三角函数诱导公式练习题集附答案解析
- 格式:doc
- 大小:213.50 KB
- 文档页数:19
三角函数定义及诱导公式练习题1.代数式sin120cos210o o 的值为( ) A.34-C.32-D.142.tan120︒=( ) AB..3.已知角α的终边经过点(3a ,-4a)(a<0),则sin α+cos α等于( ) A.51 B.57 C .51- D .-57 4.已知扇形的面积为2cm 2,扇形圆心角θ的弧度数是4,则扇形的周长为( ) (A)2cm (B)4cm (C)6cm (D)8cm5.已知3cos()sin()22()cos()tan()f ππ+α-αα=-π-απ-α,则25()3f -π的值为( )A .12 B .-12C.2 D .-26.已知3tan()4απ-=,且3(,)22ππα∈,则sin()2πα+=( ) A 、45 B 、45- C 、35 D 、35-7.若角α的终边过点(sin 30,cos30)︒-︒,则sin α=_______. 8.已知(0,)2πα∈,4cos 5α=,则sin()πα-=_____________.9.已知tan α=3,则224sin 3sin cos 4cos sin cos αααααα+=- .10.(14分)已知tan α=12,求证: (1)sin cos sin cos a a a a -3+=-53;(2)sin 2α+sin αcos α=35.11.已知.2tan =α(1)求ααααcos sin cos 2sin 3-+的值;(2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπαπ+-+-+-的值;(3)若α是第三象限角,求αcos 的值.12.已知sin (α-3π)=2cos (α-4π),求52322sin cos sin sin παπαπαα⎛⎫⎪⎝⎭(-)+(-)--(-)的值.参考答案1.B 【解析】试题分析:180o π=,故21203oπ=. 考点:弧度制与角度的相互转化. 2.A. 【解析】试题分析:由诱导公式以可得,sin120°cos210°=sin60°×(-cos30°)=-2×=34-,选A. 考点:诱导公式的应用. 3.C 【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120tan(18060)tan 60︒=︒-︒=-︒= C.考点:诱导公式. 4.A 【解析】试题分析:σσ55-==r ,53cos ,54sin -===σσr y ,51cos sin =+∴σσ.故选A. 考点:三角函数的定义5.C 【解析】设扇形的半径为R,则错误!未找到引用源。
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
三角函数诱导公式练习题含答案三角函数定义及诱导公式练习题1.将120o化为弧度为()A.B.C.D.2.代数式的值为()A. B. C. D. 3.()A.B.C.D.4.已知角α的终边经过点(3a,-4a)(a0),则sin α+cos α等于( ) A. B. C.D.-5.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为() (A)2cm (B)4cm (C)6cm (D)8cm 6.若有一扇形的周长为60 cm,那么扇形的最大面积为( ) A.500 cm2 B.60 cm2 C.225 cm2 D.30 cm2 7.已知,则的值为()A.B.-C.D.-8.已知,且,则()A、B、C、D、9.若角的终边过点,则_______. 10.已知点P(tanα,cosα)在第二象限,则角α的终边在第________象限.11.若角θ同时满足sinθ0且tanθ0,则角θ的终边一定落在第________象限.12.已知,则的值为.13.已知,,则_____________. 14.已知,则_________. 15.已知tan=3,则 . 16.(14分)已知tanα=,求证:(1)=-;(2)sin2α+sinαcosα=.17.已知(1)求的值;(2)求的值;(3)若是第三象限角,求的值. 18.已知sin(α-3π)=2cos(α-4π),求的值.参考答案1.B 试题分析:,故. 考点:弧度制与角度的相互转化. 2.A. 试题分析:由诱导公式以可得,sin120°cos210°=sin60°×(-cos30°)=-×=,选A. 考点:诱导公式的应用.3.C 试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由,选C. 考点:诱导公式. 4.A 试题分析:,,.故选 A. 考点:三角函数的定义5.C 设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm). 6.C 设扇形的圆心角为,弧长为cm,由题意知,∴ ∴当时,扇形的面积最大;这个最大值为. 应选C. 7.A 试题分析:,=====. 考点:诱导公式. 8.试题分析:.又因为,所以为三象限的角,.选B. 考点:三角函数的基本计算. 9.试题分析:点即,该点到原点的距离为,依题意,根据任意角的三角函数的定义可知. 考点:任意角的三角函数. 10.四由题意,得tanα<0且cosα>0,所以角α的终边在第四象限.11.四由sinθ0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半轴重合.由tanθ0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.12.-3 13.试题分析:因为α是锐角所以sin(π-α)=sinα=考点:同角三角函数关系,诱导公式. 14.试题分析:,又,则原式=. 考点:三角函数的诱导公式. 15.45 试题分析:已知条件为正切值,所求分式为弦的齐次式,所以运用弦化切,即将分子分母同除以得. 考点:弦化切16.证明:(1) =-.(2)sin2α+sinαcosα=.(1)原式可以分子分母同除以cosx,达到弦化切的目的.然后将tanx=2代入求值即可. (2)把”1”用替换后,然后分母也除以一个”1”,再分子分母同除以,达到弦化切的目的. 证明:由已知tanα=.(1) ===-.(2)sin2α+sinαcosα====.17.(1);(2);(3). 试题分析:(1)因为已知分子分母为齐次式,所以可以直接同除以转化为只含的式子即可求得;(2)用诱导公式将已知化简即可求得;(3)有,得,再利用同角关系,又因为是第三象限角,所以;试题解析:⑴ 2分.3分⑵ 9分.10分⑶解法1:由,得,又,故,即,12分因为是第三象限角,,所以.14分解法2:,12分因为是第三象限角,,所以.14分考点:1.诱导公式;2.同角三角函数的基本关系. 18.∵sin(α-3π)=2cos(α-4π),∴-sin(3π-α)=2cos(4π-α),∴sinα=-2cosα,且cosα≠0. ∴原式=三角函数的诱导公式1 一、选择题1.如果|cosx|=cos(x+π),则x的取值集合是()A.-+2kπ≤x≤+2kπ B.-+2kπ≤x≤+2kπ C.+2kπ≤x≤+2kπ D.(2k+1)π≤x≤2(k+1)π(以上k∈Z)2.sin(-)的值是()A.B.-C.D.-3.下列三角函数:①sin(nπ+);②cos(2nπ+);③sin(2nπ+);④cos[(2n+1)π-];⑤sin[(2n+1)π-](n∈Z).其中函数值与sin的值相同的是()A.①② B.①③④ C.②③⑤ D.①③⑤ 4.若cos (π+α)=-,且α∈(-,0),则tan(+α)的值为()A.-B.C.-D.5.设A、B、C是三角形的三个内角,下列关系恒成立的是()A.cos(A+B)=cosC B.sin(A+B)=sinC C.tan (A+B)=tanC D.sin=sin 6.函数f(x)=cos(x∈Z)的值域为()A.{-1,-,0,,1} B.{-1,-,,1} C.{-1,-,0,,1} D.{-1,-,,1} 二、填空题7.若α是第三象限角,则=_________.8.sin21°+sin22°+sin23°+…+sin289°=_________.三、解答题9.求值:sin(-660°)cos420°-tan330°cot(-690°).10.证明:.11.已知cosα=,cos(α+β)=1,求证:cos(2α+β)=.12.化简:.13、求证:=tanθ.14.求证:(1)sin(-α)=-cosα;(2)cos(+α)=sinα.参考答案1 一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sinα-cosα 8.三、解答题9.+1.10.证明:左边= =-,右边=,左边=右边,∴原等式成立.11.证明:∵cos(α+β)=1,∴α+β=2kπ.∴cos (2α+β)=cos(α+α+β)=cos(α+2kπ)=cosα=.12.解:= = = ==-1.13.证明:左边==tanθ=右边,∴原等式成立.14证明:(1)sin(-α)=sin[π+(-α)]=-sin(-α)=-cosα.(2)cos(+α)=cos[π+(+α)]=-cos(+α)=sinα.三角函数的诱导公式2 一、选择题:1.已知sin(+α)=,则sin(-α)值为()A. B. —C. D. —2.cos(+α)= —,α,sin(-α) 值为()A. B. C. D. — 3.化简:得()A.sin2+cos2 B.cos2-sin2 C.sin2-cos2 D.± (cos2-sin2) 4.已知α和β的终边关于x轴对称,则下列各式中正确的是()A.sinα=sinβ B. sin(α-) =sinβ C.cosα=cosβ D. cos(-α) =-cosβ 5.设tanθ=-2, θ0,那么sinθ+cos(θ-)的值等于(),A. (4+)B. (4-) C. (4±)D. (-4)二、填空题:6.cos(-x)= ,x∈(-,),则x的值为.7.tanα=m,则.8.|sinα|=sin(-+α),则α的取值范围是.三、解答题:9..10.已知:sin(x+)=,求sin(+cos2(-x)的值.11.求下列三角函数值:(1)sin;(2)cos;(3)tan(-);12.求下列三角函数值:(1)sin·cos·tan;(2)sin[(2n+1)π-]. 13.设f(θ)=,求f()的值. 参考答案2 1.C 2.A 3.C 4.C 5.A 6.± 7.8.[(2k-1) ,2k] 9.原式=== sinα 10.11.解:(1)sin=sin(2π+)=sin=. (2)cos=cos (4π+)=cos=. (3)tan(-)=cos(-4π+)=cos=. (4)sin (-765°)=sin[360°×(-2)-45°]=sin(-45°)=-sin45°=-. 注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值. 12.解:(1)sin·cos·tan=sin(π+)·cos(4π+)·tan(π+)=(-sin)·cos·tan=(-)··1=-. (2)sin[(2n+1)π-]=sin(π-)=sin=. 13.解:f(θ)= = = = = = =cosθ-1,∴f()=cos-1=-1=-. 三角函数公式1.同角三角函数基本关系式sin2α+cos2α=1 =tanα tanαcotα=1 2.诱导公式(奇变偶不变,符号看象限) (一)sin(π-α)=sinα sin(π+α)=-sinα cos(π-α)=-cosα cos(π+α)=-cosα tan(π-α)=-tanα tan(π+α)=tanα sin(2π-α)=-sinα sin(2π+α)=sinα cos(2π-α)=cosα cos(2π+α)=cosα tan(2π-α)=-tanα tan(2π+α)=tanα (二)sin(-α)=cosα sin(+α)=cosα cos(-α)=sinα cos(+α)=- sinα tan(-α)=cotα tan(+α)=-cotα sin(-α)=-cosα sin(+α)=-cosα cos(-α)=-sinα cos(+α)=sinα tan(-α)=cotα tan(+α)=-cotα sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα 3.两角和与差的三角函数cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ tan(α+β)= tan(α-β)= 4.二倍角公式sin2α=2sinαcosα cos2α=cos2α-sin2α=2 cos2α-1=1-2 sin2α tan2α= 5.公式的变形(1)升幂公式:1+cos2α=2cos2α 1—cos2α=2sin2α (2)降幂公式:cos2α=sin2α=(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ) (4)万能公式(用tanα表示其他三角函数值)sin2α=cos2α=tan2α=6.插入辅助角公式asinx+bcosx=sin(x+φ) (tanφ= ) 特殊地:sinx±cosx=sin(x±) 7.熟悉形式的变形(如何变形)1±sinx±cosx 1±sinx 1±cosx tanx+cotx 若A、B是锐角,A+B=,则(1+tanA)(1+tanB)=2 8.在三角形中的结论若:A+B+C=π , =则有tanA +tanB+tanC=tanAtanBtanC tantan+tantan+tantan=1。
诱导公式练习题答案诱导公式是三角函数中常用的公式,主要用于将正弦、余弦等三角函数的角转换为锐角,从而简化计算。
以下是一些诱导公式的练习题及其答案。
# 练习题1:求 \(\sin(90^\circ - x)\) 的值。
答案:根据诱导公式,我们知道 \(\sin(90^\circ - x) = \cos(x)\)。
# 练习题2:计算 \(\cos(180^\circ - x)\)。
答案:根据诱导公式,\(\cos(180^\circ - x) = -\cos(x)\)。
# 练习题3:给出 \(\tan(270^\circ - x)\) 的表达式。
答案:\(\tan(270^\circ - x) = -\cot(x)\)。
# 练习题4:求 \(\sin(360^\circ - x)\) 的值。
答案:\(\sin(360^\circ - x) = -\sin(x)\)。
# 练习题5:计算 \(\cos(90^\circ + x)\)。
答案:\(\cos(90^\circ + x) = -\sin(x)\)。
# 练习题6:给出 \(\tan(180^\circ + x)\) 的表达式。
答案:\(\tan(180^\circ + x) = \tan(x)\)。
# 练习题7:求 \(\sin(270^\circ + x)\) 的值。
答案:\(\sin(270^\circ + x) = -\cos(x)\)。
# 练习题8:计算 \(\cos(360^\circ + x)\)。
答案:\(\cos(360^\circ + x) = \cos(x)\)。
这些练习题涵盖了诱导公式的基本应用,通过这些练习,学生可以更好地理解和掌握诱导公式,提高解决三角函数问题的能力。
三角函数的诱导公式经典练习题一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2B A +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.已知cos α=31,cos (α+β)=1,求证:cos (2α+β)=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:(1)sin (2π3-α)=-cos α; (2)cos (2π3+α)=sin α.参考答案一、选择题1.C 2.A 3.C 4.B 5.B 6.B二、填空题7.-sin α-cos α 8.289 三、解答题9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1-- =-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++, 右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos (α+β)=1,∴α+β=2k π.∴cos (2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31. 12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21 =)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+ =︒-︒︒︒-70sin 70cos 70cos 70sin 21 =︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1. 13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边, ∴原等式成立.14证明:(1)sin (2π3-α)=sin [π+(2π-α)]=-sin (2π-α)=-cos α. (2)cos (2π3+α)=cos [π+(2π+α)]=-cos (2π+α)=sin α。
三角函数的诱导公式练习题1.已知,2παπ⎛⎫∈ ⎪⎝⎭,3tan 4α=-,则sin()απ+=A .35-B .35C .45- D .452.已知51sin 25πα⎛⎫+= ⎪⎝⎭,那么cos α=( ) A .25-B .15-C .15D .253.若35)2cos(=-απ且)0,2(πα-∈,则=-)sin(απA .35-B .32-C .31-D .32± 4.=34cosπ( ) A.23 B.21 C.23- D.21- 5.2014cos()3π的值为( ) A .12 B.2 C .12- D.2- 6.化简sin600°的值是( ). A .0.5 B.-2C.2D.-0.5 7.sin(210)-的值为A .12-B .12 C. D8.sin(600)( )A .12 B.-12D .9.如果1sin()22x π+=,则cos()x -= .10.如果cosα=,且α是第四象限的角,那么= .11.5cos6π的值等于.12.已知25sin5α=,求5sin()2tan()5cos()2πααππα+++-的值.13.已知α为第三象限角,()3sin()cos()tan() 22tan()sin()fππααπαααπαπ-+-=----.(1)化简()fα;(2)若31cos()25πα-=,求()fα的值.14.化简.15.已知sin()cos(4)1cos2πααπα+-+=,求cos()2πα+的值.16.已知角α的终边经过点P (45,35-),(1)、求cosα的值;(2)、求sin()tan()2sin()cos(3)πααπαππα--⋅+-的值.参考答案1.A 【解析】试题分析:由已知α为第二象限角,sin 0α>,由sin 3tan cos 4ααα==-,又22sin cos 1αα+=,解得3sin 5α=,则由诱导公式()3sin sin 5απα+=-=-.故本题答案选A.考点:1.同角间基本关系式;2.诱导公式. 2.C 【解析】 试题分析:由51sin 25πα⎛⎫+=⎪⎝⎭,得1cos 5α=-.故选C .考点:诱导公式.3.B 【解析】试题分析:由αααπcos )cos()2cos(=-=-,得35cos =α,又)0,2(πα-∈,得32-sin =α又ααπsin )sin(=-,所以=-)sin(απ32-.考点:三角函数的诱导公式.4.D 【解析】 试题分析:41coscos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,故答案为D. 考点:三角函数的诱导公式点评:解本题的关键是掌握三角函数的诱导公式和特殊角的三角函数,利用这些公式进行求值. 5.C 【解析】 试题分析:2014cos()3π213cos )3cos()32335cos(-=-=+=++⨯=ππππππ,选C. 考点:三角函数的诱导公式.6.B 【解析】试题分析:2360sin )60180sin(240sin )240360sin(600sin 0-=-=+==+=. 考点:诱导公式.7.B 【解析】 试题分析:由诱导公式得sin(210)-2130sin )30180sin(210sin )210sin(00000==+-=-=-,故选B . 考点:诱导公式. 8.B 【解析】试题分析:由)2sin(sin παα+=得23120sin )720600sin()600sin(==+-=-. 考点:诱导公式. 9.21 【解析】试题分析:()111sin()cos cos cos 2222x x x x π+=∴=∴-==考点:三角函数诱导公式10.【解析】试题分析:利用诱导公式化简,根据α是第四象限的角,求出sinα的值即可.解:已知cosα=,且α是第四象限的角,;故答案为:.11.3. 【解析】试题分析:原式3cos()cos66πππ=-=-=. 考点:诱导公式,特殊角的三角函数值. 12.当α为第一象限角时,52;当α为第二象限角时,52-. 【解析】试题分析:分两种情况当α为第一象限角时、当α为第二象限角时分别求出α的余弦值,然后化简5sin()2tan()5cos()2πααππα+++-1sin cos αα=,将正弦、余弦值分别代入即可. 试题解析:∵25sin 05α=>, ∴α为第一或第二象限角. 当α为第一象限角时,25cos 1sin 5αα=-=,5sin()cos sin cos 152tan()tan 5sin cos sin sin cos 2cos()2παααααπαπαααααα+++=+=+==-.当α为第二象限角时,25cos 1sin 5αα=--=-, 原式15sin cos 2αα==-.考点:1、同角三角函数之间的关系;2、诱导公式的应用. 13.(1)αcos -;(2)562. 【解析】 试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和诱导公式及同角关系求解. 试题解析: (1)(cos )(sin )(tan )()cos (tan )sin f ααααααα--==--;(2)∵31cos()25πα-=, ∴1sin 5α-=即1sin 5α=-,又α为第三象限角 ∴226cos 1sin 5αα=--=-, ∴()f α=562.考点:诱导公式同角三角函数的关系.14.cosα. 【解析】试题分析:利用诱导公式化简求解即可. 解:==cosα. 15.12【解析】试题分析:由题根据诱导公式化简得到1sin 2α=-然后根据诱导公式化简计算即可. 试题解析:由sin()cos(4)1cos 2πααπα+-+=,得sin cos 1cos 2ααα-=,即1sin 2α=-,∴1cos()sin 22παα+=-=.考点:诱导公式 16.(1)45 ;(2) 54【解析】试题分析:(1)由题角α的终边经过点P (45,35- ),可回到三角函数的定义求出cos α (2)由题需先对式子用诱导公式进行化简,tan()απ-可运用商数关系统一为弦,结合(1) 代入得值.试题解析:(1)、2243155r ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭, 4cos 5x r α==sin()tan()cos tan()2sin()cos(3)sin cos()πααπαπααππααπα----⋅=⋅+---cos sin sin()cos()cos ααπαπαα--=⋅- 2cos sin 15sin cos cos 4ααααα=⋅==考点:1.三角函数的定义;2.三角函数的诱导公式及化切为弦的方法和求简思想.。
三角函数定义及诱导公式练习题代数式sin 120o cos21C °的值为(A.6 .已知 tan( ) 4 A 、4B5A. B. C. D.2. tan120 A.、.3.■■ 3贝U sin a+ cos a 等于()7 5a 的终边经过点 B.753. A.154. 已知扇形的面积为2cm,扇形圆心角B 的弧度数是4,则扇形的周长为( 已知角 (3a ,— 4a)(a <0), C . -15D .(A)2cm(B)4cm (C)6cm (D)8cm5 .已知f ()cos(— 2 cos(3 )si n()2,则 f( )tan()25§ )的值为(3“),则sin( ?)10. (14分)已知tan a =—,求证: /八 sin a cosa ⑴ 二_ _ ;sin a cosa(2)sin 2 a+ sin a COS a = - .11 .已知 tan 2.(1)求 3sin 一2CO 二的值; sin coscos( )cos( )sin()⑵求品盘窗勺的值;(3)若 是第三象限角,求cos 的值. 312.已知 sin ( a — 3n ) = 2cos( a — 4n ),求 si (2si n— — si n(—二)+ 5cos (2 —3-的值. )f(25 )=cos 325 325 =cos- 3 = cos 8 1 —=cos —= 3 3 2参考答案1. B【解析】 试题分析:180°,故1200 -.3考点:弧度制与角度的相互转化•2. A.【解析】试题分析:由诱导公式以可得,sin 120 ° cos210° =sin60 ° x (-cos30 ° )=- ^ x2十3,选A.考点:诱导公式的应用. 3. C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120 tan(18060 ) tan 603,选 C.考点:诱导公式• 4. A【解析】 试题分析:r 55 , sin —-, cos -, sin cos r 55考点:三角函数的定义 5. C【解析】设扇形的半径为R,则错误!未找到引用源。
三角函数的诱导公式1. 任意角α的正弦、余弦、正切是怎样定义的?2. 2kπ+α(k∈Z)与α的三角函数之间的关系是什么?3.你能求750°和930°的值吗?4.利用公式一,可将任意角的三角函数值,转化为00~3600范围内的三角函数值.其中锐角的三角函数是我们熟悉的,而对于900~3600范围内的三角函数值,能否转化为锐角的三角函数值,这就是我们需要研究和解决的问题.同名三角函数的诱导公式思考:对于任意给定的一个角α,角π+α的终边与角α的终边有什么关系?设角α的终边与单位圆交于点P(x,y),则角π+α的终边与单位圆的交点坐标如何?根据三角函数定义:对比α,α,α的值,π+α的三角函数与α的三角函数有什么关系?思考:对于任意给定的一个角α,-α的终边与α的终边有什么关系?设角α的终边与单位圆交于点 P(x,y),则-α的终边与单位圆的交点坐标如何?利用π-α=π+(-α),结合公式二、三,你能得到什么结论?公式一~四都叫做诱导公式,他们分别反映了2kπ+α(k∈Z),π+α,-α,π-α的三角函数与α的三角函数之间的关系2kπ+α(k∈Z),π+α,-α,π-α的三角函数值,等于α的同名函数值,再放上将α当作锐角时原函数值的符号.即函数同名,象限定号.利用诱导公式一~四,可以求任意角的三角函数,其基本思路是:例3 求下列各三角函数的值:1,求下列各式的值:例4 已知(π+x)=3(1)(2π-x);(2)(π-x). 例5 化简:异名三角函数的诱导公式思考:若α为一个任意给定的角,那么απ-2的终边与角α的终边有什么对称关系?点P1(x ,y )关于直线对称的点P2的坐标如何? 设角α的终边与单位圆的交点为P 1(x ,y ),则απ-2的终边与单位圆的交点为P 2(y ,x ),根据三角函数的定义,你能获得哪些结论? 公式五思考2:απ+2与απ-2有什么内在联系?公式六证明下列等式三角形中的三角函数问题三角函数的化简求值.(A)第一象限(B)第二象限(C)第三象限(D)第四象限(A)f(1)<f(2)<f(3) (B)f(2)<f(1)<f(3) (C)f(2)<f(3)<f(1) (D)f(3)<f(2)<f(1)三角函数的诱导公式练习一、选择题(本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选择中,只有一项是符合题目要求的.) 1、与-463°终边相同的角可表示为( ) A .k·360°+436°(k ∈Z ) B .k·360°+103°(k ∈Z )C .k·360°+257°(k ∈Z )D .k·360°-257°(k ∈Z ) 2、下列四个命题中可能成立的一个是( ) A 、21cos 21sin ==αα且 B 、1cos 0sin -==αα且C 、1cos 1tan -==αα且D 、α是第二象限时,αααcos tan sia -=3、若54sin =α,且α是第二象限角,则αtan 的值为( ) A 、34- B 、43 C 、43± D 、34± 4、若2cos sin =+αα,则ααcot tan +等于( )A 、1B 、2C 、-1D 、-2 1、 ︒︒+450sin 300tan 的值为( )A 、31+B 、31-C 、31--D 、31+-5、若A 、B 、C 为△的三个内角,则下列等式成立的是( )A 、A CB sin )sin(=+ B 、AC B cos )cos(=+ C 、A C B tan )tan(=+D 、A C B cot )cot(=+ 6、)2cos()2sin(21++-ππ等于 ( )A .2-2B .2-2C .±(2-2)D .227、αα=81,且4π<α<2π,则α-α的值为( )A .23 B .23-C .43D .43-8、在△中,若最大角的正弦值是22,则△必是( )A 、等边三角形B 、直角三角形C 、钝角三角形D 、锐角三角形9、下列不等式中,不成立的是( ) A 、︒︒>140sin 130sin B 、︒︒>140cos 130cos C 、︒︒>140tan 130tan D 、︒︒>140cot 130cot10、已知函数2cos )(x x f =,则下列等式成立的是( ) A 、)()2(x f x f =-π B 、)()2(x f x f =+πC 、)()(x f x f -=-D 、)()(x f x f =-11、若θsin 、θcos 是关于x 的方程0242=++m mx x 的两个实根,则m 值为( )A 、⎪⎭⎫⎢⎣⎡-∈0,34m B 、51-=m C 、51±=m D 、51+=m12、已知()sin()cos()4f x a x b x παπβ=++++(,,,a b αβ为非零实数), (2011)5f = 则(2012)f =( )A .1B .3C .5D .不能确定 二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中横线上)13、化简=+-+βαβαβα222222cos cos sin sin sin sin . 14、若0cos 3sin =+αα,则ααααsin 3cos 2sin 2cos -+的值为 .15、=-︒)945cos( . 16、=⋅⋅⋅⋅⋅⋅︒︒︒︒89tan 3tan 2tan 1tan .三、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤)17、求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、 化简:)(cos )tan()2tan()cos()(sin 32πααππααππα--⋅+--+⋅+.19、已知21)sin(=+απ,求απααπcos )tan()2sin(⋅-+-的值.20、已知54sin -=α. 求ααtan cos 和的值 .21、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+22、已知1)sin(=+βα,求证 0tan )2tan(=++ββα参考答案一、选择题(每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 总分答案B AC B B A C B CD B B二、填空题(每小题4分,共16分) 13、1. 14、115-15、22- 16、1三、解答题(本大题共5道小题,共36分.解答应写出文字说明,证明过程或演算步骤)17、提示:[]1cos tan cot cos sin )cos (tan cot )cos (sin )(cos tan )2cot()cos ()sin (323232-=⋅-⋅⋅=-⋅⋅-⋅=+⋅+-⋅-⋅-=αααααααααααπααπαα原式18、提示:利用诱导公式,原式=219、提示:54sin -=α ,∴角α在第三、四象限,(1) 当α在第三象限,则34tan ,53cos =-=αα(2) 当α在第四象限,则34tan ,53cos -==αα20、提示:右边左边=-=+-=--=ααααααααααααcos sin cos sin cos sin sin 1cos 1sin cos cos sin 22故等式成立 21、提示:)(22,1)sin(Z k k ∈+=+∴=+ππβαβα)(22Z k k ∈-+=∴βππα,0tan tan tan )tan(tan )4tan(tan )24tan(tan )22(2tan tan )2tan(=+-=+-=+-+=++-+=+⎥⎦⎤⎢⎣⎡+-+=++ββββπββππβββππβββππββαk k k0tan )2tan(=++∴ββα。
三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。
数学诱导公式作业1.3,2παπ⎛⎫∈ ⎪⎝⎭,sin 10α=-,tan α=______. 2.已知点()1,2P -为角θ终边上一点,则2sin cos sin cos θθθθ-=+______. 3.已知1sin cos 3αα+=,则sin cos αα的值为________. 4.若3sin cos 0αα+=,则21cos sin 2αα+的值为_ 5.已知02πα-<<,且5cos 13α=.则2cos()3sin()4cos()sin(2)παπααπα--+-+-的值为_____. 6.已知1tan()2πα-=-,则cos()+22cos sin cos παααα+-的值是______. 7.已知3sin 25πα⎛⎫-= ⎪⎝⎭,则cos()πα+的值为________. 8.sin 315=________.9.计算:1125sin tan 33ππ⎛⎫+-= ⎪⎝⎭________ 10.sin 30︒=__________,11cos4π=_________.11.已知角α终边上有一点()1,P y,且sin α=(1)求tan α的值; (2)求()()sin sin 2sin cos 2ππαααπα⎛⎫-++ ⎪⎝⎭--的值.12.已知()()()π3π=cos cos 2πsin 223πsin πsin 2f a ααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫--⋅+ ⎪⎝⎭. (1)化简()f a ;(2)若α 是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f a 的值.13.已知02πα<<,且513sin α=. ()1求tan α的值;()2求()222222sin sin sin cos sin απααπαα--⎛⎫++ ⎪⎝⎭的值.14.化简或求值: (1)sin()cos()sin()cos()222cos()sin()πππααπααπαπα+--++++; (2)6sin(90)3sin08sin 27012cos180-+-+.15.已知角α的终边与单位圆交于点P(45,35).(1)写出sin αααtan ,cos ,值; (2)求)cos(2)2sin(2)sin(απαπαπ--++的值.16.已知角α的终边经过点P (m ,4),且35cos α=-, (1)求m 的值; (2)求()()()2sin sin cos sin παπααπα⎛⎫-++ ⎪⎝⎭-+-的值. 17.已知sin α=α是第一象限角. (1)求cos α的值. (2)求()()3sin 2tan cos πααππα⎛⎫- ⎪⎝⎭++-的值. 18.已知sin 1sin cos ααα=-- (1)求tan α的值,(2)求222sin 2sin cos 3sin cos ααααα++的值.参考答案1.13【解析】【分析】先计算cos α=,再根据sin tan cos ααα=计算得到答案. 【详解】3,2παπ⎛⎫∈ ⎪⎝⎭,sin 1sin cos tan cos 3ααααα==== 故答案为:13【点睛】 本题考查了同角三角函数关系,意在考查学生的计算能力.2.5【解析】【分析】首先求tan θ,再化简2sin cos 2tan 1sin cos tan 1θθθθθθ--=++,求值. 【详解】 由题意可知2tan 21θ==-- 2sin cos 2tan 15sin cos tan 1θθθθθθ--==++ . 故答案为:5【点睛】本题考查三角函数的定义和关于sin ,cos θθ的齐次分式求值,意在考查基本化简和计算. 3.49- 【解析】 ∵1sin cos 3αα+=, ∴2221(sin cos )sin cos 2sin cos 12sin cos 9αααααααα+=++=+=,解得4sin cos 9αα=-。
三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。
三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:= .26、已知,则f(1)+f(2)+f(3)+…+f(2009)= .27、已知tanθ=3,则(π﹣θ)= .28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
专题:计算题。
分析:从问题来看,要判断奇偶性,先对函数用诱导公式作适当变形,再用定义判断.解答:解:∵f(x)=sin=cos,g(x)=tan(π﹣x)=﹣tanx,∴f(﹣x)=cos(﹣)=cos=f(x),是偶函数g(﹣x)=﹣tan(﹣x)=tanx=﹣g(x),是奇函数.故选D.点评:本题主要考查函数奇偶性的判断,判断时要先看定义域,有必要时要对解析式作适当变形,再看f(﹣x)与f(x)的关系.2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限考点:象限角、轴线角;运用诱导公式化简求值。
专题:计算题。
分析:根据所给的点的坐标的横标和纵标,把横标和纵标整理,利用三角函数的诱导公式,判断出角是第几象限的角,确定三角函数值的符号,得到点的位置.解答:解:∵cos2009°=cos(360°×5+209°)=cos209°∵209°是第三象限的角,∴cos209°<0,∵sin2009°=sin(360°×5+209°)=sin209°∵209°是第三象限的角,∴sin209°<0,∴点P的横标和纵标都小于0,∴点P在第三象限,故选C点评:本题考查三角函数的诱导公式,考查根据点的坐标中角的位置确定坐标的符号,本题运算量比较小,是一个基础题.3、已知,则=()A、B、C、D、考点:任意角的三角函数的定义;运用诱导公式化简求值。
专题:计算题。
分析:求出cosa=,利用诱导公式化简,再用两角差的余弦公式,求解即可.解答:解:cosa=,cos(+a)=cos(2π﹣+a)=cos(a﹣)=cosacos+sinasin=×+×=.故选B.点评:本题考查任意角的三角函数的定义,运用诱导公式化简求值,考查计算能力,是基础题.4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣考点:同角三角函数间的基本关系;运用诱导公式化简求值。
专题:计算题。
分析:先根据诱导公式把已知条件化简得到tan20°的值,然后根据同角三角函数间的基本关系,求出cos20°的值,进而求出sin20°的值,则把所求的式子也利用诱导公式化简后,将﹣sin20°的值代入即可求出值.解答:解:tan160°=tan(180°﹣20°)=﹣tan20°=a<0,得到a<0,tan20°=﹣a∴cos20°===,∴sin20°==则sin2000°=sin(11×180°+20°)=﹣sin20°=.故选B.点评:此题考查学生灵活运用诱导公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意a的正负.5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、考点:同角三角函数间的基本关系;运用诱导公式化简求值。
专题:计算题。
分析:利用诱导公式化简sin(﹣α)为cos(+α),从而求出结果.解答:解:sin(﹣α)=cos[﹣(﹣α)]=cos(+α)=﹣.故选A点评:本题考查诱导公式,两角和与差的余弦函数,两角和与差的正弦函数,考查计算能力,是基础题.6、(2004•贵州)函数的最小值等于()A、﹣3B、﹣2C、D、﹣1考点:运用诱导公式化简求值。
专题:综合题。
分析:把函数中的sin(﹣x)变形为sin[﹣(+x)]后利用诱导公式化简后,合并得到一个角的余弦函数,利用余弦函数的值域求出最小值即可.解答:解:y=2sin(﹣x)﹣cos(+x)=2sin[﹣(+x)]﹣cos(+x)=2cos(+x)﹣cos(+x)=cos(+x)≥﹣1所以函数的最小值为﹣1故选D点评:此题考查学生灵活运用诱导公式化简求值,会根据余弦函数的值域求函数的最值,是一道综合题.做题时注意应用(﹣x)+(+x)=这个角度变换.7、本式的值是()A、1B、﹣1C、D、考点:运用诱导公式化简求值。
专题:计算题。
分析:利用诱导公式及三角函数的奇偶性化简可得值.解答:解:原式=sin(4π﹣)﹣cos(4π+)+tan(4π+)=﹣sin﹣cos+tan=﹣+×+×=1故选A点评:此题为一道基础题,要求学生会灵活运用诱导公式化简求值,掌握三角函数的奇偶性.化简时学生应注意细心做题,注意符号的选取.8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、考点:运用诱导公式化简求值。
专题:计算题。
分析:由已知中且α是第三象限的角,我们易根据诱导公式求出sinα,cosα,再利用诱导公式即可求出cos(2π﹣α)的值.解答:解:∵且α是第三象限的角,∴,∴∴cos(2π﹣α)=故选B点评:本题考查的知识点是运用诱导公式化简求值,熟练掌握诱导公式是解答本题的关键,解答中易忽略α是第三象限的角,而选解为D9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0D、1考点:运用诱导公式化简求值。
专题:计算题。
分析:利用诱导公式转化f(sin30°)=f(cos60°),然后求出函数值即可.解答:解:因为f(cosx)=cos2x所以f(sin30°)=f(cos60°)=cos120°=﹣,故选B.点评:本题是基础题,考查函数值的求法,注意诱导公式的应用是解题的关键.10、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣考点:运用诱导公式化简求值。
专题:计算题。
分析:把已知条件根据诱导公式化简,然后把所求的式子利用二倍角的余弦函数公式化简后代入即可求出值.解答:解:sin(a+)=sin[﹣(﹣α)]=cos(﹣α)=cos(α﹣)=,则cos(2α﹣)=2﹣1=2×﹣1=﹣故选D点评:考查学生灵活运用诱导公式及二倍角的余弦函数公式化简求值.11、若,,则的值为()A、B、C、D、考点:运用诱导公式化简求值;三角函数值的符号;同角三角函数基本关系的运用。
专题:计算题。
分析:角之间的关系:(﹣x)+(+x)=及﹣2x=2(﹣x),利用余角间的三角函数的关系便可求之.解答:解:∵∴,cos(﹣x)>0,cos(﹣x)===.∵(﹣x)+(+x)=,∴cos(+x)=sin(﹣x)①.又cos2x=sin(﹣2x)=sin2(﹣x)=2sin(﹣x)cos(﹣x)②,将①②代入原式,∴===故选B点评:本题主要考查三角函数式化简求值.用到了诱导公式及二倍角公式及角的整体代换.三角函数中的公式较多,应强化记忆,灵活选用.12、已知,则的值是()A、B、C、D、考点:运用诱导公式化简求值。
专题:计算题。
分析:由sinθ>0,sinθcosθ<0,得到cosθ<0,利用同角三角函数间的基本关系求出cosθ的值,把所求式子利用诱导公式化简后,将sinθ和cosθ的值代入即可求出值.解答:解:由sinθ=>0,sinθcosθ<0,得到cosθ<0,得到cosθ=﹣=﹣,则=sinθcosθ=×(﹣)=﹣.故选B点评:此题考查学生灵活运用同角三角函数间的基本关系化简求值,灵活运用诱导公式化简求值,是一道基础题.13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、考点:运用诱导公式化简求值。