部门已将釜用机械密封的基本型式及参数制定了系列标准《搅拌传动装置—机械密封》(HG21571—95),并有定点厂供应各种规格产品,一般只需选用、订购即可。根据本次设计情况,我们选用单端面小弹簧平衡型,型号为2001,代号为HG21571 95 MS 2001—300—BUPFEBUP。 3.8搅拌器桨叶的设计 3.8.1搅拌器桨叶的选型

由于液体的粘度较低,根据实际情况,我们选用斜浆式叶片。结构如下所示

黄河科技学院毕业设计(论文)第 24 页

3.8.2搅拌桨叶的直径设计

斜桨叶式搅拌器的浆径与筒径(D1/D)的比为0.3~0.6,已知D=0.8m,所以D1=0.24m,桨叶的宽度为(0.1~0.25)D1,我们取b=0.15D1=0.04m。θ=30°。一般桨叶距筒底的高度H1为(0.5~1)D1,本次设计取H1= D1=0.24m。因为H/D=2,所以取单层,搅拌器层间距为(1~1.5)D1。 3.9搅拌器的接管口支座的结构设计 3.9.1 液体进料管

液体进料管我们选用下图所示的结构,接管伸入设备并将管口切成45°,这样可以避免液料沿搅拌器的内壁流动,减少物料对壁面的磨损与腐蚀。

管材的选用参照《化工设备机械基础课程设计指导书》(北京化工学院出版)表C—1,C—2可得,选用20号钢,GB699—88。 3.9.2 液体出料管

出料管结构设计主要从物料易放尽,阻力小和不易堵塞等因素考虑,另外还要考虑温差应力的影响。如下图所示是两种常见的结构。

黄河科技学院毕业设计(论文)第 25 页

根据设计我们选用(a)图出料管,直接为100mm,其结构尺寸参照下表管径D 50 70 100 125 150 Dmin 130

160

210

260

290

3.9.3仪表接管口

仪表接管与釜体的安装都用插入式,因为本次设计的搅拌器处于低压条件,所以采用单面角焊接。常用的仪表有玻璃温度计,都要采用套管结构并用多层套管加强。常用的几种接口结构参见《化工设备机械基础课程设计指导书》表B—12。 3.9.4法兰的选择

考虑到生产工艺上的要求和制造、运输和安装检修时的需要,化工设备常采用可拆卸的法兰联接方法。法兰联接是由一对法兰,若干个螺栓、螺母和一个垫片所组成,如下图所示。

根据设计要求我们选用甲型平焊法兰,其结构如下:

黄河科技学院毕业设计(论文)第 26 页

其结构尺寸参照《化工设备机械基础》(第二版)表16—13。法兰材料选用Q235—B,法兰垫片选用参照《化工设备机械基础》(第二版)表16—4,选用聚四氟乙烯板。 3.9.5设备支座的选择

化工设备上的支座是支承设备重量和固定设备位置用的一种不可缺少的部件。在某些场合下,支座还可能承受设备操作时的振动、载荷等。支座的结构形式和尺寸往往决定于设备的型式、载荷情况及构造材料。最常用的有:耳式支座、支承式支座和鞍式支座。

根据实际情况,我们选用耳式支座。它通常有两块筋板及一块底板焊接而成。筋板设备筒体焊接在一起,如下图所示。

底板上开有通孔,可供安装定位用。筋板是增较支座刚性的,轻型设备可以只

黄河科技学院毕业设计(论文)第 27 页

用一块。每个设备可用2—4个支座,必要时可用得跟多些。但个数多往往不能保证全部耳座都装在同一水平面上。因而也就不能保证每个耳座受力均匀。根据有关部门制定的系列标准,我们选用A型3号耳式支座。支座材料为Q235—A.F,其标记为:JB/T4725—92耳座AN3。其尺寸见《化工设备机械基础》(第二版)表16—22。支座的安装尺寸D(见下图)可按下式计算:

D=2

222

31222 b Dn+2(L2-S1)(16)

式中D——支座安装尺寸,mm; D1——容器内径,mm;δn——壳体名义厚度,mm;δ1——加强垫板厚度,mm。

计算得D=970mm。结论

1 一方面我们可以根据操作目的、操作条件、操作方法、原料和成品的特性、安全等初选搅拌器叶轮的型式;另一方面还需要依据各种搅拌器叶轮的性能及其应用实例、使用经验,综

合考虑选择搅拌器。

2 设计搅拌器时,除了运用经验和公式计算所需要动力、回转数等参数外,还需要以中小模拟试验为基准,进行放大,以符合实际操作达到预期的效果。

3 必须改进现有的搅拌器和设计新型的搅拌器,达到合适的搅拌液体流动状态,以适应各种粘度搅拌的需要和满足产品的性能要求,最终实现装置高效、节能的效果。

黄河科技学院毕业设计(论文)第 28 页

致谢

本次设计得到了杨汉嵩老师的大力帮助,为本人完成本次设计提供了大量的帮助,在设计中提出了许多有益的意见,提出了设计中的不足,使我及时得到改正。同时,本次设计也得到了同学们的大力帮助。给我提出了许多好的意见和建议。对此,我向杨汉嵩老师及同学们表示衷心的感谢。

黄河科技学院毕业设计(论文)第 29 页

参考文献:

1 周志安,化工设备设计基础, 1986.3

2 汤善甫,朱思明,化工设备机械基础(第二版), 1988.10

3 殷玉枫,机械设计课程设计,机械工业出版社,2006.6

4 吴宗泽,罗圣国,机械设计课程设计手册(第二版),高等教育出版社,1992.3.1

5 张平亮,化工进展,1995年第四期,44-49

6 张洪元等编,化学工业过程及设备,北京高等教育出版社,1956

7 陈乙崇主编,搅拌设备设计,上海:上海科学技术出版社,1985

8 王凯,冯连芳,混合设备设计,北京工业出版社,2000

9 陈允中,汪霞倩,搅拌设备的设计与计算,石油化工设备技术,1997 10 谭蔚主编,化工设备设计基础,天津大学出版社出版,2000.4 11 冯连芳,王嘉骏,顾雪萍,王凯,搅拌设备设计专家系统,2001.2 12 顾芳针,陈国桓,化工设备设计基础,天津大学出版社出版,1994.8 13 孙桓,陈作模,葛文杰,机械设计,高等教育出版社2006.5

黄河科技学院毕业设计(论文)第 30 页

附录

1. 搅拌器装配图………………………………………………………一张(A0)

2. 桨叶部件件图………………………………………………………一张(A3)

3. 主轴图………………………………………………………………一张(A3)

4. 支架图………………………………………………………………一张(A3)

5. 底座图………………………………………………………………一张(A3)

6. 减速器图……………………………………………………………一张(A3)

7. 联轴器………………………………………………………………一张(A3)

8. 软盘(说明书,设计任务书)……………………………………一张

9. 外文翻译…………………………………………………………3000字左右

小型搅拌器三维造型设计及关键零部件工艺设计

小型搅拌器三维设计及关键零部件工艺分析 摘要 搅拌设备使用历史悠久,应用范围广。在化学工业、石油工业、建筑行业等等传统工业中均有广泛的使用。搅拌操作看来似乎简单,但实际上,它所涉及的内容却极为广泛。本文介绍了小型搅拌器设计的基本思路和基本理论,分析了搅拌器的基本结构及其相关内容及搅拌器的运动和其动力装置。通过对搅拌器的基本设备的描述和对其基本工作原理、作用和功能等相关文献的参考,从而对小型搅拌器的设计加以综述。用pro/e 设计软件对搅拌器的零部件和整体进行三维设计。并对关键的零部件进行了工艺分析。 关键词:传动装置,联轴器,支承装置,电动机,减速器

The 3D Design of Small Blender and the Process analysis for the Key components Author:Du Bing Tutor:Yang Hansong Abstract The equipment of pulsator have a long history and are used in most areas. meawhile pulsator are used in tradition industry such as chemistry industry,petroleum industry,architecture industry and so on. The operation of mix round looks as if simpleness,but actually,the ingredient it involved are plaguy complexity. Tht text introduces the basic consider way and the basic theoretics of small pulsator design,and analyzed the basic configuration of pulsator and interfix content and analyzed the athletics and motivity equipment of describe the basic fixture of pulsator and consult its basic employment principle,function and operation,thereby summarize the design of small https://www.doczj.com/doc/cd11243668.html,ing Pro/e software to draw a stirrer on the components and the overall three-dimensional image.And the analysis of key parts of the process. Key word: Gearing,Join shaft ware,Bearing device,Electromotor,Reducer 目录

过程设备设计试题(附答案)

一. 填空题 1. 储罐的结构有卧式圆柱形.立式平地圆筒形. 球形 2. 球形储罐罐体按其组合方式常分为纯桔瓣式 足球瓣式 混合式三种 3. 球罐的支座分为柱式 裙式两大类 4. 双鞍座卧式储罐有加强作用的条件是A《0.2L条件下 A《0.5R 5. 卧式储罐的设计载荷包括长期载荷 短期载荷 附加载荷 6. 换热设备可分为直接接触式 蓄热式 间壁式 中间载热体式四种主要形式 7. 管壳式换热器根据结构特点可分为固定管板式 浮头式 U型管式 填料函式 釜式 重沸器 8. 薄管板主要有平面形 椭圆形 碟形 球形 挠性薄管板等形式 9. 换热管与管板的连接方式主要有强度胀接 强度焊 胀焊并用 10. 防短路结构主要有旁路挡板 挡管 中间挡板 11. 膨胀节的作用是补偿轴向变形 12. 散装填料根据其形状可分为环形填料 鞍形填料 环鞍形填料 13. 板式塔按塔板结构分泡罩塔 浮阀塔 筛板塔 舌形塔 14. 降液管的形式可分为圆形 弓形 15. 为了防止塔的共振 操作时激振力的频率fv不得在范围0.85Fc1 Fv 1.3Fc1内 16. 搅拌反应器由搅拌容器 搅拌机两大部分组成 17. 常用的换热元件有夹套 内盘管 18. 夹套的主要结构形式有整体夹套 型钢夹套 半圆管夹套 蜂窝夹套等 19. 搅拌机的三种基本流型分别是径向流 轴向流 切向流其中径向流和轴向流对混合起 主要作用 切向流应加以抑制

20. 常用的搅拌器有桨式搅拌器 推进式搅拌器 涡轮式搅拌器 锚式搅拌器_ 21. 用于机械搅拌反应器的轴封主要有填料密封 机械密封两种 22. 常用的减速机有摆线针轮行星减速机 齿轮减速机 三角皮带减速机 圆柱蜗杆减速机 23. 大尺寸拉西环用整砌方式装填 小尺寸拉西环多用乱堆方式装填 二. 问答题 1. 试对对称分布的双鞍座卧式储罐所受外力的载荷分析 并画出受力图及剪力弯矩图。 2. 进行塔设备选型时分别叙述选用填料塔和板式塔的情况。 答 填料塔 1分离程度要求高 2 热敏性物料的蒸馏分离 3具有腐蚀性的物料 4 容易发泡的物料 板式塔 1塔内液体滞液量较大 要求塔的操作负荷变化范围较宽 对物料浓度要 求变化要求不敏感要求操作易于稳定 2 液相负荷小 3 含固体颗粒 容易结垢 有结晶的物料 4 在操作中伴随有放热或需要加热的物料 需要在塔内设置内部换热组件 5 较高的操作压力 3. 比较四种常用减速机的基本特性。 摆线针轮行星减速机 传动效率高 传动比大 结构紧凑 拆装方便 寿命长 重量轻 体积小 承载能力高 工作平稳 对过载和冲击载荷有较强的承 受能力 允许正反转 可用于防爆要求齿轮减速机 在相同传动比范围内具有体积小

搅拌器毕业设计--(很实用)Word版

搅拌器毕业设计 第一章绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的

分散;

③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率3.7kW一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为18.5kW,故为中型电机。

搅拌机设计计算

搅拌机的设计计算 7.5kw 搅拌机设计: 雷,此时为湍流,2 K Np ==φ常数。 查表知:诺数的计算: 4 032 .08.0130010436833Re 285 2?≈===??μραi n 即4 10Re >蜗轮式,四平片时,5.42 =K 。 由公式5 1 3d n N N p ρ=,式中Np ——功率准数。 则,搅拌功率5 1 32d n K N ρ= 5 360 858.0)(13005.4???= W W 45.55450== 则,电机的最小功率为: η N N =电 ,取η=0.85 则KW N 41.685 .045.5电 == 则选用电机的功率为7.5KW 。 圆盘直径υ450mm ,选定叶轮直径υ800mm 。 桨叶的危险断面Ⅰ—Ⅰ(如上图): 该断面的弯矩值: (对于折叶蜗轮)

θSin n N x r x Z j M 155 .90 30?? ? =- 式中n ——转速;N ——功率; x ——桨叶上液体阻力的合力的 作用位置。 计算公式为: 3 2 31 4 24143 0r r r r x --?= 3 34412.04.012.04.04 3--? = =0.306(m) 则θ Sin n N x r x Z j M 155.90 30? ? ? =- 03 45185 105.7306 .0225.0306.04 55 .9Sin ?? ?= ?- =78.86(N.m )(Z=4叶片,θ=45°倾 角) 对于Q235A 材料,MPa 240~2205 =σ 当取n=2~2.5时,[σ]=88~100Mpa. 取[σ]=90Mpa 计算,得62 bh =ω(矩形截面) 且b=200mm ,求h 值。 由][σω≥M 有6 66.8109022.0?≥??h η, 可得h ≥0.00512m, 即h ≥5.12mm 考虑到腐蚀,则每边增加1mm 得腐蚀余量。 即,需叶片厚度为≥7.12, 取8mm 厚的钢板。 叶轮轴扭转强度计算验证

搅拌器的设计原则

搅拌器设计原则 如需设计一款搅拌器,要求暂设为以下数据:搅拌反应釜为开启式的,也就是说无压力自然环境下工作,为圆柱筒状,直径27cm,搅拌液体粘度很低,接近于水,液体深度有20cm;要求设计一款搅拌器桨叶,能够适合该种液体的搅拌。 分析,搅拌桨叶有很多种,大致有涡轮式、锚式、浆式、推进式、框式等如下: 1:有平桨式和斜桨式两种。平桨式搅拌器由两片平直桨叶构成。桨叶直径与高度之比为4~10,圆周速度为1.5~3m/s,所产生的径向液流速度较小。斜桨式搅拌器的两叶相反折转45°或60°,因而产生轴向液流。桨式搅拌器结构简单,常用于低粘度液体的混合以及固体微粒的溶解 和悬浮。 桨式搅拌器(图一) (图二) 2:由2~3片推进式螺旋桨叶构成(图2),工作转速较高,叶片外缘的圆周速度一般为5~15m/s。旋桨式搅拌器主要造成轴向液流,产生较大的循环量,适用于搅拌低粘度(<2Pa·s)液

体、乳浊液及固体微粒含量低于10%的悬浮液。搅拌器的转轴也可水平或斜向插入槽内,此时液流的循环回路不对称,可增加湍动,防止液面凹陷。 旋桨式搅拌器(图三) 3:由在水平圆盘上安装2~4片平直的或弯曲的叶片所构成桨叶的外径、宽度与高度的比例,一般为20:5:4,圆周速度一般为3~8m/s。涡轮在旋转时造成高度湍动的径向流动,适用于气体及不互溶液体的分散和液液相反应过程。被搅拌液体的粘度一 般不超过25Pa· 涡轮式搅拌器(图四)

(图五)折叶圆盘涡轮式涡轮式搅拌器 图六)平直叶圆盘涡轮式90°平刃涡轮式搅拌器 45°平刃涡轮式搅拌器 (图七)折叶圆盘涡轮

涡轮叶片弯曲式搅拌器 (图八) 投涡轮叶片式搅拌器

搅拌器设计

搅拌器毕业设计 第一章 绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 2 搅拌罐结构设计 1.1 罐体的尺寸确定及结构选型 1.1.1 筒体及封头型式 选择圆柱形筒体,采用标准椭圆形封头 1.1.2 确定内筒体和封头的直径 先忽略封头体积,估算筒体内径Di Di=3 4i V πφ V -工艺给定的容积,53m i -通体高径比,i=H / Di,由于是液-液混合体系选i=1.1; φ -装料系数,因搅拌状态比较平稳故取0.8。 3 450.8 16673.14 1.1 Di mm ??= =? Di 取整为1700mm ,即筒体直径DN=1700mm 1.1.3 确定筒体高度 封头直径确定后,确定筒体高度: 2 4() d V V H Di π-=

搅拌器设计计算复习过程

搅拌器设计计算

搅拌器设计计算 (作者:纪学鑫) 一、设计数据: 1、混合池实际体积V=1.15m ×1.15m ×6.5m ≈8.60m 3 ∴设混合池有效容积V=8m 3 2、混合池流量Q=0.035m 3/s 3、混合时间t=10s 4、混合池横截面尺寸1.15m ×1.15m ,当量直径D=πω4L =π 15.115.14??=1.30m 5、混合池液面高度H = 24πD V =m ..π036301842≈?? ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m 6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈?? ? ??D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。 7、取平均水温时,水的粘度值()s a ?P μ=1.14×10-3s a ?P 取水的密度3/kg 1000m =ρ 8、搅拌强度 1)搅拌速度梯度G ,一般取500~1000s -1。 混合功率估算:N Q =K e Q(kw) K e --单位流量需要的功率,K e 一般=4.3~173/s kw m ? ∴混合功率估算:3/s kw 17~3.4m N Q ?= 1-3-3 e e )30.1365~65.686(s 8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈????===?)(μμ

取搅拌速度梯度1-s 740=G 2)体积循环次数'Z 搅拌器排液量'Q ,213.08.008.1385.0)/(333'=??==s m nd k Q q 折叶桨式,片,245=?=Z θ,流动准数385.0k q 取,见表4-27查取; ---n 搅拌器转速) (s /r ;d 搅拌器直径(m) 转速d 60n πν= ;---线速度v ,直径d ,根据表4-30查取。 ()266.03===?V t nd k V t Q Z q ''容积 3)混合均匀度U ,一般为80%~90%。U 取80%。 9、搅拌机的布置形式、加药点设置。 1)立式搅拌机的布置:一般采用中央置入(或称顶部插入)式。 2)搅拌器的位置及排泄方向:搅拌器的位置应避免水流直接影响侧面冲击。搅拌器距液面的距离通常小于搅拌器直接的1.5倍。 二、搅拌器的选用及主要参数 1. 选用折叶桨式 2. 桨叶数2=Z 3. 搅拌器直径0.8m d m 0.867~433.0m 32~31d ==?? ? ??=,取)()(D 4. 搅拌器螺距d s = 5. 搅拌器层数d H ,取7,(公司取层数4) 6. 搅拌器外缘线速度ν取(1.0~5.0)m/s 7. 搅拌器宽度:b=(0.1~0.25)d=(0.08~0.2)m,取0.11m 三、搅拌器转速及功率设计

过程设备设计复习题及答案6——8

过程设备设计复习题及答案 换热设备 根据结构来分,下面各项中那个不属于管壳式换热器:( B ) A.固定管板式换热器 B.蓄热式换热器 C.浮头式换热器 形管式换热器 常见的管壳式换热器和板式换热器属于以下哪种类型的换热器:(C ) A.直接接触式换热器 B.蓄热式换热器 C.间壁式换热器 D.中间载热体式换热器 下面那种类型的换热器不是利用管程和壳程来进行传热的:(B ) A.蛇管式换热器 B.套管式换热器 C.管壳式换热器 D.缠绕管式换热器 下列关于管式换热器的描述中,错误的是:(C ) A.在高温、高压和大型换热器中,管式换热器仍占绝对优势,是目前使用最广泛的一类换热器。 B.蛇管式换热器是管式换热器的一种,它由金属或者非金属的管子组成,按需要弯曲成所需的形状。 C.套管式换热器单位传热面的金属消耗量小,检测、清洗和拆卸都较为容易。 D.套管式换热器一般适用于高温、高压、小流量流体和所需要的传热面积不大的场合。 下列措施中,不能起到换热器的防振效果的有:(A) A.增加壳程数量或降低横流速度。 B.改变管子的固有频率。 C.在壳程插入平行于管子轴线的纵向隔板或多孔板。 D.在管子的外边面沿周向缠绕金属丝或沿轴向安装金属条。

按照换热设备热传递原理或传递方式进行分类可以分为以下几种主要形式:(ABC) A.直接接触式换热器 B.蓄热式换热器 C.间壁式换热器 D.管式换热器 下面属于管壳式换热器结构的有:(ABCD) A.换热管 B.管板 C.管箱 D.壳体 引起流体诱导振动的原因有:(ACD) A.卡曼漩涡 B.流体密度过大 C.流体弹性扰动 D.流体流速过快 传热强化的措施有:(BCD) A.提高流量 B.增加平均传热温差 C.扩大传热面积 D.提高传热系数 下列关于管壳式换热器的描述中,错误的是:(CD) A.管壳式换热器结构简单、紧凑、能承受较高的压力。 B.管壳式换热器适用于壳侧介质清洁且不易结垢并能进行清洗的场合。 C.管壳式换热器适用于管、壳程两侧温差较大或者壳侧压力较高的场合。 D.在管壳式换热器中,当管束与壳体的壁温或材料的线膨胀系数相差不大时,壳体和管束中将产生较大的热应力 6.换热设备 (对)套管式换热器具有结构简单,工作适应范围大,传热面积增减方便的特点 (错)通过增加管程流量或增加横流速度可以改变卡曼漩涡频率,从而消除散热器的振动。

基于SolidWorks的搅拌器结构优化设计

基于SolidWorks的搅拌器结构优化设计 搅拌器的设计一直采用经验设计方法,本文通过SolidWorks对其进行了建模和参数化设计,并运用Simulation仿真分析功能对其所建立的模型进行了有限元分析。最后通过SolidWorks的优化功能对半搅拌器模型进行了优化设计,得到了搅拌板的最优厚度。该方法为半搅拌器结构分析和优化设计提供了一种新思路。 全自动液压制砖机简称液压砖机,液压制砖机是采用液压动力制砖的免烧砖机。蒸压粉煤灰砖是以粉煤灰、石灰或水泥为主要原料,掺加适量石膏、外加剂、颜料和集料等,经坯料制备、坯体成型和高压蒸汽养护等工序制成的实心粉煤灰砖。蒸压粉煤灰砖是国家建设部推荐的新型墙体材料品种之一。搅拌器是全自动液压制砖机布料的主要工作装置,其主要功能是保证粉煤灰混合料均匀性的前提下,当粉煤灰混合料从上料斗落到下料斗时,在振动装置和下料斗内搅拌器共同作用下,使粉煤灰混合料在下料斗内均匀分布,在布料小车的运动过程中,行走到制砖模具上方时,使其均匀落到模具模腔内,让每个砖腔都有足够的料,才能保证各块砖重量一致。 搅拌器结构如图1所示,由两个半搅拌器组成一个搅拌器,下料斗内有两个搅拌器,当粉煤灰混合料从上料斗落入下料斗时,两个搅拌器相互运动,同时振动机构使下料斗做往复运动,让物料在下料斗内均匀分布。实际粉煤灰砖生产中发现,搅拌器在工作过程中,搅拌板向外侧弯曲。分析认为,搅拌器轴带动搅拌器做旋转运动,搅拌粉煤灰混合料,并使其分布均匀,粉煤灰混合料高度高于搅拌器,也就是说,搅拌器整个埋在粉煤灰混合料里,在搅拌的过程中,不断与粉煤灰混合料相摩擦。可能由于搅拌器结构强度不够,使得搅拌器的搅拌板产生弯曲。 图1 搅拌器结构图 本文以全自动液压制砖机搅拌器为例,基于SolidWorks产品设计平台,对搅拌器进行仿真设计和优化设计,通过分析结果和优化方案,缩短设计周期,增加产品的可靠性,降低材料消耗和成本;并模拟各种试验方案,提前发现潜在的问题,减少试验时间和生产经费。 搅拌器结构一直采用传统的设计方法——类比设计和经验设计,产品质量主要依靠设计人员的经验,需要进行方案设计、样机试制,样机试验,方案修改,然后多次循环才能完成。这种设计方法可靠性较差,设计成本高。现代基于三维软件的CAD/CAE设计模式在设计阶段就可以对各种方案进行分析比较和优化,减少或消除样机的制作。通过有限元分析便可了解设备在高压作用下零件的应力分布、变形情况;零件之间的接触力;判定产品的安全性;找出产品经济性与安全性的最佳平衡点。

基于PLC的混凝土搅拌机设计

基于PLC的混凝土搅拌机设计 前言 可编程序逻辑控制器(PLC)自它诞生以来至今,以其极高的性能价格比以及一系列人所共识的优点,受到越来越多的工程技术人员的重视。它现在被广泛用于汽车生产、石油生产、IT制造、家电制造厂等工业控制系统场所,是现代制造业发展的重要技术之一。它对工业的生产提供了良好的控制系统,它的广泛使用才使得人民不断增长的物质需求得到有利保障。 1969年美国DEC公司研制的第一台PDP-14型PLC。随后,在二十世纪七十至八十年代一直简称为PC。由于到90年代,个人计算机发展起来,也简称为PC;可编程序范围很大,所以美国AB公司首次将可编程序控制器定名为可编程序逻辑控制器(Programmable Logic Controller),简称为PLC。PLC在控制领域的应用是保持了广泛的增长趋势。 随着我国经济建设的高速发展,许多大型的基础工程及建筑工程相继开工。建设优质的工程需要高品质的混凝土,而且随着人们环保意识的加强,为了减少城市噪音和污染,交通和建筑处理部门要求施工用的混凝土集中生产和管理。这样不仅要求,混凝土的配料精度高,而目要求生产速度快,因此,混凝土生产过程中搅拌设备自动控制系统日益受到人们的重视。可编程控制器(PLC)具有可靠性高、功能完善、编程简单且直观,能够有效地弥补继电器控制系统的缺陷。 从1903年德国建造世界上第一座预拌混凝土搅拌站以来,商品混凝土作为独立的产业己有100多年的历史。随后,美国于1913年,法国于1933年建立了自己的搅拌站。二次大战后,尤其是60年代到70年代,由于各国抓紧发展经济,医治战争的创伤,混凝土搅拌站得到了快速发展。目前,德国、美国、意大利、日本等国家的搅拌站在技术水平和可靠性方面处于领先地位。国外生产的搅拌站一般生产率在50m3/ h~300m3/h,对于商品混凝土生产,搅拌站形式应用比较普遍,尤其在大型工程中被采用。我国混凝土搅拌站(楼)的研制是从50年代开始的,在其发展过程中,型式的选取和主要技术参数基本上是根据用户要求和参考国外产品的自由状态。国标GB10171-88((混凝土搅拌站(楼)分类》和GB 10172-88((混凝土搅拌站(楼)技术条件》的颁布实施,将混凝土搅拌站(楼)的研制和生产纳入了标准管理的轨道,为其发展奠定了基础。产品技术标准和预拌混凝土标准的要求中,对于混凝土搅拌站(楼)的技术指标己达到发达国家水平。当今国内生产的混凝土搅拌站质量迅速提高,逐步取代了进口搅拌站,在国内已经占主导地位,其控制系统也得到快速发展。国内大型混凝土搅拌站生产厂商包括:三一重工、珠海志美、上海华建、南方路机等。自八十年代以来,我国混凝土机械有两次战略性产品结构调整,对行业的发展起到了举足轻重的作用:一是八十年代初期混凝土搅拌机的升级换代,由双锥反转型、立轴和卧轴强制式混凝土搅拌机替代鼓筒型搅拌机,现在这三大系列产品的技术性能己达到国外同类机型的

过程装备设计课程设计题

《过程装备设计》课程设计 基本要求:按照课程设计指导书的有关要求进行。 题目: 1.某企业用冷却水冷却从反应器中出来的循环使用的有机液,要求从有机液中取出4×105kJ/h的热量,其操作条件和物性参数如表所示,设有两个单程列管式换热器可用,其尺寸如下:换热器内径D=270mm,内装48根Φ25×2.5mm,长3m的钢管,试通过计算分析如下问题并设计该换热器: (1)这两个换热器能否移走4×105kJ/h的热量? (2)这两个换热器用并联的方式安装,是否最好? 2.某炼油厂用175℃的柴油将原油从70℃预热到110℃,已知柴油的处理量为34000kg/h,柴油的密度为715kg/m3,比热为 2.48kJ/kg·K,导热系数为0.133W/m·K,粘度为0.64×10-3N·s/m2,原油处理量为44000kg/h,密度为815kg/m3,比热为2.2kJ/kg·K,导热系数为0.128W/m·K,粘度为3×10-3N·s/m2,传热管两侧污垢热阻取为0.000172m2·K/W,两侧的阻力损失都不应超过0.3105N/m2,试确定一适当的列管式换热器。 3.某炼油厂用海水冷却常压塔产出的柴油馏分,冷却器为Φ114×8钢管组成的排管,水平浸没于一很大的海水槽中,海水由下部引入,上部溢出,海水通过槽内时的流速很小。已知计算时测得海水的平均温度为42.5℃,钢管外壁温度为56℃,试确定该冷却器的基本结构参数。 4.以一精馏塔用于分离乙苯—苯乙烯混合物,其中塔的进料量为3100kg/h,混合物中乙苯的质量分率为0.6,要求塔顶和塔底产品中的乙苯质量分率应达到0.95和0.25,试通过计算确定该塔型和其基本结构。 5.以一常压连续精馏塔用于分离含苯40%(质量分数)的苯—甲苯混合液,要求塔顶和塔底产品中的苯质量分数应达到97%以上和2%以下,采用的回流比R=3.5,若精馏塔内的塔板结构为筛板,已知苯和甲苯在塔顶和塔底的平均温度

搅拌机设计流程

摘要 搅拌机是搅拌设备的心脏。在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则。论文通过试验研究,建议用叶片推动的物料量与该搅拌机的公称容量的比值rl,来综合评定搅拌臂的个数,叶片面积和其他参数匹配的合理性,并作为设计时的参考;双卧轴搅拌机的叶片的安装角范围为3l一45,对国内广泛使用的宽短型双卧轴搅拌机叶片安装角度推荐为45;对目前国内外普遍使用的双卧轴搅拌机,它的长宽比的选择范围为0.7—1.3,推荐使用值为小于1;搅拌机的转速主要受搅拌过程中混合料不发生离析现象所限制,对目前常用的双卧轴搅拌机,推荐的叶片线速度为1.4m /s-1.7m/s/;合理的搅拌时间是保证搅拌质量符合要求条件下的最短搅拌时间,它受充盈率等多种因素影响,合理的搅拌时间应通过试拌来确定。 [关键词]:搅拌机、主要参数、合理性、实验研究

第1章前言 1.1国内外研究现状及发展趋势 19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示。形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。在这期间,仍然以各种有叶片或无叶片的自落式搅拌机的发明与应用为主?。自落式搅拌机依靠被拌筒提升到一定高度的物料的自落完成搅拌。工作时,随着拌筒的转动,物料被搅拌筒内壁固定的叶片提升到一定高度后,依靠自重下落。由于各物料颗粒下落的高度、时问、速度、落点和滚动距离不同,从而物料各颗粒相互穿插、渗透、扩散,最后达到均匀混合。自落式搅拌机结构简单,可靠性高,维护简单,功率消耗小,拌筒和叶片磨损轻,但搅拌强度不高,生产效率低,搅拌质量不易保证。此种搅拌机适于拌制普通塑性混凝土,广泛应用于中小型建筑工地。按拌筒形状和卸料方式的不同,有鼓筒式搅拌机、双锥反转出料搅拌机、双锥倾翻出料搅拌机和对开式搅拌机等,其中鼓简式搅拌机技术性能落后,已于1987年被我国建设部列为淘汰产品。随着多种商品混凝土的广泛使用以及建筑规模的大型化、复杂化和高层化对混凝土质量、产量不断提出的更高要求,有力地促进了混凝土搅拌设备在使用性能和技术水平方面的提高与发展。各国研究人员开始从混凝土搅拌机的结构形式、传动方式、搅拌腔衬板材料以及搅拌生产工艺等方面进行改进和探索。20世纪40年代后期,德国ELBA公司最先发明了强制式搅拌机,和自落式搅拌机的工作原理不同,强制式搅拌机利用旋转的叶片强迫物料按预定轨迹产生剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈的相对运动中得到匀质搅拌。强制式

搅拌桨叶的选型和设计计算

一、搅拌机结构与组成 组成:搅拌器 电动机 减速器 容器 排料管 挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面 强烈剪切 旋涡扩散 主体对流 宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动 微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。 高粘度过物料混合过程.主要是剪切作用。

三、混合效果的度量 1、调匀度I 设A 、B 两种液体.各取体积vA 及vB 置于一容器中. 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA CA0时) 或 (当样品中CA CA0时) 显然 I ≤1 若取m 个样品.则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 混合尺度分 设备尺度 微团尺度 分子尺度 对上述两种状态: 在设备尺度上:两者都是均匀的(宏观均匀状态) 在微团尺度上:两者具有不同的均匀度。 在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均 匀) 如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。 如取样尺寸小到与b 中微团尺寸相近时.则b 状态调匀度下降.而a 状态调匀度不变。 即:同一个混合状态的调匀度随所取样品的尺寸而变化.说明单平调匀度不能反映混合物的均匀程度 四、搅拌机主要结构 1、搅拌器 搅拌器由电动机带动.物料按一定规律运动(主体对流).桨型不同.物料产生的流型不同。 桨作用于物料.物料产生三个方向的速度分量: 轴向分量 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =-I

实验室搅拌器..

武汉轻工大学 科研论文 论文题目实验室搅拌器概述与原理 姓名汪涛 学号110309109 院(系)机械工程学院 专业过程装备与控制工程 指导教师万志华 2014年12 月25 日

摘要介绍了实验室用搅拌器--机械搅拌器和磁力搅拌器,对它们的组成和工作原理进行讲解,对比不同的搅拌器分析它们的的特点,简述各种搅拌器使用场合及使用注意事项。各种机械搅拌器的工作原理类似,根据它们的搅拌棒的不同,分为不同类型的搅拌器,应用的介质也不相同。磁力搅拌器利用了磁场和漩涡的原理进行工作,稳定方便,较为先进,需了解其使用方法及注意事项。因而,该研究对于提高人们对实验室搅拌器的认知具有重要意义。 关键词机械搅拌器磁力搅拌器搅拌棒 引言 搅拌操作是化工反应过程的重要环节,其原理涉及流体力学、传热、传质及化学反应等多种过程,搅拌过程就是在流动场中进行动量传递或是包括动量、热量、质量传递及化学反应的过程。搅拌器有两大功能:(1)使液体产生强大的总体流动,以保证装置内不存在静止区,达到宏观均匀;(2)产生强大的湍动,使液体微团尺寸减小。搅拌器选用得当,液团分割就越细小,使得混合的组分之间接触面不断增大,分子扩散速率增加,也即混合效果越好。在工程设计中,常用的搅拌器有推进式、涡轮式、框式以及螺带式等。众所周知,每一种搅拌器都不是万能的,只有在特定的应用范围内才是高效的。 搅拌器也是有机化学实验必不可少的仪器之一,它可使反应混合物混合得更加均匀,反应体系的温度更加均匀,从而有利于化学反应的进行特别是非均相反应。目前,在实验室中使用的搅拌器主要是两种:机械搅拌器与磁力搅拌器。 1·机械搅拌器 1·1概述 械搅拌器主要包括三部分:电动机、搅拌棒和搅拌密封装置。电动机是动力部分,固定在支架上,由调速器调节其转动快慢。搅拌棒与电动机相连,当接通电源后,电动机就带动搅拌棒转动而进行搅拌,搅拌密封装置是搅拌棒与反应器连接的装置,它可以使反应在密封体系中进行。搅拌的效率在很大程度上取决于搅拌棒的结构,。根据反应器的大小、形状、瓶口的大小及反应条件的要求,选择较为合适的搅拌棒。 1·2种类 不同介质黏度的搅拌粘度系指流体对流动的阻抗能力,其定义为:液体以1cm/s的速度流动时,在每1cm2平面上所需剪应力的大小,称为动力粘度,以Pa·s为单位。粘度是流体的一种属性。流体在管路中流动时,有层流、过渡

搅拌器毕业设计说明书

第一章绪论 搅拌可以使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也可以加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,所以在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之所以这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备可以从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率3.7kW一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为18.5kW,故为中型电机。 二、偏心式搅拌 搅拌装置在立式容器上偏心安装,能防止液体在搅拌器附近产生“圆柱状回转区”,可以产生与加挡板时相近似的搅拌效果。搅拌中心偏离容器中心,会使液流在各店所处压力不同,因而使液层间相对运动加强,增加了液层间的湍动,使搅拌效果得到明显的提高。但偏心搅拌容易引起振动,一般用于小型设备上比较适合。 三、倾斜式搅拌 为了防止涡流的产生,对简单的圆筒形或方形敞开的立式设备,可将搅拌器用甲板或卡盘直接安装在设备筒体的上缘,搅拌轴封斜插入筒体内。 此种搅拌设备的搅拌器小型、轻便、结构简单,操作容易,应用范围广。一般采用的功率为0.1~22kW,使用一层或两层桨叶,转速为36~300r/min,常用于药品等稀释、溶解、分散、调和及pH值的调整等。 四、底搅拌 搅拌装置在设备的底部,称为底搅拌设备。底搅拌设备的优点是:搅拌轴短、细,无中间轴承;可用机械密封;易维护、检修、寿命长。底搅拌比上搅拌的轴短而细,轴的稳定性好,既节省原料又节省加工费,

搅拌桨叶的选型和设计计算

第二节搅拌桨叶的设计和选型一、搅拌机结构与组成 组成:搅拌器电动机 减速器 容器 排料管挡板 适用物料:低粘度物料 二、混合机理 利用低粘度物料流动性好的特性实现混合 1、对流混合 在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。包括两种形式: (1)主体对流:搅拌器带动物料大范围的循环流动 (2)涡流对流:旋涡的对流运动 液体层界面强烈剪切旋涡扩散 主体对流宏观混合 涡流对流 2、分子扩散混合 液体分子间的运动微观混合 作用:形成液体分子间的均匀分布 对流混合可提高分子扩散混合 3、剪切混合 剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。 高粘度过物料混合过程.主要是剪切作用。 电 动 机 减速器 搅 拌 器 容 器 排料管

三、混合效果的度量 1、调匀度I 设A 、B 两种液体.各取体积vA 及vB 置于一容器中. 则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀 若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。 引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为: (当样品中CA < CA0时) 或 (当样品中CA > CA0时) 显然 I ≤1 若取m 个样品.则该样品的平均调匀度为 当混合均匀时 2、混合尺度 设有A 、B 两种液体混合后达到微粒均布状态。 B A A A V V V C +=00A A C C I =0 11A A C C I --=m I I I I m +??++=- 211 =-I

搅拌器毕业设计很实用

搅拌器毕业设计很 实用

搅拌器毕业设计 第一章绪论 搅拌能够使两种或多种不同的物质在彼此之中互相分散,从而达到均匀混合;也能够加速传热和传质过程。在工业生产中,搅拌操作时从化学工业开始的,围绕食品、纤维、造纸、石油、水处理等,作为工艺过程的一部分而被广泛应用。 搅拌操作分为机械搅拌与气流搅拌。气流搅拌是利用气体鼓泡经过液体层,对液体产生搅拌作用,或使气泡群一密集状态上升借所谓上升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体进行的搅拌时比较弱的,对于几千毫帕·秒以上的高粘度液体是难于使用的。但气流搅拌无运动部件,因此在处理腐蚀性液体,高温高压条件下的反应液体的搅拌时比较便利的。在工业生产中,大多数的搅拌操作均系机械搅拌,以中、低压立式钢制容器的搅拌设备为主。搅拌设备主要由搅拌装置、轴封和搅拌罐三大部分组成。其结构形式如下:(结构图) 第一节搅拌设备在工业生产中的应用范围很广,特别是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在许多场合时作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器约占反应器总数的99%。。搅拌设备的应用范围之因此这样广泛,还因搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围较广,又能适应多样化的生产。 搅拌设备的作用如下:①使物料混合均匀;②使气体在液相中很

好的分散;③使固体粒子(如催化剂)在液相中均匀的悬浮;④使不相溶的另一液相均匀悬浮或充分乳化;⑤强化相间的传质(如吸收等);⑥强化传热。 搅拌设备在石油化工生产中被用于物料混合、溶解、传热、植被悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精制,汽油中添加四乙基铅等添加物而进行混合使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。 第二节搅拌物料的种类及特性 搅拌物料的种类主要是指流体。在流体力学中,把流体分为牛顿型和非牛顿型。非牛顿型流体又分为宾汉塑性流体、假塑性流体和胀塑性流体。在搅拌设备中由于搅拌器的作用,而使流体运动。 第三节搅拌装置的安装形式 搅拌设备能够从不同的角度进行分类,如按工艺用途分、搅拌器结构形式分或按搅拌装置的安装形式分等。一下仅就搅拌装置的各种安装形式进行分类说明。 一、立式容器中心搅拌 将搅拌装置安装在历史设备筒体的中心线上,驱动方式一般为皮带传动和齿轮传动,用普通电机直接联接。一般认为功率 3.7kW 一下为小型,5.5~22kW为中型。本次设计中所采用的电机功率为

相关主题
文本预览
相关文档 最新文档