管理决策分析第二版第三章贝叶斯决策分析
- 格式:pptx
- 大小:611.96 KB
- 文档页数:74
贝叶斯网络模型在决策分析中的应用近年来,随着数据的爆炸式增长,数据分析在各个领域的应用变得越来越普遍。
在决策分析领域,贝叶斯网络模型已经成为了一种非常有力的工具。
贝叶斯网络可以帮助我们将各种因素联系起来,预测事件的可能性,并帮助我们做出正确的决策。
接下来,我们将详细的介绍一下贝叶斯网络模型在决策分析中的应用。
一、什么是贝叶斯网络模型贝叶斯网络是一种概率图模型,通过图的节点和边来表示变量之间的联系,节点表示变量,边表示变量之间的依赖关系。
贝叶斯网络模型可以用来推断变量之间的关系,并进行预测。
其基本思想是,对于一个事件来说,我们不仅仅知道其中某些因素的概率,还要考虑这些因素之间的关系,从而得到事件发生的概率。
因此,贝叶斯网络模型可以帮助我们在不确定性的情况下,处理事实和数据之间的关系。
二、贝叶斯网络模型的应用1、风险预测贝叶斯网络模型可以用来进行风险预测,从而帮助我们做出更加明智的决策。
例如,在银行信贷风险评估中,我们可以利用这种模型来建立一个信用评级系统。
我们可以将客户申请的贷款金额、收入、已有贷款的还款情况、年龄、性别等因素作为节点,然后使用大量的数据对这些节点进行训练,从而得到一个准确的风险评估模型。
2、医疗诊断贝叶斯网络模型还可以用来进行医疗诊断。
我们可以将各种疾病、症状、家族史、饮食、运动等因素作为节点,然后使用医疗数据进行训练,从而得到一个准确的诊断模型。
这种模型可以帮助医生更加准确地诊断疾病,并提供更好的治疗方案。
3、工业决策贝叶斯网络模型还可以用来进行工业决策。
例如,在石油开采行业,我们可以将工程中的各种因素,如油藏性质、地质结构、工程参数等作为节点,并使用大量的数据进行训练,从而得到一个准确的决策模型。
这种模型可以帮助决策者更好地做出决策,提高开采效率。
三、贝叶斯网络模型的优势相比于其他模型,贝叶斯网络模型具有以下优势:1、深入分析因素之间的关系贝叶斯网络从本质上就是一种因果推断的模型,在分析过程中,它能够深入分析各个因素之间的关系,与其他模型相比,它更加准确、可靠。
第四章贝叶斯分析Bayesean Analysis§4.0引言一、决策问题的表格表示——损失矩阵对无观察(No-data)问题a=δ可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失):或损失矩阵直观、运算方便二、决策原则通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。
本章在介绍贝叶斯分析以前先介绍芙他决策原则。
三、决策问题的分类:1.不确定型(非确定型)自然状态不确定,且各种状态的概率无法估计.2.风险型自然状态不确定,但各种状态的概率可以估计.四、按状态优于:l ij ≤lik∀I, 且至少对某个i严格不等式成立, 则称行动aj按状态优于ak§4.1 不确定型决策问题一、极小化极大(wald)原则(法则、准则) a1a2a4minj maxil (θi, aj) 或maxjminiuij例:θ24 1 9 2θ313 16 12 14θ46 9 8 10各行动最大损失: 13 16 12 14其中损失最小的损失对应于行动a3.采用该原则者极端保守, 是悲观主义者, 认为老天总跟自己作对.二、极小化极小minj minil (θi, aj) 或maxjmaxiuij例:各行动最小损失: 4 1 7 2其中损失最小的是行动a2.采用该原则者极端冒险,是乐观主义者,认为总能撞大运。
三、Hurwitz准则上两法的折衷,取乐观系数入minj [λminil (θi, aj)+(1-λ〕maxil (θi, aj)]例如λ=0.5时λmini lij: 2 0.5 3.5 13 / 18(1-λ〕maxi lij: 6.5 8 6 7两者之和:8.5 8.5 9.5 8其中损失最小的是:行动a4四、等概率准则(Laplace)用i∑l ij来评价行动a j的优劣选minji∑l ij上例:i∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans)定义后梅值sij =lij-minklik其中mink lik为自然状态为θi时采取不同行动时的最小损失.构成后梅值(机会成本)矩阵S={sij }m n⨯,使后梅值极小化极大,即:min max j i s ij例:损失矩阵同上, 后梅值矩阵为:3 1 0 23 0 8 11 4 0 20 3 2 4各种行动的最大后梅值为: 3 4 8 4其中行动a1 的最大后梅值最小,所以按后梅值极小化极大准则应采取行动1.六、Krelle准则:使损失是效用的负数(后果的效用化),再用等概率(Laplace)准则.七、莫尔诺(Molnor)对理想决策准则的要求(1954)1.能把方案或行动排居完全序;2.优劣次序与行动及状态的编号无关;3.若行动ak 按状态优于aj,则应有ak优于aj;4.无关方案独立性:已经考虑过的若干行动的优劣不因增加新的行动而改变;5.在损失矩阵的任一行中各元素加同一常数时,各行动间的优劣次序不变;6.在损失矩阵中添加一行,这一行与原矩阵中的某行相同,则各行动的优劣次序不变。
贝叶斯统计在决策分析中的应用在当今这个充满不确定性的世界里,决策分析成为了我们生活和工作中不可或缺的一部分。
从企业的战略规划到个人的日常选择,我们都需要在有限的信息和多种可能性中做出最优的决策。
而贝叶斯统计,作为一种强大的统计工具,为我们提供了一种更科学、更合理的决策分析方法。
在决策分析中,贝叶斯统计可以帮助我们更好地处理不确定性。
让我们以医疗诊断为例。
医生在诊断一位患者是否患有某种疾病时,通常会根据患者的症状、病史等先验信息做出初步判断。
然后,通过各种检查手段(如血液检查、影像学检查等)获取新的信息。
贝叶斯统计可以将这些先验信息和新的检查结果结合起来,计算出患者患有该疾病的概率,从而为医生的诊断和治疗决策提供有力的支持。
再比如,在金融领域,投资者在决定是否投资某只股票时,会考虑公司的财务状况、行业前景等先验信息。
同时,他们也会关注市场的动态、宏观经济数据等新的信息。
利用贝叶斯统计,投资者可以根据这些信息不断更新对股票收益的预期,从而做出更明智的投资决策。
贝叶斯统计在市场营销中也有广泛的应用。
企业在推出新产品之前,往往会对市场需求进行预测。
通过市场调研和历史销售数据等先验信息,企业可以初步估计产品的潜在市场规模。
在产品上市后,通过实际销售数据和消费者反馈等新的信息,企业可以运用贝叶斯统计方法来调整对市场需求的估计,进而优化生产和营销策略。
在风险管理中,贝叶斯统计同样发挥着重要作用。
例如,保险公司在评估某个地区的自然灾害风险时,可以结合该地区的历史灾害数据(先验信息)和最新的气候数据、地质监测数据等(新的信息),运用贝叶斯统计来更准确地估计未来可能的损失,从而制定合理的保险费率和风险防范措施。
贝叶斯统计的优势在于它能够充分利用先验信息,并且可以随着新数据的不断积累进行动态更新和优化。
这使得决策更加具有适应性和灵活性。
然而,贝叶斯统计也并非完美无缺。
在实际应用中,确定合理的先验分布可能会存在一定的主观性。