二阶常系数线性微分方程
- 格式:ppt
- 大小:1.19 MB
- 文档页数:30
二阶常系数齐次线性微分方程的通解这类方程很特殊,前缀多,范围小,但在物理中经常见到,所以单独讨论。
我们先从二阶线性微分方程入手,y''+P(x)y'+Q(x)y+R(x)=0,若R(x)=0,则为二阶线性齐次微分方程。
进一步地,若系数和x无关,都为常数,即为常系数二阶线性齐次微分方程y''+py'+qy=0.求解这个方程,可以先求出它的两个线性独立的特解,然后通过解的叠加原理得到通解。
设解的形式为y=e^{rx}代入方程即得到(r^2+pr+q)e^{rx}=0 \Rightarrow r^2+pr+q=0.这个等式称为微分方程的特征方程,可见特征方程是一个一元二次代数方程,其解可由求根公式得到。
需要分三种情况讨论:1)特征方程有两个不等实根r_1 \ne r_2则两个特解为y_1=e^{r_1x},y_2=e^{r_2x},而\frac{y_1}{y_2} \ne C,故通解为y=C_1e^{r_1x}+C_2e^{r_2x}.2)特征方程有一对共轭复根r_1=a+bi,r_2=a-bi,b\ne0则两个特解为y_1=e^{ax+bxi},y_2=e^{ax-bxi},由欧拉公式有y_1=e^{ax}[cos(bx)+isin(bx)],y_2=e^{ax}[cos(bx)-isin(bx)].特解含有复数部分,我们希望解是实的,运用解的叠加原理,可以凑出新的两个特解y_{11}=\frac{1}{2}(y_1+y_2)=e^{ax}cos(bx),y_{12}=\frac{1}{2}(y_1-y_2)=e^{ax}sin(bx).它们也线性无关,因此通解为y=e^{ax}[C_1cos(bx)+C_2sin(bx)].3)特征方程具有两个相等实根r_1=r_2只能得到一个特解y_1=e^{r_1x}.设\frac{y_2}{y_1}=u(x) \Rightarrow y_2=y_1u(x),代入原微分方程可得到u''=0.不放取u=x作为第二个特解。
二阶常系数线性齐次微分方程在微积分中,二阶常系数线性齐次微分方程是一个非常重要的概念。
它在数学和物理学领域中广泛应用,并且具有丰富的解法和性质。
本文将介绍二阶常系数线性齐次微分方程的基本定义、解法和一些应用。
一、定义二阶常系数线性齐次微分方程是指形如以下形式的微分方程:\[ay''+by'+cy=0\]其中\(a\)、\(b\)、\(c\)为常数,\(y\)是自变量\(x\)的函数。
二、特征方程和特解为了求解上述微分方程,首先需要求解其对应的特征方程。
将\(y=e^{rx}\)代入微分方程可以得到特征方程:\[ar^2+br+c=0\]解特征方程可以得到两个互不相同(或相同)的根\(r_1\)和\(r_2\)。
根据这些根的不同情况,可以得到微分方程的通解。
情况一:\(r_1\)和\(r_2\)为实数且不相等。
此时通解为:\[y=c_1e^{r_1x}+c_2e^{r_2x}\]其中\(c_1\)和\(c_2\)为任意常数。
情况二:\(r_1\)和\(r_2\)为实数且相等。
此时通解为:\[y=(c_1+c_2x)e^{r_1x}\]其中\(c_1\)和\(c_2\)为任意常数。
情况三:\(r_1\)和\(r_2\)为共轭复数。
此时通解为:\[y=e^{ax}(c_1\cos bx+c_2\sin bx)\]其中\(a\)和\(b\)为实数,\(c_1\)和\(c_2\)为任意常数。
三、应用举例二阶常系数线性齐次微分方程在物理学和工程学中有广泛应用。
以下是几个简单的应用举例。
1. 振动方程振动系统通常可以用二阶常系数线性齐次微分方程来描述。
例如自由振动的弹簧质量系统的运动方程可以表示为:\[m\frac{{d^2x}}{{dt^2}}+kx=0\]其中\(m\)为质量,\(k\)为弹性常数,\(x\)为位移。
2. 电路方程电路中的某些电路元件,如电感、电容和电阻,遵循二阶常系数线性齐次微分方程。