(广东专用)2018年高考物理一轮复习第3章牛顿运动定律微专题13超重和失重粤教版
- 格式:doc
- 大小:153.00 KB
- 文档页数:5
4.6 超重和失重每课一练(粤教版必修1)1.(单选)下列关于超重和失重的说法中,正确的是( )A.物体处于超重状态时,其重力增加B.物体处于完全失重状态时,其重力为零C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小D.物体处于超重或失重状态时,其质量及受到的重力都没有变化2.(双选)关于超重、失重,下列说法正确的是( )A.处于超重状态的物体所受的重力大B.在加速上升的升降机中,一物体挂在弹簧测力计上,则弹簧测力计的示数大于物体的重力C.相对地面静止的悬浮在空气中的气球处于失重状态D.在减速上升的升降机中,人处于失重状态3.(双选)质量为m的物体放置在升降机内的台式测力计上,升降机以加速度a在竖直方向上做匀变速直线运动,若物体处于失重状态,则( )A.升降机加速度的方向竖直向下B.台式测力计的示数减少maC.升降机一定向上运动D.升降机一定做加速运动图54.(单选)物体P、Q叠放在一起,如图5所示.现从某一高度由静止释放,若不计空气阻力,则它们在下落过程中( )A.P对Q有向下的弹力B.P、Q间无相互作用的弹力C.Q对P的弹力小于P的重力D.P对Q的弹力小于Q的重力5.(双选)升降机的底板上放一台秤,台秤上放一物体,当升降机匀速运动时,台秤的示数为10 N;现在台秤的示数突然变为12 N,则升降机可能做的运动是( )A.加速上升 B.加速下降C.减速上升 D.减速下降图66.(双选)原来做匀速运动的升降机内,有一被伸长弹簧拉住的、具有一定质量的物体A静止在地板上,如图6所示,现发现A突然被弹簧拉向右方.由此可判断,此时升降机的运动可能是( )A.加速上升 B.减速上升C.加速下降 D.减速下降图77.(单选)如图7所示,在台秤的托盘上放着一个支架,支架上挂着一个电磁铁A,其正下方有一铁块B,电磁铁不通电时,台秤示数为G,当接通电路,在B被吸起的过程中,台秤示数将( )A.不变 B.变大C.变小 D.忽大忽小8.(单选)在升降机内,一个人站在磅秤上,发现自己的体重减轻了20%,于是他作出下列判断:(1)升降机以0.8g的加速度加速上升(2)升降机以0.2g的加速度加速下降(3)升降机以0.2g的加速度减速上升(4)升降机以0.8g的加速度减速下降其中正确的是( )A.只有(1)和(2)正确B.只有(2)和(3)正确C.只有(3)和(4)正确12kg的物体,取g=10 m/s2,求:(1)此电梯的加速度.(2)若电梯以(1)中加速度大小加速上升,则此人在电梯中最多能举起多大质量的物体?参考答案课后巩固提升1.D2.BD [当物体存在向上的加速度时,超重;存在向下的加速度时,失重.无论超重还是失重状态,物体的重力没变,故选项B、D正确.]3.AB 4.B 5.AD6.BC [由于A被拉向右方,说明摩擦力减小,即A与升降机地面的弹力减小,故应为失重现象,加速度方向向下,应选B、C.]7.B[将支架、A、B作为一个整体来研究,接通电路后,B将向上做加速运动,具有向上的加速度,即系统处于超重状态,所以,正确选项为B.]8.B [人处于失重状态,可能是加速下降,也可能是减速上升,取向下为正方向,有mg-F N=ma,F N=mg-ma=80100mg,a=(1-80100)g=0.2g,只有(2)和(3)正确.]9.(1)2.5 m /s 2(2)48 kg解析 人举物体时,其最大举力是不变的,这是一个隐含条件,设最大举力为F ,则F =m 1g =60×10 N =600 N .(1)选在电梯中被举起的物体m 2为研究对象.对其受力分析如图甲所示,应用牛顿第二定律得m 2g -F =m 2a ,则a =m 2g -F m 2=80×10-60080m /s 2=2.5 m /s 2,方向竖直向下. (2)设电梯以加速度a =2.5 m /s 2加速上升时,人在电梯中能够举起物体的最大质量为m 3,以m 3为研究对象,受力分析如图乙所示,应用牛顿第二定律得F -m 3g =m 3a 则m 3=Fg +a =60010+2.5 kg =48 kg。
第2讲牛顿第二定律两类动力学问题一、牛顿第二定律1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比.加速度的方向跟作用力的方向相同.2.表达式:F=ma,F与a具有瞬时对应关系.3.力学单位制(1)单位制:由基本单位和导出单位共同组成.(2)基本单位:基本物理量的单位.力学中的基本物理量有三个,分别是质量、时间和长度,它们的国际单位分别是千克(kg)、秒(s)和米(m).(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.深度思考判断下列说法是否正确.(1)物体所受合外力越大,加速度越大.(√)(2)物体所受合外力越大,速度越大.(×)(3)物体在外力作用下做匀加速直线运动,当合外力逐渐减小时,物体的速度逐渐减小.(×)(4)物体的加速度大小不变一定受恒力作用.(×)二、动力学两类基本问题1.动力学两类基本问题(1)已知受力情况,求物体的运动情况.(2)已知运动情况,求物体的受力情况.2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体逻辑关系如图:深度思考如图1所示,质量为m的物体在水平面上由速度v A均匀减为v B的过程中前进的距离为x.图1(1)物体做什么运动?能求出它的加速度吗?(2)物体受几个力作用?能求出它受到的摩擦力吗?答案(1)匀减速直线运动能,由v B2-v A2=2ax可得(2)受重力、支持力和摩擦力由F f=ma,可求摩擦力三、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.5.情景拓展(如图2所示)图21.(多选)关于运动状态与所受外力的关系,下面说法中正确的是( ) A .物体受到恒定的力作用时,它的运动状态不发生改变 B .物体受到不为零的合力作用时,它的运动状态要发生改变 C .物体受到的合力为零时,它一定处于静止状态 D .物体的运动方向与它所受的合力的方向可能相同 答案 BD2.(多选)在研究匀变速直线运动的实验中,取计数时间间隔为0.1 s ,测得相邻相等时间间隔的位移差的平均值Δx =1.2 cm ,若还测出小车的质量为500 g ,则关于加速度、合外力的大小及单位,既正确又符合一般运算要求的是( ) A .a =1.20.12 m /s 2=120 m/s 2B .a =1.2×10-20.12m /s 2=1.2 m/s 2C .F =500×1.2 N =600 ND .F =0.5×1.2 N =0.60 N 答案 BD3.关于超重和失重的下列说法中,正确的是( )A .超重就是物体所受的重力增大了,失重就是物体所受的重力减小了B .物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用C .物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态D .物体处于超重或失重状态时,物体的重力始终存在且不发生变化 答案 D4.(人教版必修1P78第5题)水平路面上质量是30 kg 的手推车,在受到60 N 的水平推力时做加速度为1.5 m /s 2的匀加速运动.如果撤去推力,车的加速度的大小是多少?(g =10 m/s 2) 答案 0.5 m/s 2解析设阻力为F f,则F-F f=ma解得F f=15 N如果撤去推力,车的加速度由阻力提供,则F f=ma′解得a′=0.5 m/s2.5.(粤教版必修1P92例1)交通警察在处理交通事故时,有时会根据汽车在路面上留下的刹车痕迹来判断发生事故前汽车是否超速.在限速为40 km/h的大桥路面上,有一辆汽车紧急刹车后仍发生交通事故,交通警察在现场测得该车在路面的刹车痕迹为12 m.已知汽车轮胎与地面的动摩擦因数为0.6,请判断这辆汽车是否超速.(g取10 m/s2)答案超速解析选取初速度方向为正方向,则F N-mg=0①故F f=μF N=μmg②由牛顿第二定律得-F f=ma③根据匀变速运动的规律有v2-v02=2ax④联立②③④式可得v0=2μgx代入数据得v0=12 m/s汽车刹车前速度为12 m/s,即43.2 km/h,此汽车属超速行驶.命题点一牛顿第二定律的理解和应用1.对牛顿第二定律的理解2.应用牛顿第二定律求瞬时加速度的技巧在分析瞬时加速度时应注意两个基本模型的特点:(1)轻绳、轻杆或接触面——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间;(2)轻弹簧、轻橡皮绳——两端同时连接(或附着)有物体的弹簧或橡皮绳,特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.例1(多选)(2016·全国Ⅰ卷·18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变答案BC解析质点一开始做匀速直线运动,处于平衡状态,施加恒力后,则该质点所受的合外力为该恒力.若该恒力方向与质点原运动方向不共线,则质点做曲线运动,质点速度方向与恒力方向不同,故A错;若F的方向某一时刻与质点运动方向垂直,之后质点做曲线运动,力与速度方向不再垂直,例如平抛运动,故B正确;由牛顿第二定律可知,质点加速度方向总是与其所受合外力方向相同,C正确;根据加速度的定义,相等时间内速度变化量相同,而速率变化量不一定相同,故D错.例2如图3,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)()图3A.0 B.2.5 NC.5 N D.3.75 N①B与A刚好接触但不挤压;②剪断后瞬间A、B间的作用力大小.答案 D解析当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.拓展延伸(1)如图4、图5中小球m1、m2原来均静止,现如果均从图中B处剪断,则图4中的弹簧和图5中的下段绳子,它们的拉力将分别如何变化?(2)如果均从图中A处剪断,则图4中的弹簧和图5中的下段绳子的拉力又将如何变化呢?(3)由(1)(2)的分析可以得出什么结论?图4图5答案(1)弹簧和下段绳的拉力都变为0.(2)弹簧的弹力来不及变化,下段绳的拉力变为0.(3)绳的弹力可以突变而弹簧的弹力不能突变.1.关于速度、加速度和合外力之间的关系,下述说法正确的是()A.做匀变速直线运动的物体,它所受合外力是恒定不变的B .做匀变速直线运动的物体,它的速度、加速度、合外力三者总是在同一方向上C .物体受到的合外力增大时,物体的运动速度一定加快D .物体所受合外力为零时,一定处于静止状态 答案 A解析 做匀变速直线运动的物体,加速度恒定不变,由牛顿第二定律知:它所受合外力是恒定不变的,故A 正确;由牛顿第二定律可知加速度与合外力方向相同,与速度不一定在同一方向上,故B 错误;物体受到的合外力增大时,加速度一定增大,物体的运动速度变化一定加快,而速度不一定加快,故C 错误;物体所受合外力为零时,物体的加速度一定等于零,速度不一定为零,故D 错误.2.如图6所示,质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为( )图6A .0B .大小为g ,方向竖直向下C .大小为233g ,方向垂直木板向下D .大小为33g ,方向水平向右 答案 C解析 未撤离木板时,小球受力如图,根据平衡条件可得F x 与mg 的合力F =mgcos 30°.当突然向下撤离光滑木板时,F N 立即变为零,但弹簧形变未变,其弹力不变,故F x 与mg 的合力仍为F =mg cos 30°,由此产生的加速度为a =g cos 30°=233g ,方向与合力方向相同,故C 正确.命题点二 超重和失重问题例3 广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t图象如图7所示.则下列相关说法正确的是()图7A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零①只受重力与绳索拉力;②由静止开始上升.答案 D解析利用a-t图象可判断:t=4.5 s时,电梯有向上的加速度,电梯处于超重状态,则A 错误;0~5 s时间内,电梯处于超重状态,拉力>重力,5~55 s时间内,电梯处于匀速上升过程,拉力=重力,55~60 s时间内,电梯处于失重状态,拉力<重力,综上所述,B、C错误;因a-t图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60 s时为零,D正确.对超重和失重的“四点”深度理解1.不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.2.在完全失重的状态下,一切由重力产生的物理现象都会完全消失.3.尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重状态.3.2015年7月的喀山游泳世锦赛中,我省名将陈若琳勇夺女子十米跳台桂冠.她从跳台斜向上跳起,一段时间后落入水中,如图8所示.不计空气阻力.下列说法正确的是()图8A .她在空中上升过程中处于超重状态B .她在空中下落过程中做自由落体运动C .她即将入水时的速度为整个跳水过程中的最大速度D .入水过程中,水对她的作用力大小等于她对水的作用力大小 答案 D解析 起跳以后的上升过程中她的加速度方向向下,所以处于失重状态,故A 错误;她具有水平初速度,所以不能看做自由落体运动,故B 错误;入水过程中,开始时水对她的作用力大小(浮力和阻力)小于她的重力,所以先向下做一段加速运动,即入水后的速度先增大,故C 错误;入水过程中,水对她的作用力和她对水的作用力,因是一对作用力与反作用力,二者大小相等.故D 正确.4.(多选)一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图9所示,以竖直向上为a 的正方向,则人对电梯的压力( )图9A .t =2 s 时最大B .t =2 s 时最小C .t =8.5 s 时最大D .t =8.5 s 时最小答案 AD命题点三 动力学的两类基本问题例4 水平面上有相距15 m 的A 、B 两点,一质量为2 kg 的物体在大小为16 N 、方向斜向上的力F 作用下,从A 点由静止开始做直线运动.某时刻撤去F ,物体到达B 点时速度为0.若物体与水平面间的动摩擦因数μ=34,重力加速度g 取10 m/s 2.求物体从A 运动到B 的最短时间.①由静止开始做直线运动;②某时刻撤去F ,物体到达B 点时速度为0.答案 4 s解析 撤去F 前对物体受力分析如图所示,根据牛顿第二定律有F cos α-F f =ma 1① F f =μF N ② F N =mg -F sin α③ x 1=12a 1t 12④撤去F 后物体只受重力、弹力和摩擦力,利用牛顿第二定律有 μmg =ma 2⑤ x 2=12a 2t 22⑥x 1+x 2=s ⑦ a 1t 1=a 2t 2⑧根据v -t 图象中速度与时间轴所围面积代表位移,由于减速过程物体的加速度不变,在总位移不变的情况下只有增大加速过程的加速度才能让时间变短.由①②③联立可得F cos α-μ(mg -F sin α)=ma 1利用数学知识可得最大加速度a 1=F 1+μ2m -μg =2.5 m/s 2,联立④⑤⑥⑦⑧可求得t 1=3 s ,t 2=1 s ,则总时间t =t 1+t 2=4 s.解决动力学问题的技巧和方法1.两个关键(1)两类分析——物体的受力分析和物体的运动过程分析; (2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁. 2.两种方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法” (2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.5.(多选)(2016·全国Ⅱ卷·19)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( ) A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功 答案 BD解析 小球的质量m =ρ·43πr 3,由题意知m 甲>m 乙,ρ甲=ρ乙,则r 甲>r 乙.空气阻力f =kr ,对小球由牛顿第二定律得,mg -f =ma ,则a =mg -f m =g -kr ρ·43πr 3=g -3k4πρr 2,可得a 甲>a 乙,由h =12at 2知,t 甲<t 乙,选项A 、C 错误;由v =2ah 知,v 甲>v 乙,故选项B 正确;因f 甲>f 乙,由球克服阻力做功W f =fh 知,甲球克服阻力做功较大,选项D 正确.6.如图10所示,在建筑装修中,工人用质量为5.0 kg 的磨石A 对地面和斜壁进行打磨,已知A 与地面、A 与斜壁之间的动摩擦因数μ均相同.(g 取10 m/s 2且sin 37°=0.6,cos 37°=0.8)图10(1)当A 受到与水平方向成θ=37°斜向下的推力F 1=50 N 打磨地面时,A 恰好在水平地面上做匀速直线运动,求A 与地面间的动摩擦因数μ.(2)若用A 对倾角θ=37°的斜壁进行打磨,当对A 加竖直向上推力F 2=60 N 时,则磨石A 从静止开始沿斜壁向上运动2 m(斜壁长>2 m)时的速度大小为多少? 答案 (1)0.5 (2)2 m/s解析 (1)A 恰好在水平地面上做匀速直线运动,滑动摩擦力等于推力,即F f =F 1cos θ=40 Nμ=F f F N =F f mg +F 1sin θ=0.5 (2)先将重力及向上的推力合成后,将二者的合力向垂直于斜面方向及沿斜面方向分解可得: 在沿斜面方向有: (F 2-mg )cos θ-F f1=ma ; 在垂直斜面方向上有: F N =(F 2-mg )sin θ; 则F f1=μ(F 2-mg )sin θ 解得:a =1 m/s 2 x =12at 2 解得t =2 s v =at =2 m/s.关于瞬时问题的拓展深化瞬时问题是指分析物体在某一时刻的瞬时加速度问题,是高考考查的热点问题之一,其求解的关键在于分析瞬时前后物体的受力情况和运动情况,再由牛顿第二定律求出瞬时加速度.此类问题往往对应下列三种模型:典例1 如图11所示,两轻质弹簧a 、b 悬挂一质量为m 的小铁球,小铁球处于平衡状态,a 弹簧与竖直方向成30°角,b 弹簧水平,a 、b 两弹簧的劲度系数分别为k 1、k 2,重力加速度为g ,则下列说法正确的是( )图11A .a 弹簧的伸长量为3mg3k 1B .a 、b 两弹簧的伸长量的比值为2k 2k 1C .若弹簧b 的左端松脱,则松脱瞬间小铁球的加速度为g2D .若弹簧a 的下端松脱,则松脱瞬间小铁球的加速度为3g 答案 B解析 小铁球受重力mg 、F T a 、F T b 三个力作用,如图所示,将弹簧a 的弹力沿水平和竖直方向分解,在竖直方向上有F T a cos 30°=mg ,而F T a =k 1x 1,解得x 1=23mg3k 1,选项A 错误.在水平方向上有F T a sin 30°=F T b ,而F T b =k 2x 2,可求得a 、b 两弹簧的伸长量的比值为x 1x 2=2k 2k 1,选项B 正确.弹簧b 的左端松脱瞬间,弹簧a 的弹力不变,弹簧a 的弹力和小铁球的重力的合力方向水平向左,大小为mg tan 30°,由牛顿第二定律得mg tan 30°=ma 1,可得弹簧b 的左端松脱瞬间小铁球的加速度为a 1=g tan 30°=33g ,选项C 错误.弹簧a 的下端松脱瞬间,弹簧b 的弹力不变,弹簧b 的弹力和小铁球的重力的合力方向与F T a 反向,大小为mgcos 30°,由牛顿第二定律得mg cos 30°=ma 2,可得弹簧a 的下端松脱瞬间小铁球的加速度为a 2=gcos 30°=233g ,选项D 错误. 典例2 如图12所示,A 、B 、C 三球的质量均为m ,轻质弹簧一端固定在斜面顶端,另一端与A 球相连,A 、B 间用一个轻杆连接,B 、C 间由一轻质细线连接.倾角为θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,系统处于静止状态,在细线被烧断后瞬间,下列说法正确的是( )图12A .B 球的受力情况未变,加速度为零B .A 、B 两个小球的加速度均沿斜面向上,大小均为12g sin θC .A 、B 之间杆的拉力大小为2mg sin θD .C 球的加速度沿斜面向下,大小为2g sin θ 答案 B解析 细线烧断前,ABC 作为一个整体,沿斜面方向受力分析得弹簧弹力F =3mg sin θ,对C 受力分析,沿斜面方向细线拉力F T =mg sin θ,细线烧断瞬间,弹簧形变量不会变化,弹力不变,对C 受力分析,没有细线拉力,mg sin θ=ma 1,加速度a 1=g sin θ,选项D 错误;A 、B 之间由轻杆连接,相对静止,对AB 整体受力分析可得F -2mg sin θ=2ma 2,合力沿斜面向上,得a 2=12g sin θ,选项A 错误,B 正确;对B 受力分析,斜面方向受轻杆的弹力和重力沿斜面向下的分力,轻杆弹力F T ′-mg sin θ=ma 2=12mg sin θ,得轻杆弹力F T ′=32mg sin θ,选项C错误.题组1 对牛顿第二定律的理解和应用1.(多选)下列关于单位制及其应用的说法中,正确的是( )A.基本单位和导出单位一起组成了单位制B.选用的基本单位不同,构成的单位制也不同C.在物理计算中,如果所有已知量都用同一单位制中的单位表示,只要正确应用物理公式其结果就一定是用这个单位制中的单位来表示的D.一般来说,物理公式主要确定各物理量间的数量关系,并不一定同时确定单位关系答案ABC2.一个质量为m=1 kg的物块静止在水平面上,物块与水平面间的动摩擦因数μ=0.2.从t =0时刻起物块同时受到两个水平力F1与F2的作用,若力F1、F2随时间的变化如图1所示,设物块受到的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s2,则物块在此后的运动过程中()图1A.物块从t=0时刻开始运动B.物块运动后先做加速运动再做减速运动,最后匀速运动C.物块加速度的最大值是3 m/s2D.物块在t=4 s时速度最大答案 C解析物块所受最大静摩擦力等于滑动摩擦力F fm=μmg=0.2×1×10 N=2 N,物块在第1 s 内,满足F1=F2+F fm物块处于静止状态,选项A错误;第1 s物块静止,第1 s末到第7 s 末,根据牛顿第二定律有F1-F2-F fm=ma,F2先减小后增大,故加速度先增大再减小,方向沿F1方向,物块一直加速,故选项B、D均错误,在t=4 s时加速度最大为a m=F1-F fmm=5-21m/s2=3 m/s2,选项C正确.3.如图2所示,光滑水平面上,A、B两物体用轻弹簧连接在一起,A、B的质量分别为m1、m2,在拉力F作用下,A、B共同做匀加速直线运动,加速度大小为a,某时刻突然撤去拉力F,此瞬时A和B的加速度大小为a1和a2,则()图2A .a 1=0,a 2=0B .a 1=a ,a 2=m 2m 1+m 2aC .a 1=m 2m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=m 1m 2a答案 D解析 撤去拉力F 前,设弹簧的劲度系数为k ,形变量为x ,对A 由牛顿第二定律得kx =m 1a ;撤去拉力F 后,弹簧的形变量保持不变,对A 由牛顿第二定律得kx =m 1a 1,对B 由牛顿第二定律kx =m 2a 2,解得a 1=a 、a 2=m 1m 2a ,故选项D 正确.4.一皮带传送装置如图3所示,皮带的速度v 足够大,轻弹簧一端固定,另一端连接一个质量为m 的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放到皮带上的瞬间,滑块的速度为零,且弹簧正好处于自然长度,则当弹簧从自然长度到第一次达到最长这一过程中,滑块的速度和加速度的变化情况是( )图3A .速度增大,加速度增大B .速度增大,加速度减小C .速度先增大后减小,加速度先增大后减小D .速度先增大后减小,加速度先减小后增大 答案 D解析 滑块在水平方向受向左的滑动摩擦力F f 和弹簧向右的拉力F 拉=kx ,合力F 合=F f -F拉=ma ,当弹簧从自然长度到第一次达最长这一过程中,x 逐渐增大,拉力F 拉逐渐增大,因为皮带的速度v 足够大,所以合力F 合先减小后反向增大,从而加速度a 先减小后反向增大;滑动摩擦力与弹簧弹力相等之前,加速度与速度同向,滑动摩擦力与弹簧弹力相等之后,加速度便与速度方向相反,故滑块的速度先增大,后减小.5.(多选)如图4所示,A 、B 、C 三球的质量均为m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间由一轻质细线连接,B 、C 间由一轻杆相连.倾角为θ的光滑斜面固定在地面上,弹簧、细线与轻杆均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法正确的是()图4A.A球的加速度沿斜面向上,大小为g sin θB.C球的受力情况未变,加速度为0C.B、C两球的加速度均沿斜面向下,大小均为g sin θD.B、C之间杆的弹力大小为0答案CD解析初始系统处于静止状态,把BC看成整体,BC受重力2mg、斜面的支持力F N、细线的拉力F T,由平衡条件可得F T=2mg sin θ,对A进行受力分析,A受重力mg、斜面的支持力、弹簧的拉力F弹和细线的拉力F T,由平衡条件可得:F弹=F T+mg sin θ=3mg sin θ,细线被烧断的瞬间,拉力会突变为零,弹簧的弹力不变,根据牛顿第二定律得A球的加速度沿斜面向上,大小a=2g sin θ,选项A错误;细线被烧断的瞬间,把BC看成整体,根据牛顿第二定律得BC球的加速度a′=g sin θ,均沿斜面向下,选项B错误,C正确;对C进行受力分析,C受重力mg、杆的弹力F和斜面的支持力,根据牛顿第二定律得mg sin θ+F=ma′,解得F=0,所以B、C之间杆的弹力大小为0,选项D正确.题组2超重和失重问题6.关于超重和失重现象,下列描述中正确的是()A.电梯正在减速上升,在电梯中的乘客处于超重状态B.磁悬浮列车在水平轨道上加速行驶时,列车上的乘客处于超重状态C.荡秋千时秋千摆到最低位置时,人处于失重状态D.“神舟”飞船在绕地球做圆轨道运行时,飞船内的宇航员处于完全失重状态答案 D7.若货物随升降机运动的v-t图象如图5所示(竖直向上为正),则货物受到升降机的支持力F与时间t关系的图象可能是()图5答案 B解析由v-t图象可知:过程①为向下匀加速直线运动(加速度向下,失重,F<mg);过程②为向下匀速直线运动(处于平衡状态,F=mg);过程③为向下匀减速直线运动(加速度向上,超重,F>mg);过程④为向上匀加速直线运动(加速度向上,超重,F>mg);过程⑤为向上匀速直线运动(处于平衡状态,F=mg);过程⑥为向上匀减速直线运动(加速度向下,失重,F<mg).综合选项分析可知B选项正确.8.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图6所示,当此车减速上坡时,则乘客(仅考虑乘客与水平面之间的作用)()图6A.处于超重状态B.不受摩擦力的作用C.受到向后(水平向左)的摩擦力作用D.所受合力竖直向上答案 C解析当车减速上坡时,加速度方向沿斜坡向下,人的加速度与车的加速度相同,根据牛顿第二定律知人的合力方向沿斜面向下,合力的大小不变.人受重力、支持力和水平向左的静摩擦力,如图.将加速度沿竖直方向和水平方向分解,则有竖直向下的加速度,则:mg-F N=ma y.F N<mg,乘客处于失重状态,故A、B、D错误,C正确.题组3动力学的两类基本问题9.(多选)如图7所示,质量为m=1 kg的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s时,给物体施加一个与速度方向相反的大小为F=2 N的恒力,在此恒力作用下(取g=10 m/s2)()图7A.物体经10 s速度减为零B.物体经2 s速度减为零C.物体速度减为零后将保持静止D.物体速度减为零后将向右运动答案BC10.用40 N的水平力F拉一个静止在光滑水平面上、质量为20 kg的物体,力F作用3 s后撤去,则第5 s末物体的速度和加速度的大小分别是()A.v=6 m/s,a=0B.v=10 m/s,a=2 m/s2C.v=6 m/s,a=2 m/s2D.v=10 m/s,a=0答案 A11.如图8所示,一质量为1 kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°.现小球在F=20 N的竖直向上的拉力作用下,从A点静止出发向上运动,已知杆与球间的动摩擦因数为36.试求:图8。
能力课2动力学中的典型“模型”一、选择题(1~3题为单项选择题,4~5题为多项选择题)1.在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。
随后它们保持相对静止,行李随传送带一起前进。
设传送带匀速前进的速度为0.25 m/s,把质量为5 kg的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6 m/s2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下的摩擦痕迹约为()图1A.5 mm B.6 mm C.7 mm D.10 mm解析木箱加速的时间为t=va,这段时间内木箱的位移为s1=v22a,而传送带的位移为s2=v t,传送带上将留下的摩擦痕迹长为l=s2-s1,联立各式并代入数据,解得l=5.2 mm,选项A正确。
答案 A2.(2018·山东日照模拟)如图2所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
在物块放到木板上之后,木板运动的速度-时间图象可能是下列选项中的()图2解析设在木板与物块未达到相同速度之前,木板的加速度为a1,物块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2。
对木板应用牛顿第二定律得:-μ1mg-μ2·2mg=ma1a1=-(μ1+2μ2)g设物块与木板达到相同速度之后,木板的加速度为a2,对整体有-μ2·2mg=2ma2 a2=-μ2g,可见|a1|>|a2|由v-t图象的斜率表示加速度大小可知,图象A正确。
答案 A3.(2018·山东潍坊质检)如图3所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动。
在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是()图3解析开始阶段,木块受到竖直向下的重力、垂直斜面向上的支持力和沿传送带向下的摩擦力作用,做加速度为a1的匀加速直线运动,由牛顿第二定律得mg sin θ+μmg cos θ=ma1所以a1=g sin θ+μg cos θ木块加速至与传送带速度相等时,由于μ<tan θ,则木块不会与传送带保持相对静止而匀速运动,之后木块继续加速,所受滑动摩擦力变为沿传送带向上,做加速度为a2的匀加速直线运动,这一阶段由牛顿第二定律得mg sin θ-μmg cos θ=ma2所以a2=g sin θ-μg cos θ根据以上分析,有a2<a1,所以本题正确选项为D。
第2讲牛顿第二定律的应用(1)➢教材知识梳理一、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路:先求出几个力的合力,由牛顿第二定律(F合=ma)求出________,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路:已知加速度或根据运动规律求出________,再由牛顿第二定律求出合力,从而确定未知力.说明:牛顿第二定律是联系运动问题与受力问题的桥梁,加速度是解题的关键.二、超重和失重1.超重物体对水平支持物的压力(或对竖直悬挂物的拉力)________物体所受重力的情况称为超重现象.2.失重物体对水平支持物的压力(或对竖直悬挂物的拉力)________物体所受重力的情况称为失重现象.3.完全失重物体对水平支持物的压力(或对竖直悬挂物的拉力)________的情况称为完全失重现象.4.视重与实重(1)当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为________.视重大小等于弹簧测力计所受的拉力或台秤所受的压力.(2)物体实际受到的重力大小称为________.三、连接体与隔离体1.连接体与隔离体:两个或两个以上物体相连接组成的物体系统,称为________.如果把其中某个(或几个)物体隔离出来,该物体称为________.2.外力和内力(1)以物体系为研究对象,系统之外其他物体的作用力是系统受到的________,而系统内各物体间的相互作用力为________.(2)求外力时应用牛顿第二定律列方程不考虑________;如果把物体隔离出来作为研究对象,则这些内力将变为隔离体的________.答案:一、1.加速度 2.加速度二、1.大于 2.小于 3.等于零4.(1)视重(2)实重三、1.连接体隔离体2.(1)外力内力(2)内力外力【思维辨析】(1)放置于水平桌面上的物块受到的重力是物块的内力.( )(2)系统的内力不会影响系统整体的运动效果.( )(3)运动物体的加速度可根据运动速度、位移、时间等信息求解,所以加速度由运动情况决定.( )(4)物体处于超重状态时,物体的重力大于mg.( )(5)物体处于完全失重状态时其重力消失.( )(6)物体处于超重还是失重状态,由加速度的方向决定,与速度方向无关.( )(7)减速上升的升降机内的物体对地板的压力大于重力.( )答案:(1)(×)(2)(√)(3)(×)(4)(×)(5)(×)(6)(√)(7)(×)➢考点互动探究考点一解决动力学两类问题的基本思路1 [2016·四川卷] (17分)避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图372所示,竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m时,车头距制动坡床顶端38 m,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g 取10 m/s2.求:(1)货物在车厢内滑动时加速度的大小和方向;(2)制动坡床的长度.图371图372[解答规范] (1)设货物的质量为m ,货物在车厢内滑动过程中,货物与车厢间的动摩擦因数μ=0.4,受摩擦力大小为f ,加速度大小为a 1,则________=ma 1(2分)f =________(2分)联立以上二式并代入数据得a 1=5 m/s 2(1分)a 1的方向沿制动坡床向下.(1分)(2)设货车的质量为M ,车尾位于制动坡床底端时的车速为v =23 m/s.货物在车厢内开始滑动到车头距制动坡床顶端s 0=38 m 的过程中,用时为t ,货物相对制动坡床的运动距离为s 2.货车受到制动坡床的阻力大小为F ,F 是货车和货物总重的k 倍,k =0.44,货车长度l 0=12 m ,制动坡床的长度为l ,则Mg sin θ+F -f =Ma 2(2分) F =k (m +M )g (2分) s 1=________(2分) s 2=________(2分) s =________(1分) l =l 0+s 0+s 2(1分)联立并代入数据得l =98 m .(1分)答案:f +mg sin θ μmg cos θ vt -12a 1t 2 vt -12a 2t 2s 1-s 21 研究表明,一般人的刹车反应时间(即图373甲中“反应过程”所用时间)t 0=0.4 s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72 km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L =39 m .减速过程中汽车位移x 与速度v 的关系曲线如图乙所示.此过程可视为匀变速直线运动.重力加速度的大小g 取10 m/s 2.求:(1)减速过程中汽车加速度的大小及所用时间; (2)饮酒使志愿者比一般人增加的反应时间;(3)减速过程中汽车对志愿者的作用力大小与志愿者重力大小的比值.图373答案:(1)8 m/s 22.5 s (2)0.3 s (3)415[解析] (1)设减速过程中汽车加速度的大小为a ,所用时间为t ,由题可得,初速度v 0=20 m/s ,末速度v =0,位移x =25 m ,由运动学公式得v 20=2ax t =v 0a联立以上两式,代入数据得a =8 m/s 2,t =2.5 s(2)设志愿者正常情况下反应时间为t ′,饮酒后反应时间的增加量为Δt ,由运动学公式得L =v 0t ′+xΔt =t ′-t 0联立以上两式,代入数据得 Δt =0.3 s(3)设志愿者所受的合外力大小为F ,汽车对志愿者的作用力大小为F 0,志愿者质量为m ,由牛顿第二定律得F =ma由平行四边形定则得F 20=F 2+(mg )2联立以上两式,代入数据得F 0mg =415.2 [2016·合肥质量检测] 如图374所示,有一半圆,其直径水平且与另一圆的底部相切于O 点,O 点恰好是半圆的圆心,圆和半圆处在同一竖直平面内.现有三条光滑轨道AOB 、COD 、EOF ,它们的两端分别位于圆和半圆的圆周上,轨道与圆的竖直直径的夹角关系为α>β>θ.现让小物块先后从三条轨道顶端由静止下滑至底端,则小物块在每一条倾斜轨道上滑动时所经历的时间关系为( )图374A .t AB =t CD =t EF B .t AB >t CD >t EFC .t AB <t CD <t EF D .t AB =t CD <t EF答案:B [解析] 设圆的直径为D ,半圆的半径为R ,对轨道AOB ,其长度为L 1=D cos α+R ,在其上运动的加速度a 1=g cos α,由L 1=12a 1t 2AB ,解得t AB =2(D cos α+R )g cos α=2Dg+2Rg cos α.对轨道COD 、EOF ,同理可得t CD =2Dg+2Rg cos β,t EF =2Dg+2Rg cos θ.由轨道与竖直线的夹角关系α>β>θ可知,t AB >t CD >t EF ,选项B 正确.考点二2 [2016·江苏南通如皋模拟] 我国“80后”女航天员王亚平在“天宫一号”里给全国的中小学生们上了一堂实实在在的“太空物理课”.在火箭发射、飞船运行和回收过程中,王亚平要承受超重或失重的考验,下列说法正确是( )A .飞船在降落时需要打开降落伞进行减速,王亚平处于超重状态B .飞船在降落时需要打开降落伞进行减速,王亚平处于失重状态C .飞船在绕地球匀速运行时,王亚平处于超重状态D .火箭加速上升时,王亚平处于失重状态 答案:A[解析] 飞船在降落时需要打开降落伞进行减速,加速度方向向上,王亚平处于超重状态,故A 正确,B 错误;飞船在绕地球匀速运行时,万有引力提供向心力,加速度方向向下,王亚平处于失重状态,故C 错误;火箭加速上升时,加速度方向向上,王亚平处于超重状态,故D 错误.■ 题根分析本题通过受力分析和牛顿第二定律,考查运动过程中的超重、失重问题.对超重、失重问题的分析应注意:(1)超重、失重现象的实质是物体的重力的效果发生了变化,重力的效果增大,则物体处于超重状态;重力的效果减小,则物体处于失重状态.重力的作用效果体现在物体对水平面的压力、物体对竖直悬线的拉力等方面,在超重、失重现象中物体的重力并没有发生变化.(2)物体是处于超重状态,还是失重状态,取决于加速度的方向,而不是速度的方向.只要加速度有竖直向上的分量,物体就处于超重状态;只要加速度有竖直向下的分量,物体就处于失重状态,当物体的加速度等于重力加速度时(竖直向下),物体就处于完全失重状态.(3)在完全失重的状态下,一切由重力产生的物理现象都会完全消失,如天平不能测量物体的质量、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.■ 变式网络式题1 [2016·合肥质量检测] 如图375所示,在教室里某同学站在体重计上研究超重与失重.她由稳定的站姿变化到稳定的蹲姿称为“下蹲”过程;由稳定的蹲姿变化到稳定的站姿称为“起立”过程.关于她的实验现象,下列说法中正确的是( )图375A.只有“起立”过程才能出现超重的现象B.只有“下蹲”过程才能出现失重的现象C.“下蹲”的过程中,先出现超重现象后出现失重现象D.“起立”“下蹲”的过程中,都能出现超重和失重的现象答案:D [解析] “起立”的过程中,先加速向上后减速向上运动,加速向上运动时加速度方向向上,出现超重现象,减速向上运动时加速度方向向下,出现失重现象,即“起立”过程先出现超重现象后出现失重现象;“下蹲”的过程中,先加速向下后减速向下运动,加速向下运动时加速度方向向下,出现失重现象,减速向下运动时加速度方向向上,出现超重现象,即“下蹲”过程先出现失重现象后出现超重现象,D正确,A、B、C错误.式题2 [2016·福建质量检测] 如图376所示,质量为M的缆车车厢通过悬臂固定悬挂在缆绳上,车厢水平底板上放置一质量为m的货物,在缆绳牵引下货物随车厢一起斜向上加速运动.若运动过程中悬臂和车厢始终处于竖直方向,重力加速度大小为g,则( )图376A.车厢对货物的作用力大小等于mgB.车厢对货物的作用力方向平行于缆绳向上C.悬臂对车厢的作用力大于(M+m)gD.悬臂对车厢的作用力方向沿悬臂竖直向上答案:C [解析] 货物随车厢一起斜向上加速运动,由牛顿第二定律可知,车厢与货物的重力和悬臂对车厢的作用力的合力方向应与加速度方向一致,故悬臂对车厢的作用力方向是斜向上的,选项D错误;由于车厢和货物在竖直方向有向上的分加速度,处于超重状态,故悬臂对车厢的作用力大于(M+m)g,选项C正确;同理,对车厢中货物用隔离法分析可知,车厢对货物的作用力大于mg,方向是斜向上的,但不平行于缆绳,选项A、B错误.式题3 (多选)飞船绕地球做匀速圆周运动,宇航员处于完全失重状态时,下列说法正确的是( ) A.宇航员不受任何力作用B.宇航员处于平衡状态C.地球对宇航员的引力全部用来提供向心力D.正立和倒立时宇航员一样舒服答案:CD [解析] 飞船绕地球做匀速圆周运动时,飞船以及里面的宇航员都受到地球的万有引力,选项A错误;宇航员随飞船绕地球做匀速圆周运动,宇航员受到地球的万有引力提供其做圆周运动的向心力,不是处于平衡状态,选项B错误,选项C正确;完全失重状态下,重力的效果完全消失,正立和倒立情况下,身体中的器官都是处于悬浮状态,没有差别,所以一样舒服,选项D正确.考点三连接体问题应用牛顿第二定律解决连接体类问题时,正确地选取研究对象是解题的关键.若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,则可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量);若连接体内各物体的加速度不相同,或者需要求出系统内各物体之间的作用力,则需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解;若连接体内各物体具有相同的加速度,且需要求物体之间的作用力,则可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力,即“先整体求加速度,后隔离求内力”.如图377所示,一足够长的固定光滑斜面的倾角θ=37°,大小可以忽略的两个小物体A 、B 的质量分别为m A =1 kg 、m B =4 kg ,两物体之间的轻绳长L =0.5 m ,轻绳可承受的最大拉力为T =12 N .对B 施加一沿斜面向上的力F ,使A 、B 由静止开始一起向上运动,力F 逐渐增大,g 取10 m/s 2.(sin 37°=0.6,cos 37°=0.8)(1)若某一时刻轻绳被拉断,求此时外力F 的大小;(2)若轻绳拉断瞬间A 、B 的速度为3 m/s ,绳断后保持外力F 不变,当A 运动到最高点时,求A 、B 之间的距离.图377[解析] (1)对整体受力分析,根据牛顿第二定律得F -(m A +m B )g sin θ=(m A +m B )a隔离A 物体,根据牛顿第二定律得T -m A g sin θ=m A a联立解得F =60 N(2)取沿斜面向上为正方向.隔离A 物体,根据牛顿第二定律得 -m A g sin θ=m A a A解得a A =-g sin θ=-6 m/s 2则A 物体到最高点所用时间t =0-v 0a A=0.5 s此过程A 物体的位移为x A =v 02·t =0.75 m隔离B 物体,根据牛顿第二定律得F -m B g sin θ=m B a B解得a B =F m B-g sin θ=9 m/s 2此过程B 物体的位移为x B =v 0t +12a B t 2=2.625 m两者间距为x B-x A+L=2.375 m.1 [2016·湖南衡阳月考] 如图378所示,质量为m1和m2的两个材料相同的物体用细线相连,在大小恒定的拉力F作用下,先沿水平面,再沿斜面,最后竖直向上匀加速运动,不计空气阻力,在三个阶段的运动中,线上的拉力大小( )图378A.由大变小B.由小变大C.始终不变且大小为m1m1+m2FD.由大变小再变大答案:C [解析] 在水平面上时,对整体,由牛顿第二定律得F-μ(m1+m2)g=(m1+m2)a1,对质量为m1的物体,由牛顿第二定律得T1-μm1g=m1a1,联立解得T1=m1m1+m2F;在斜面上时,对整体,由牛顿第二定律得F-μ(m1+m2)g cos θ-(m1+m2)g sin θ=(m1+m2)a2,对质量为m1的物体,由牛顿第二定律得T2-μm1g cos θ-m1g sin θ=m1a2,联立解得T2=m1m1+m2F;在竖直方向上运动时,对整体,由牛顿第二定律得F-(m1+m2)g=(m1+m2)a3,对质量为m1的物体,由牛顿第二定律得T3-m1g=m1a3,联立解得T3=m1m1+m2F.综上分析可知,线上的拉力大小始终不变且大小为m1m1+m2F,选项C正确.2 a、b两物体的质量分别为m1、m2,由轻质弹簧相连.当用大小为F的恒力竖直向上拉着a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x1;当用大小仍为F的恒力沿水平方向拉着a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x2,如图379所示,下列说法正确的是( )图379A.x1一定等于x2B.x1一定大于x2C.若m1>m2,则x1>x2D.若m1<m2,则x1<x2答案:A [解析] 在竖直方向运动时,以整体为研究对象,由牛顿第二定律有F-(m1+m2)g=(m1+m2)a1,以物体b为研究对象,由牛顿第二定律有kx1-m2g=m2a1,联立解得kx1=m2Fm1+m2;在水平方向运动时,以整体为研究对象,由牛顿第二定律有F=(m1+m2)a2,以物体b为研究对象,由牛顿第二定律有kx2=m2a2,联立解得kx2=m2Fm1+m2,可见x1=x2,选项A正确.■ 方法技巧求解连接体内部物体之间的作用力时,一般选受力较少的隔离体为研究对象;求解具有相同的加速度的连接体外部对物体的作用力或加速度时,一般选取系统整体为研究对象.大多数连接体问题中需要整体法和隔离法交替使用.【教师备用习题】1.[2015·重庆卷] 若货物随升降机运动的vt图像如图所示(竖直向上为正),则货物受到升降机的支持力F与时间t关系的图像可能是图中的( )图13A B C D[解析] B 货物的上下运动涉及超重和失重,超重时加速度向上,失重时加速度向下.由vt图像知,整个运动分为六个阶段,货物的加速度分别是:向下、为零、向上、向上、为零、向下,故支持力和重力的关系分别为:小于、等于、大于、大于、等于、小于.以第二、第五两个阶段为基准(支持力等于重力),可得B正确.2.(多选)[2015·海南卷] 如图所示,升降机内有一固定斜面,斜面上放一物块.开始时,升降机做匀速运动,物块相对于斜面匀速下滑.当升降机加速上升时( )A.物块与斜面间的摩擦力减小B.物块与斜面间的正压力增大C.物块相对于斜面减速下滑D.物块相对于斜面匀速下滑[解析] BD 升降机匀速运动时,物块匀速下滑,以物块为研究对象,沿斜面方向,有mg sin θ=f,垂直于斜面方向,有F N=mg cos θ,又知f=μF N,解得μ=tan θ;升降机加速上升,时物块处于超重状态,物块与斜面间的正压力变大,滑动摩擦力也变大,选项A错误,选项B正确;加速上升瞬间,沿斜面方向,有f′-mg sin θ=ma sin θ,垂直于斜面方向,有F′N-mg cos θ=ma cos θ,解得f′F N′=tan θ=μ,由于物块有相对于斜面向下的初速度,所以物块沿斜面向下匀速运动,选项C错误,选项D正确.3.[2013·安徽卷] 如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力F N分别为(重力加速度为g)( )A.T=m(g sin θ+a cos θ),F N=m(g cos θ-a sin θ)B.T=m(g cos θ+a sin θ),F N=m(g sin θ-a cos θ)C.T=m(a cos θ-g sin θ),F N=m(g cos θ+a sin θ)D.T=m(a sin θ-g cos θ),F N=m(g sin θ+a cos θ)[解析] A 对物体进行受力分析,如图所示,应用牛顿第二定律,在水平方向有T cos θ-F N sin θ=ma,在竖直方向有T sin θ+F N cos θ=mg,解得T=ma cos θ+mg sin θ,F N=mg cos θ-ma sin θ,选项A正确.4.(多选)[2013·浙江卷] 如图所示,总质量为460 kg的热气球从地面刚开始竖直上升时的加速度为0.5 m/s2,当热气球上升到180 m时,以5 m/s的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g取10 m/s2.关于热气球,下列说法正确的是( )A.所受浮力大小为4830 NB.加速上升过程中所受空气阻力保持不变C.从地面开始上升10 s后的速度大小为5 m/sD.以5 m/s匀速上升时所受空气阻力大小为230 N[解析] AD 热气球从地面刚开始竖直上升时,速度很小,空气阻力可以忽略,对热气球,由牛顿第二定律有F-mg=ma,解得浮力F=mg+ma=4830 N,故A正确.如果热气球一直匀加速上升,则上升180 m时的速度v=2ah=6 5 m/s>5 m/s,故热气球不是匀加速上升,说明随着速度的增加,空气阻力也越来越大,故B错误.如果热气球一直匀加速上升,则上升180 m所用的时间t=2ha=12 5 s>10 s,说明上升10 s后还未上升到180 m处,速度小于5 m/s,故C错误.以5 m/s的速度匀速上升阶段,空气阻力f=F-mg=230 N,故D正确.。
超重和失重一、素质教育目标(一)知识教学点1.掌握超重、失重现象及其实质2.用牛顿第二定律解释超重和失重的原因.(二)能力渗透点培养学生应用牛顿第二定律分析,解决实际问题的能力.(三)德育渗透点知识是力量的源泉,知识是能力的基础的辩证唯物主义思想的渗透.(四)美育渗透点通过本节教学,使学生在推理中了解现象的本质,体验自然规律的逻辑美.二、学法引导1.运用讨论式引人超失重现象,引起学生思考.2.利用演示实验,结合牛顿第二定律讨论原因.3.师生讨论视重与重力的辩证关系.三、重点·难点·疑点及解决办法1.重点超重和失重的实质不是物体重力发生了变化,而是物体对悬挂物的拉力或对支持物的压力发生了变化.2.难点示重,视重与实重的概念及区别.3.疑点超重和失重在生产生活中有什么用途?4.解决办法在实验基础上,引导学生分析,思考,用事实说话(如弹簧秤提一物加速上升,学生根据实物本身未变化,地球对其引力不变的事实可知,超重并不是物体重力发生变化),使学生掌握超重和失重的本质及现象。
四、课时安排1课时五、教具学具准备多媒体投影仪弹簧秤、钩码、重锤、非常细的线、铁架台.六、师生互动活动设计1.教师结合学生的实际体验介绍有关超失重现象引入课题.2.师生共同以实验的方法来验证,并以讨论的形式结合牛顿第二定律来从理论上阐述.3.通过练习来辨析视重与重力的关系,巩固知识.七、教学步骤(一)明确目标用牛顿第二定律解释超重与失重原因(二)整体感知当悬挂物拉着物体加速向上时,由于向上的加速度,悬挂物对物体的作用力大于重力,据牛顿第三定律,物体对悬挂物拉力大于重力出现超重现象.当悬挂物拉着物体向下加速时悬挂物拉力小于物体重力,由牛顿第三定律,物体对悬挂物的拉力小于物体重力,出现失重现象,可见,超重与失重,是物体对悬挂物(或支持物)的拉力(或压力)增大或减小,而不是物体重力发生了变化.(三)重点、难点的学习及目标完成过程自从人造地球卫星和宇宙飞船发射成功以来,人们经常谈到超重和失重,究竟什么是超重和失重呢?今天我们来研究这个问题.1.超重现象〔实验1〕将图3-20所示装置放到桌上,用多媒体投影仪放大弹簧秤读数.装置左边为弹簧秤和弹簧秤下挂一钩码,右边为一重锤.用手抓住重锤,使整个装置处于静止状态,请学生观察屏幕上弹簧秤的读数并记录下来.将抓住重锤的手放开,与此同时请学生观察屏幕上弹簧秤示数.比较两次读数,发现后者弹簧秤示数比前者大,为什么呢?当用手握住重锤时,物体处于静止状态(平衡状态)此时弹簧秤示数应等于钩码的重力,也就是钩码对弹簧秤的拉力等于钩码自身重力.当放开握重锤的手时,在重锤作用下,弹簧秤与钩码加速上升,设加速度为a,以钩码为研究对象,据牛顿第二定律=mg可知F-mg=ma∴F=mg+ma>mg 图3-20 由分析可知,当物体具有竖直向上的加速度时,弹簧秤对物体的拉力大于物体的重力,根据牛顿第三定律,物体对弹簧秤的拉力大于物体的重力(平衡时物体对弹簧秤拉力等于物体重力)结论:当物体存在向上的加速度时,它对悬挂物的拉力大于物体的重力,这种现象称为超重学生活动①学生思考并回答:若将一称体重的体重计放在加速上升的升降机上,你所看到的读数与体重比较是增大了?还是相等?还是减少?②请同学用一根细线拴住重锤缓慢上提.细线不断,若同学们迅速通过细线将重物上提,细线则被拉断.这个实验证明了什么?上述三个实验现象中,重锤或钩码或人的质量变了吗?重力变了吗?(回答均未变)所以,发生超重现象时,是物体对悬挂物的拉力或对支持物的压力增大了,物体自身重量没有发生变化.2.失重现象〔实验〕:如3-21装置铁架台左边是弹簧秤下挂的重锤,右边为钩码,仍请同学观察屏幕上弹簧秤读数并记下.先用手抓住钩码,使整个装置平衡,请同学观察弹簧秤读数并记录下来.迅速放开抓住钩码的手,重锤加速下降,与此同时,请同学观察屏幕上弹簧秤示数,并记录下来.结论是第二次弹簧秤示数小于第一次弹簧秤示数.什么原因造成的呢,我们来分析当用手握住钩码,整个装置平衡,弹簧秤示数应等于重锤的重力,图3-21或者说重锤对弹簧秤的拉力等于重锤的重力.当放开握钩码的手时,重锤加速下降,由牛顿第二定律:mg-F=ma∴F=mg-ma<mg可见,当物体有竖直向下的加速度时,物体对悬挂物的拉力小于物体的重力,这种现象称为失重.失重时,物体自身重力不变化.讨论:(1)当电梯里放有一台体重计,人站在电梯里的体重计上,电梯静止时,体重计读数与人体重比较应如何,当电梯加速下降时呢?(2)若电梯下降的加速度为g,体重计示数为多少?(这种现象称完全失重).3.示重、视重与实重上面所说弹簧称的读数,体重计的读数,习惯上称为示重或视重,而物体受地球引力产生的重力为实重.(四)总结、扩展物体具有竖直向上的加速度时,物体就超重;物体具有竖直向下的加速度时,物体就失重,若向下的加速度为g,则称为完全失重.超重与失重的实质是物体对悬挂物的拉力或对支持物的压力增大或减小了,而物体自身重力并未发生改变.超重与失重在生活中常见,为减轻桥梁所受压力,桥一般造成凸型,使汽车过桥时有一个向下的加速度而使桥梁所受压力减轻,如图3-22所示.当车经过凹陷的路面时,由于有竖直向上的加速度而出现超重现象,往往使车轮胎由于压力大而爆破。
1
13 超重和失重
[方法点拨] (1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时物体处于
超重状态,小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的角度判断,
当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速
度为重力加速度时处于完全失重状态.
1.(由受力判断超重、失重)图1甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间
的·表示人的重心.图乙是根据传感器采集到的数据画出的力—时间图象.两图中a~g各点
均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2.根据图象分析可知
( )
图1
A.人的重力为1 500 N
B.c点位置人处于超重状态
C.e点位置人处于失重状态
D.d点的加速度小于f点的加速度
2.(由运动判断超重、失重)如图2,一刚性正方体盒内密封一小球,盒子六面均与小球相切,
将其竖直向上抛出后,若空气阻力与速度成正比,下列说法正确的是( )
图2
A.在上升和下降过程中,小球对盒子的作用力均为零
B.在上升过程中,盒子底部对小球有向上的作用力
2
C.在下降过程中,盒子顶部对小球有向下的作用力
D.在抛出点,盒子上升时所受的阻力大于返回时所受的阻力
3.小明家住十层,他乘电梯从一层直达十层.则下列说法正确的是( )
A.他始终处于超重状态
B.他始终处于失重状态
C.他先后处于超重、平衡、失重状态
D.他先后处于失重、平衡、超重状态
4.如图3,质量为M的缆车车厢通过悬臂固定悬挂在缆绳上,车厢水平底板上放置一质量为
m
的货物,在缆绳牵引下货物随车厢一起斜向上加速运动.若运动过程中悬臂和车厢始终处
于竖直方向,重力加速度大小为g,则( )
图3
A.车厢对货物的作用力大小等于mg
B.车厢对货物的作用力方向平行于缆绳向上
C.悬臂对车厢的作用力大于(M+m)g
D.悬臂对车厢的作用力方向沿悬臂竖直向上
5.如图4所示,四个质量、形状相同的斜面体放在粗糙的水平面上,将四个质量相同的物块
放在斜面顶端,因物块与斜面的摩擦力不同,四个物块运动情况不同,放上A物块后A物块
匀加速下滑,B物块获一初速度后匀速下滑,C物块获一初速度后匀减速下滑,放上D物块后
D物块静止在斜面上,四个斜面体均保持静止.四种情况下斜面对地面的压力依次为F1、F
2
、
F3、F
4
,则它们的大小关系是( )
图4
A.F1=F2=F3=F4 B.F1>F2>F3>F4
C.F1
4
3
6.如图5所示,质量为M的木楔ABC静置于粗糙水平面上,在斜面顶端将一质量为m的物体,
以一定的初速度从A点沿平行于斜面的方向推出,物体m沿斜面向下做减速运动,在减速运
动过程中,下列说法中正确的是( )
图5
A.地面对木楔的支持力大于(M+m)g
B.地面对木楔的支持力小于(M+m)g
C.地面对木楔的支持力等于(M+m)g
D.地面对木楔的摩擦力为0
7.举重运动员在地面上能举起120 kg的重物,而在运动着的升降机中却只能举起100 kg
的重物,求升降机运动的加速度;若在以2.5 m/s2的加速度加速下降的升降机中,此运动员
能举起质量多大的重物?(取g=10 m/s2)
4
答案精析
1.B [由题图甲、乙可知,人的重力等于500 N,质量m=50 kg,b点位置人处于失重状态,
c、d、e点位置人处于超重状态,选项A、C错误,B正确;d点位置传感器对人的支持力F
最大,为1 500 N,由F-mg=ma可知,d点的加速度ad=20 m/s2,f点位置传感器对人的
支持力为0 N,由F-mg=ma可知,f点的加速度af=-10 m/s2,故d点的加速度大于f点
的加速度,选项D错误.]
2.D [由于受到空气阻力,在上升和下降过程中,小球和盒子的加速度均不等于重力加速度,
小球对盒子的作用力均不为零,选项A错误;在上升过程中,重力与阻力方向相同,加速度
大小大于g,盒子顶部对小球有向下的作用力,选项B错误;在下降过程中,重力与阻力方
向相反,加速度大小小于g,盒子底部对小球有向上的作用力,选项C错误;由功能关系可
知,盒子上升时的速度大于返回到抛出点时的速度,根据题述,盒子所受空气阻力与速度成
正比,因此在抛出点,盒子上升时所受的阻力大于返回时所受的阻力,选项D正确.]
3.C [小明乘坐电梯从一层直达十层过程中,一定是先向上加速,再向上匀速,最后向上减
速,运动过程中加速度方向最初向上,中间为零,最后向下,因此先后对应的状态应该是超
重、平衡、失重三个状态,C对.]
4.C [货物随车厢一起斜向上加速运动,由牛顿第二定律可知车厢与货物的重力和悬臂对车
厢作用力的合力方向应与加速度方向一致,故悬臂对车厢的作用力方向是斜向上的,选项D
错误;由于车厢和货物在竖直方向有向上的分加速度,处于超重状态,故悬臂对车厢的作用
力大于(M+m)g,选项C正确;同理,对车厢中货物用隔离法分析可知,车厢对货物的作用力
大小大于mg,方向是斜向上的,但不平行于缆绳,选项A、B错误.]
5.C [设物块和斜面体的总重力为G.
A物块匀加速下滑,加速度沿斜面向下,具有竖直向下的分加速度,存在失重现象,则F1
B
物块匀速下滑,合力为零,斜面体保持静止状态,合力也为零,则系统的合力也为零,故
F2=G
;
C物块匀减速下滑,加速度沿斜面向上,具有竖直向上的分加速度,存在超重现象,则F3>G
;
D
物块静止在斜面上,合力为零,斜面体保持静止状态,合力也为零,则系统的合力也为零,
故F4=G.故有F1
6.A [物体m沿斜面向下做减速运动,加速度方向沿斜面向上,则其沿竖直向上的方向有分
量,系统处于超重状态,故A正确,B、C错误;物体加速度沿水平方向的分量向右,说明地
面对木楔的摩擦力方向水平向右,故D错误.]
7.2 m/s2,方向向上 160 kg
解析 运动员在地面上能举起m0=120 kg的重物,则运动员能发挥的向上的最大支撑力
F=m0g
=1 200 N.
在运动着的升降机中只能举起m1=100 kg的重物,可见该重物超重了,升降机应具有向上的
加速度,设此加速度为a1,对重物由牛顿第二定律得F-m1g=m1a1,解得a1=2 m/s2.当升降
机以a2=2.5 m/s2的加速度加速下降时,重物失重.设此时运动员能举起的重物质量为m2,
对重物由牛顿第二定律得m2g-F=m2a2,解得m2=160 kg.