风力发电机载荷特性
- 格式:docx
- 大小:753.44 KB
- 文档页数:8
第6章 结构荷载本项目分析内容包括结构的强度和屈曲分析、单工况动力分析和动力耦合分析。
因此,结构分析荷载分为静荷载和动荷载。
静荷载包括风机运转荷载、风、浪、流和冰荷载;动荷载包括风机运转荷载、风、浪、流、冰和地震荷载。
6.1 强度与屈曲分析荷载 6.1.1 风机运行荷载风力发电机组运行时,其叶片上的风荷载和风机偏航引起的荷载通过结构和传动机构作用在塔架顶端,因此,DnV 规范规定,海上风电机组基础结构设计应考虑风电机组的荷载。
这部分荷载包括:风轮上的静风压引起的荷载、湍流和尾流引起的荷载、风力发电机偏航引起的荷载和风力发电机组的重力荷载等。
中华人民共和国机械工业部标准(JB/T10300-2001)对风力发电机组的荷载计算做出了具体的规定: 6.1.1.1 正常运行荷载1、风轮上的气动荷载 (1) 作用在风轮上的平均压力作用在风轮扫掠面积A 上的平均压力H p 由下式计算:2H FB 12r p C V ρ=(6.1.1) 式中:C FB =8/9;ρ——空气密度; V r ——额定风速。
代入系数值并经量纲转换后得:2H 1800r V p =(kN/m 2) (6.1.2)式中:V r 的量纲为m/s 。
(2) 作用在塔架顶部的力为:XH H F p A = (6.1.3)(3) 湍流、风斜流和塔尾流的影响利用气动力距风轮中心的偏心距e w 来考虑湍流以及风斜流和塔尾流的影响:22w rwR e V = (6.1.4) 式中:R ——风轮半径;w ——任一方向风的极端风梯度,取w =0.25m sm或风速梯度的1.5 倍(二值中取较小值)。
由于此偏心距而产生最大附加力矩为:YH H w M p Ae = (6.1.5)或ZH H w M p Ae = (6.1.6)(4) 扭矩XH M 由最大输出功率P e1 确定:e1XH P M ωη=(6.1.7)式中:ω——风轮转动角速度;η——发电机和增速器的总效率系数。
风力发电标准大全本文从国家标准、电力行业标准、机械行业标准、农业标准、IEC标准、AGMA美国齿轮制造商协会标准、ARINC美国航空无线电设备公司标准、ASTM 美国材料和实验协会标准等几个方面总结风力发电标准大全。
1、风力发电国家标准GB/T 2900.53-2001电工术语风力发电机组GB 8116—1987风力发电机组型式与基本参数GB/T 10760.1-2003离网型风力发电机组用发电机第1部分:技术条件GB/T 10760.2-2003离网型风力发电机组用发电机第2部分:试验方法GB/T 13981—1992风力设计通用要求GB/T 16437—1996小型风力发电机组结构安全要求GB 17646-1998小型风力发电机组安全要求GB 18451.1-2001风力发电机组安全要求GB/T 18451.2-2003风力发电机组功率特性试验GB/T 18709—2002风电场风能资源测量方法GB/T 18710—2002风电场风能资源评估方法GB/T 19068.1-2003离网型风力发电机组第1部分技术条件GB/T 19068.2-2003离网型风力发电机组第2部分试验方法GB/T 19068.3-2003离网型风力发电机组第3部分风洞试验方法GB/T 19069-2003风力发电机组控制器技术条件GB/T 19070-2003风力发电机组控制器试验方法GB/T 19071.1-2003风力发电机组异步发电机第1部分技术条件GB/T 19071.2-2003风力发电机组异步发电机第2部分试验方法GB/T 19072-2003风力发电机组塔架GB/T 19073-2003风力发电机组齿轮箱GB/T 19115.1-2003离网型户用风光互补发电系统第1部分:技术条件GB/T 19115.2-2003离网型户用风光互补发电系统第2部分:试验方法GB/T 19568-2004风力发电机组装配和安装规范GB/T 19960.1-2005风力发电机组第1部分:通用技术条件GB/T 19960.2-2005风力发电机组第2部分:通用试验方法GB/T 20319-2006风力发电机组验收规范GB/T 20320-2006风力发电机组电能质量测量和评估方法GB/T 20321.1-2006离网型风能、太阳能发电系统用逆变器第1部分:技术条件GB/T 21150-2007失速型风力发电机组GB/T 21407-2008双馈式变速恒频风力发电机组2、风力发电电力行业标准DL/T 666-1999风力发电场运行规程DL 796-2001风力发电场安全规程DL/T 797—2001风力发电厂检修规程DL/T 5067—1996风力发电场项目可行性研究报告编制规程DL/T 5191—2004风力发电场项目建设工程验收规程DL/T 5383-2007风力发电场设计技术规范3、风力发电机械行业标准JB/T 6939.1—2004离网型风力发电机组用控制器第1部分:技术条件JB/T 6941—1993风力提水用拉杆泵技术条件JB/T 7143.1-1993风力发电机组用逆变器技术条件JB/T 7143.2-1993风力发电机组用逆变器试验方法JB/T 7323—1994风力发电机组试验方法JB/T 7878—1995 (原GB 8974—1988)风力机术语JB/T 7879—1999风力机械产品型号编制规则JB/T 9740.1—1999低速风力机系列JB/T 9740.2—1999低速风力机型式与基本参数JB/T 9740.3 -1999低速风力机技术条件JB/T 9740.4—1999低速风力机安装规范JB/T 10137—1999提水和发电用小型风力机实验方法JB/T 10194-2000风力发电机组风轮叶片JB/T 10300-2001风力发电机组设计要求JB/T 10705-2007滚动轴承风力发动机轴承JB/T 10395—2004离网型风力发电机组安装规范JB/T 10396—2004离网型风力发电机组可靠性要求JB/T 10397—2004离网型风力发电机组验收规范JB/T 10398—2004离网型风力发电系统售后技术服务规范JB/T 10399—2004离网型风力发电机组风轮叶片JB/T 10400.1-2004离网型风力发电机组用齿轮箱第1部分:技术条件JB/T 10400.2-2004离网型风力发电机组用齿轮箱第2部分:实验方法JB/T 10401.1-2004离网型风力发电机组制动系统第1部分:技术条件JB/T 10402.1-2004离网型风力发电机组偏航系统第1部分:技术条件JB/T 10402.2-2004离网型风力发电机组偏航系统第2部分:实验方法JB/T 10403—2004离网型风力发电机组塔架JB/T 10404—2004离网型风力发电集中供电系统运行管理规范JB/T 10405—2004离网型风力发电机组基础与联接技术条件JB/T 10425.1-2004风力发电机组偏航系统第1部分:技术条件JB/T 10425.2-2004风力发电机组偏航系统第2部分:实验方法JB/T 10426.1-2004风力发电机组制动系统第1部分:技术条件JB/T 10426.2-2004风力发电机组制动系统第2部分:实验方法JB/T 10427-2004风力发电机组一般液压系统4、风力发电农业标准NY/T 1137-2006小型风力发电系统安装规范5、风力发电IEC标准IEC WT 01: 2001规程和方法-风力发电机组一致性试验和认证系统IEC 61400-1风力发电机组第1部分:安全要求【Windturbine generator systems - Part 1: Safety requirements风力发电机系统-安全要求】IEC 61400-2风力发电机组第2部分:小型风力发电机的安全【Wind turbine generator systems - Part 2:Safety ofsmall wind turbines风力发电机系统-小风机的安全】IEC 61400-3 Wind turbine generator systems - Part 3:Design requirements for offshore wind turbines风机发电机系统-近海风机的设计要求IEC 61400-11风力发电机噪声测试【Wind turbinegenerator systems - Part 11: Acoustic noise measurementtechniques风力发电机系统-噪声测量技术】IEC 61400-12风力发电机组第12部分:风力发电机功率特性试验【Wind turbine generator systems - Part 12:Windturbine power performance testing风力发电机系统-风力机功率特性测试】IEC/TS 61400-13机械载荷测【Wind turbine generatorsystems - Part 13: Measurement of mechanical loads风力发电机系统-机械载荷测量】IEC 61400-14 TS Wind turbines - Declaration of soundpower level and tonality valuesIEC 61400-21 Wind turbine generator systems - Part 21:Measurement and assessment of power qualitycharacteristics of grid connected wind turbines风力发电机系统-并网风力电能质量测量和评估IEC/TS 61400-23风力发电机组认证Wind turbinegenerator systems - Part 23: Full-scale structural testing ofrotor blades风力发电机系统-风轮结构测试IEC/TR 61400-24 Wind turbine generator systems - Part24: Lightning protection 风力发电机系统-防雷保护IEC 61400-25-1-2006 Wind turbines - Part 25-1:Communications for monitoring and control of wind powerplants - Overall description of principles and models风力涡轮机第25-1部分:风力发电厂监测和控制通信系统原理和模型总描述IEC 61400-25-2-2006 Wind turbines - Part 25-2:Communications for monitoring and control of wind powerplants - Information models风力涡轮机第25-2部分:风力发电厂监测和控制的通信系统信息模型IEC 61400-25-3-2006 Wind turbines - Part 25-3:Communications for monitoring and control of wind powerplants - Information exchange models风力涡轮机第25-3部分:风力发电厂监测和控制的通信系统.信息交换模型IEC 61400-25-4-2008 Wind turbines - Part 25-4:Communications for monitoring and control of wind powerplants - Mapping to XML based communication profile风力涡轮机.第25-4部分:风力发电厂的监测和控制用通信系统绘图到通信轮廓IEC 61400-25-5 Ed. 1.0 Wind turbines - Part 25-5:Communications for monitoring and control of wind powerplants - Conformance testing风力涡轮机第25-5部分:风力发电厂监测和控制的通信系统.一致性测试ISO/IEC 81400-4 Wind turbine generator systems - Part 4:Gearboxes for turbines from 40 kW to 2 MW and larger风机发电机系统-40 kW到2 MW或更大风机变速箱IEC 61400-SER Wind turbine generator systems - ALLPARTS风力发电机系统-所有部分6、风力发电AGMA美国齿轮制造商协会标准AGMA 02FTM4-2002 Multibody-System-Simulation ofDrive Trains of WindTurbines风力涡轮机的驱动齿轮组的多体系统仿真ANSI/AGMA 6006-2004 Design and Specification ofGearboxes for Wind Turbines 风力涡轮机齿轮箱的设计和规范7、风力发电ARINC美国航空无线电设备公司标准ARINC 404A-1974 Air Transport Equipment Cases andRacking风力运输设备装运箱ARINC 408A-1976 Air Transport Indicator Cases andMounting风力运输指示器装运箱装置ARINC 561-11-1975 Air Transport Inertial NavigationSystem - INS, 1966 (Includes Supplements 1 Through 11)风力运输惯性导航系统19668、风力发电ARMY MIL美国陆军标准ARMY MIL-A-13479-1954 ANEMOMETER ML-497( )/PMML-497()/PM风力表9、风力发电ASCE美国土木工程师协会标准ASCE 7 GUIDE-2004 Guide To The Use Of The WindLoad Provisions Of ASCE 7-02风力载荷使用指南.ASCE7-0210、风力发电ASME美国机械工程师协会标准ANSI/ASME PTC29-2005水利涡轮发电机组的速度调节系统ANSI/ASME PTC 42-1988风力机性能试验规程ASME PIC 20.3-1970汽轮发电机组用压力控制系统11、风力发电ASTM美国材料和实验协会标准ASTM E 1240-88风能转换系统性能的测试方法12、风力发电IEEE美国电气与电子工程师协会标准ANSI/IEEE 67-2005涡轮发电机的操作维护指南ANSI/IEEE 492-1999水利发电机运转和维护指南ANSI/IEEE 1010-2006水利发电站的控制指南IEEE/ANSI 1021-1988小型与公用电网互联的推荐规范13、风力发电AS澳大利亚标准AS 61400.21-2006 Wind turbines Part 21: Measurementand assessment of power quality characteristics of gridconnected wind turbines风力涡轮机第21部分:网格连接风力涡轮机发电质量特征的测量和评定14、风力发电BS英国标准BS EN 45510-5-3-1998发电站设备采购指南风力涡轮机BS EN 61400-11-2003风力涡轮发电机风轮发电的动力性能测量15、风力发电DIN德国标准DIN EN 61400-25-2-2007 Wind turbines - Part 25-2:Communications for monitoring and control of wind powerplants - Information models (IEC 61400-25-2:2006);German version EN 61400-25-2:2007,text in English风力涡轮机.第25-2部分:风力发电站的监测和控制用通信信息模型DIN EN 61400-25-3-2007 Wind turbines - Part 25-3:Communications for monitoring and control of wind powerplants - Information exchange models (IEC61400-25-3:2006);German version EN 61400-25-3:2007,text in English风力涡轮机。
浮动式海上风力发电机荷载及振动控制研究进展本文通过浮动式海上风力发电机所受风荷载及其振动控制研究进行了分析总结,分析了目前荷载计算方法及振动控制方法的有效性及合理性,对今后风荷载模拟方法选用及振动控制方面的研究奠定基础。
标签:海上风力发电机;风荷载研究;振动控制分析;发展展望1 引言目前海上风力发电的开发主要集中在欧洲。
近年来,北美、亚洲各国也加入到海上风电的开发行列,使得海上风电的研究更加深入。
虽然我国拥有丰富的海上风能资源,但海上风电进展迟缓,技术尚不完备。
由于海上风电相比于陆上风电,所处环境更为复杂,面临大风、海浪、潮汐、海啸以及地震等灾害的侵扰,海上风力发电技术朝着单机容量大型化、发电机组设备技术化、风场区域深海化的趋势发展。
面对新的发展趋势,浅海域风力发电场的发展已经不能满足风能发展的要求,海上风电场将进军深海领域,因此浮动式海上风力发电机的发展前景愈加广阔。
本文结合国内外研究成果,总结了浮动式海上风力发电机的作用荷载及在其振动控制方面的研究现状,并根据研究现状对海上风力发电机的未来研究问题进行了展望。
2 浮动式海上风力发电机风荷载研究空气流动变产生风,风的强弱用风速表示。
通常认为瞬时风速由平均风和脉动风两部分组成。
受海面粗糙度的影响,平均风速沿高度存在变化,该变化规律称为平均风速梯度或者风剖面。
一般用指数率或对数率描述平均风速沿高度的变化规律。
脉动风则具有随时间和空间变化的随机性,通常假定其为具有零均值的平稳高斯随机过程时间序列。
其性能可用功率谱密度函数和相干函数来描述。
功率谱密度函数可以反映脉动风中不同频率风速对应的能量分布规律,水平脉动风速谱主要有Davenport谱、Kaimal谱和Harris谱等,竖向脉动风速谱有Panofsky-McCormick谱、Lumley-Panofsky谱等。
在时域中脉动风的相关性一般用相关函数来表示,相关函数分为自相关函数和互相关函数。
频域中脉动风的相关性一般用相干函数来表示,风洞实验和实测表明,相干函数是一条指数衰减曲线。
风力发电机叶片叶根的受力性能综述作者:周新坪来源:《科技风》2016年第16期摘要:风力发电机叶片是风力发电机中的部件之一,叶片根部是叶片与风力机转子轮毂连接的关键部分,叶根工作时处于复杂的拉压、弯扭和剪切载荷组合工况中,因此叶根连接部位必须具有满足要求的强度、刚度和稳定性能,因此,叶根连接部分受力性能对叶片的安全运行起着决定性的作用。
关键词:叶片叶根;受力性能;综述上个世纪初,风力发电作为一种具有商业发展价值和发展前景的健康新型能源形式,已经获得了极大程度的发展。
随着美丽中国、人与自然和谐发展的呼声、风力资源开发技术的不断深入研究、发展和运用实践,对风力发电机系统关键部件设计方案的深入讨论和研究越来越多。
风机叶片是一个纤维增强复合材料制成的薄壳结构。
结构分为3个部分:第一部分为根部,材质一般为金属;第二部分为外壳,一般为复合材料,通常是使用玻璃纤维增强材料与基体树脂复合而成,一张叶片由两个灌注成型的外壳构件粘合而成;第三部分为支撑外壳的主梁,即加强筋或加强框,一般为玻璃纤维或碳纤维增强复合材料制成。
风力发电机叶片是发电机组中的部件之一,通过叶片的旋转把风能转换为机械能,再带动发电机发电,最后将机械能转换为电能。
叶片根部是叶片与风力机转子轮毂连接的关键部分,叶片在运转过程中同时承受的气动力、重力及离心力等复杂载荷影响都将通过叶根传递到的发电机轮毂上,由此,叶根承受着复杂的挤压、弯扭、剪切载荷组合作用,因此叶根连接部位必须具有满足要求的强度、刚度和稳定性能。
因此,叶根连接部分受力性能对叶片的安全运行起着决定性的作用[ 1 ]。
大尺寸叶片的根部与发电机轮毂之间常采用双头螺纹杆连接,在叶片根部预浸料铺层过程中,预先将加工好的螺栓套筒埋入,由于螺栓套筒是圆形截面形式,与周围的玻璃纤维增强复合材料接触面积较小,不利于叶片结构承受外部荷载,所以需要在螺栓两侧填充“工”字形垫块或矩形垫块。
螺栓套筒与周围的玻璃纤维增强复合材料连接部位受力情况复杂,是风力发电机机组各部件连接中易不满足要求的部位。
风电齿轮传动系统变载荷动态特性分析作者:吴书鹏张壮飞来源:《中国科技博览》2013年第32期摘要:本文综合考虑风电低速轴气动载荷、时变啮合刚度、综合啮合误差和阻尼等因素的影响,采用集中质量法建立三级斜齿轮系统的动力学模型,推导出系统的振动微分方程;采用可变阶的数值微分算法,求解齿轮传动系统动力学微分方程,对齿轮传动系统在复杂外部激励和内部激励同时作用下的动态特性进行了分析。
关键词:气动载荷;风力发电机;齿轮传动系统;动态特性中图分类号:TH 文献标识码:A 文章编号:1009-914X(2013)32-006-020引言齿轮传动增速箱作为风力发电机的重要部件,工作于复杂变载荷的恶劣环境,且处于高空架设状态,维修不便,对运行稳定性和可靠性有较高的要求。
因此研究变载荷条件下风电齿轮传动系统的动态特性是风电齿轮箱设计制造的重要任务之一。
1齿轮动力学模型齿轮副的动力学模型如图1所示图1 斜齿轮副动力学模型动力学微分方程为[1]:(1)根据上述方法,将各级齿轮副进行分析可得到相应的动力学微分方程,经过联立组合可得齿轮系统完整的动力学模型。
1.2动力学方程求解本文采用稳定性较好、求解精度较高、运算速度较快的变步长龙格—库塔法求解齿轮系统的数值响应。
2相关参数计算2.1外部激励这里采用AR风速模型对随机风速进行模拟[2]。
图是根据风速模型得到的某一随机风速时程。
根据风力发电机空气动力学理论可得到:(2)式中,叶轮的输出功率,空气密度,叶轮半径,随机风速,风能利用系数。
齿轮传动系统的输入端转矩和输出端转矩分别表示为:(3)(4)式中,风轮角速度,齿轮传动系统总传动比2.2时变啮合刚度本文考虑的内部激励为时变啮合刚度。
在理想制造精度时,一对斜齿轮副的时变啮合刚度可以用齿轮副接触线长度的变化来替代齿轮瞬时啮合刚度的变化来求解。
当单位接触线长度的啮合刚度k0为常数时,该齿轮副的综合啮合刚度为[3]:(5)式中,齿轮副瞬时接触线长度;啮合周期。
风力发电标准大全本文从国家标准、电力行业标准、机械行业标准、农业标准、IEC标准、AGMA美国齿轮制造商协会标准、ARINC美国航空无线电设备公司标准、ASTM美国材料和实验协会标准等几个方面总结风力发电标准大全. 1、风力发电国家标准GB/T 电工术语风力发电机组GB 8116—1987 风力发电机组型式与基本参数GB/T 离网型风力发电机组用发电机第1部分:技术条件GB/T 离网型风力发电机组用发电机第2部分:试验方法GB/T 13981—1992 风力设计通用要求GB/T 16437—1996 小型风力发电机组结构安全要求GB 17646-1998 小型风力发电机组安全要求GB 风力发电机组安全要求GB/T 风力发电机组功率特性试验GB/T 18709—2002 风电场风能资源测量方法GB/T 18710—2002 风电场风能资源评估方法GB/T 离网型风力发电机组第1部分技术条件GB/T 离网型风力发电机组第2部分试验方法GB/T 离网型风力发电机组第3部分风洞试验方法GB/T 19069-2003 风力发电机组控制器技术条件GB/T 19070-2003 风力发电机组控制器试验方法GB/T 风力发电机组异步发电机第1部分技术条件GB/T 风力发电机组异步发电机第2部分试验方法GB/T 19072-2003 风力发电机组塔架GB/T 19073-2003 风力发电机组齿轮箱GB/T 离网型户用风光互补发电系统第1部分:技术条件GB/T 离网型户用风光互补发电系统第2部分:试验方法GB/T 19568-2004 风力发电机组装配和安装规范GB/T 风力发电机组第1部分:通用技术条件GB/T 风力发电机组第2部分:通用试验方法GB/T 20319-2006 风力发电机组验收规范GB/T 20320-2006 风力发电机组电能质量测量和评估方法GB/T 离网型风能、太阳能发电系统用逆变器第1部分:技术条件GB/T 21150-2007 失速型风力发电机组GB/T 21407-2008 双馈式变速恒频风力发电机组2、风力发电电力行业标准DL/T 666-1999 风力发电场运行规程DL 796-2001 风力发电场安全规程DL/T 797—2001 风力发电厂检修规程DL/T 5067—1996 风力发电场项目可行性研究报告编制规程DL/T 5191—2004 风力发电场项目建设工程验收规程DL/T 5383-2007 风力发电场设计技术规范3、风力发电机械行业标准JB/T —2004 离网型风力发电机组用控制器第1部分:技术条件JB/T —2004 离网型风力发电机组用控制器第2部分:实验方法JB/T 6941—1993 风力提水用拉杆泵技术条件JB/T 风力发电机组用逆变器技术条件JB/T 风力发电机组用逆变器试验方法JB/T 7323—1994 风力发电机组试验方法JB/T 7878—1995 原GB 8974—1988风力机术语JB/T 7879—1999 风力机械产品型号编制规则JB/T —1999 低速风力机系列JB/T —1999 低速风力机型式与基本参数JB/T -1999 低速风力机技术条件JB/T —1999 低速风力机安装规范JB/T 10137—1999 提水和发电用小型风力机实验方法JB/T 10194-2000 风力发电机组风轮叶片JB/T 10300-2001 风力发电机组设计要求JB/T 10705-2007 滚动轴承风力发动机轴承JB/T 10395—2004 离网型风力发电机组安装规范JB/T 10396—2004 离网型风力发电机组可靠性要求JB/T 10397—2004 离网型风力发电机组验收规范JB/T 10398—2004 离网型风力发电系统售后技术服务规范JB/T 10399—2004 离网型风力发电机组风轮叶片JB/T 离网型风力发电机组用齿轮箱第1部分:技术条件JB/T 离网型风力发电机组用齿轮箱第2部分:实验方法JB/T 离网型风力发电机组制动系统第1部分:技术条件JB/T 离网型风力发电机组制动系统第2部分:实验方法JB/T 离网型风力发电机组偏航系统第1部分:技术条件JB/T 离网型风力发电机组偏航系统第2部分:实验方法JB/T 10403—2004 离网型风力发电机组塔架JB/T 10404—2004 离网型风力发电集中供电系统运行管理规范JB/T 10405—2004 离网型风力发电机组基础与联接技术条件JB/T 风力发电机组偏航系统第1部分:技术条件JB/T 风力发电机组偏航系统第2部分:实验方法JB/T 风力发电机组制动系统第1部分:技术条件JB/T 风力发电机组制动系统第2部分:实验方法JB/T 10427-2004 风力发电机组一般液压系统4、风力发电农业标准NY/T 1137-2006 小型风力发电系统安装规范5、风力发电IEC标准IEC WT 01: 2001 规程和方法-风力发电机组一致性试验和认证系统IEC 61400-1 风力发电机组第1部分:安全要求 Wind turbine generator systems - Part 1: Safety requirements风力发电机系统-安全要求IEC 61400-2 风力发电机组第2部分:小型风力发电机的安全 Wind turbine generator systems - Part 2:Safety of small wind turbines 风力发电机系统-小风机的安全IEC 61400-3 Wind turbine generator systems - Part 3:Designrequirements for offshore wind turbines风机发电机系统-近海风机的设计要求IEC 61400-11 风力发电机噪声测试Wind turbine generator systems - Part 11: Acoustic noise measurement techniques风力发电机系统-噪声测量技术IEC 61400-12 风力发电机组第12部分:风力发电机功率特性试验 Wind turbine generator systems - Part 12:Wind turbine power performance testing风力发电机系统-风力机功率特性测试IEC/TS 61400-13 机械载荷测Wind turbine generator systems - Part 13: Measurement of mechanical loads风力发电机系统-机械载荷测量IEC 61400-14 TS Wind turbines - Declaration of sound power level and tonality valuesIEC 61400-21 Wind turbine generator systems - Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines风力发电机系统-并网风力电能质量测量和评估IEC/TS 61400-23 风力发电机组认证Wind turbine generator systems - Part 23: Full-scale structural testing of rotor blades风力发电机系统-风轮结构测试IEC/TR 61400-24 Wind turbine generator systems - Part 24: Lightning protection风力发电机系统-防雷保护IEC 66 Wind turbines - Part 25-1: Communications for monitoring and control of wind power plants - Overall description of principlesand models风力涡轮机第25-1部分:风力发电厂监测和控制通信系统原理和模型总描述IEC 66 Wind turbines - Part 25-2: Communications for monitoring and control of wind power plants - Information models风力涡轮机第25-2部分:风力发电厂监测和控制的通信系统信息模型IEC 66 Wind turbines - Part 25-3: Communications for monitoring and control of wind power plants - Information exchange models风力涡轮机第25-3部分:风力发电厂监测和控制的通信系统.信息交换模型IEC 68 Wind turbines - Part 25-4: Communications for monitoring and control of wind power plants - Mapping to XML based communication profile风力涡轮机 .第25-4部分:风力发电厂的监测和控制用通信系统绘图到通信轮廓IEC 61400-25-5 Ed. Wind turbines - Part 25-5: Communications for monitoring and control of wind power plants - Conformance testing 风力涡轮机第25-5部分:风力发电厂监测和控制的通信系统. 一致性测试ISO/IEC 81400-4 Wind turbine generator systems - Part 4: Gearboxes for turbines from 40 kW to 2 MW and larger风机发电机系统-40 kW到2 MW或更大风机变速箱IEC 61400-SER Wind turbine generator systems - ALL PARTS风力发电机系统-所有部分6、风力发电AGMA美国齿轮制造商协会标准AGMA 02FTM4-2002 Multibody-System-Simulation of Drive Trains ofWindTurbines风力涡轮机的驱动齿轮组的多体系统仿真ANSI/AGMA 6006-2004 Design and Specification of Gearboxes for Wind Turbines风力涡轮机齿轮箱的设计和规范7、风力发电ARINC美国航空无线电设备公司标准ARINC 404A-1974 Air Transport Equipment Cases and Racking风力运输设备装运箱ARINC 408A-1976 Air Transport Indicator Cases and Mounting风力运输指示器装运箱装置ARINC 561-11-1975 Air Transport Inertial Navigation System - INS, 1966 Includes Supplements 1 Through 11 风力运输惯性导航系统19668、风力发电ARMY MIL美国陆军标准ARMY MIL-A-13479-1954 ANEMOMETER ML-497 /PM ML-497/PM风力表9、风力发电ASCE美国土木工程师协会标准ASCE 7 GUIDE-2004 Guide To The Use Of The Wind Load Provisions Of ASCE 7-02风力载荷使用指南.ASCE 7-0210、风力发电ASME美国机械工程师协会标准ANSI/ASME PTC29-2005 水利涡轮发电机组的速度调节系统ANSI/ASME PTC 42-1988 风力机性能试验规程ASME PIC 汽轮发电机组用压力控制系统11、风力发电ASTM美国材料和实验协会标准ASTM E 1240-88 风能转换系统性能的测试方法12、风力发电IEEE美国电气与电子工程师协会标准ANSI/IEEE 67-2005 涡轮发电机的操作维护指南ANSI/IEEE 492-1999 水利发电机运转和维护指南ANSI/IEEE 1010-2006 水利发电站的控制指南IEEE/ANSI 1021-1988 小型与公用电网互联的推荐规范13、风力发电AS 澳大利亚标准AS Wind turbines Part 21: Measurement and assessment of power quality characteristics of grid connected wind turbines风力涡轮机第21部分:网格连接风力涡轮机发电质量特征的测量和评定14、风力发电BS英国标准BS EN 455 发电站设备采购指南风力涡轮机BS EN 6 风力涡轮发电机风轮发电的动力性能测量15、风力发电DIN德国标准DIN EN 67 Wind turbines - Part 25-2:Communications for monitoring and control of wind power plants - Information models IEC61400-25-2:2006; German version EN 61400-25-2:2007,text in English 风力涡轮机.第25-2部分:风力发电站的监测和控制用通信信息模型DIN EN 67 Wind turbines - Part 25-3: Communications for monitoring and control of wind power plants - Information exchange models IEC 61400-25-3:2006;German version EN 61400-25-3:2007, text in English 风力涡轮机.第25-3部分:风力发电站的监测和控制用通信信息交换模型16、风力发电NF法国标准NF C01-415-1999 Electrotechnical Vocabulary - chapter 415 : wind turbine generator systems. 电工词汇第415章:风力涡轮发电系统NF C57-700-2-2006 Wind turbines - Part 2 : design requirements for small wind turbines. 风力涡轮机第2部分:小型风力涡轮机试验要求NF C57-700-12-1-2006 Wind turbines - Part 12-1 : power performance measurements of electricity producing wind turbines. 风力涡轮机第12-1部分:电力生产风力涡轮机的动力性能测试NF C57-700-21-2009 Wind turbines - Part 21 : measurement and assessment of power quality characteristics of grid connected wind turbines 风力涡轮机.第21部分:并网风力涡轮机的功率质量特性的测量和评估NF C57-703-2004 Wind turbines - Protective measures - Requirements for design, operation and maintenance. 风力涡轮机保护方法.设计、操作和维修的要求NF E50-001-1956 Wind chargers. Low-rated aerogenerators. 风力充电机组.小功率风力发电机NF E50-001-5-3-1998 电站设备的采购指南第5-3部分:涡轮机风力发电机NF X50-001-5-3-1998 Guide for procurement of power station equipment. Part 5-3 : turbines. Aerogeneratore. 电站设备的采购指南第5-3部分:涡轮机.风力发电机17、风力发电JIS 日本工业标准JIS C Wind turbine generator systems -- Part 21: Measurement andassessment of power quality characteristics of grid connected wind turbines 风力涡轮发电机系统第21部分:网格连接风力涡轮机的发电质量特性的测量和评定。
风力发电的特点风力发电是里欧诺个风能来发电的,而风力发电机(wind turbine)是将风能转化为电能的机械。
风轮是风力发电机的最主要部件,有桨叶和轮毂组成。
桨叶具有良好的空气动力外形,在气流作用下能产生空气动力使风轮旋转,将风能转换成机械能,再通过齿轮箱增速驱动发电机,将机械能转换成电能。
在理论上,最好的风轮只能将约60%的风能转换成机械能。
现代风电机组风轮的效率可达到40%以上,在风力发电机输出达到额定功率之前,其功率与风速的立方成正比,即风速增加1倍,输出公里处增加7倍,可见风力发电的效率(注意,是风力发电的效率,不是风力发电机的效率,风力发电机的效率与当地的风速是没有关系的)与当地的风速关系极大。
由于风速随时在变化,因此处在野外运行的风力发电机承受着十分复杂恶劣的交变载荷。
目前风电机组的设计寿命是20年,要求能经受住60m/s的11级暴风袭击,机组的可利用率要打到95%以上。
风力发电的运行方式主要有两类。
一类是独立运行供电系统,即在电网未通达的偏远地区或者不允许并网的地区,用小型风电机组为蓄电池充电,再通过逆变器转换成交流电向终端电器供电,单机容量一般为100W~10kW,可解决小的社区用电问题。
另一类是作为常规电网的电源,与电网并联运行,林网风力发电是大规模利用风能的最经济方式,机组单机容量范围在200~2500kW之间,既可以单独并网,也可以由多台,甚至成百上千台组成风力发电场,简称风电场。
风电技术进步很快,风电机组高科技含量达,机组可靠性提高,单机容量2500kW一下的技术已经很成熟,虽然目前风力发电机成本还比较高,但随着生产批量的增大和进一步的基数改进,成本将继续下降。
风电的突出优点是环境效益好,不排放任何有害气体和废弃物。
风电场虽然占了大片土地,但是风力发电机基础使用的面积很小,不影响农田和牧场的正常生产。
多风的地方往往是荒滩或者山地,建设风电场的同时也开发了旅游资源。
由于风速是随时变化的,风电的不稳定性会给电网带来一定影响,目前许多电网内都建设有调峰用的抽水蓄能电站,使风电的这个缺点可以得到克服。
浅谈风电叶片的特点及制造工艺风力发电是目前广泛应用的清洁能源之一,而风电叶片作为风力发电机的关键部件,其特点和制造工艺直接影响着整个风电系统的性能和效率。
本文将从风电叶片的特点和制造工艺两个方面展开详细的讨论。
一、风电叶片的特点1. 复杂的外形结构风电叶片通常呈扇形状,具有较大的曲率和扭转角度,外形结构复杂,同时要求叶片表面光滑,气动特性优越。
这种复杂的外形结构对叶片的制造工艺和材料性能提出了较高的要求。
2. 极端的工作环境风电叶片长期在高海拔、高温、高湿、酸碱等恶劣环境中工作,受到风载荷的长期影响,因此需要具备良好的耐候性、抗腐蚀性和抗老化性能。
3. 轻量化和强度性能为了提高风电机组的能量转换效率、降低成本、减小对支撑结构的负载,风电叶片需要在保证强度的前提下尽可能轻量化,而轻量化又需要保证叶片的强度和刚性性能,这对材料的选用和制造工艺提出了更高的要求。
4. 大尺寸和长寿命叶片作为风力发电机的主要部件之一,其尺寸大、寿命长,一般要求至少20年以上的使用寿命,因此需要具备较高的耐久性和可靠性。
二、风电叶片的制造工艺1. 材料选择风电叶片的制造材料一般为复合材料,如玻璃纤维增强塑料(GFRP)、碳纤维增强塑料(CFRP)等,这些材料具有良好的抗拉强度、抗冲击性和耐腐蚀性能,能够满足叶片在恶劣环境下的使用要求。
碳纤维具有较高的比强度和比刚度,能够有效提高叶片的载荷承受能力,但成本较高。
2. 叶片设计叶片的设计是风电叶片制造的关键步骤,设计不仅要考虑叶片的气动性能,还要考虑到叶片的结构强度、刚度和耐久性。
目前采用先进的计算机辅助设计(CAD)和计算机辅助工程(CAE)技术,能够对叶片的外形、内部结构和材料布局进行全面的优化。
3. 模具制造风电叶片通常是通过模压工艺来制造的,因此模具的设计和制造对于叶片的成型质量和生产效率至关重要。
模具制造一般采用数控机床进行精密加工,保证叶片的复杂外形结构和表面光滑度。
第一节风力发电历史概述人类很早就利用风作为帆船、碾磨和灌溉的动力,其历史可以追溯到公元前5000年。
当人们开始用汽轮机和水轮机发电的时候,就有人建议利用风能进行发电。
1887年苏格兰教授James Blyth为了给用于照明的蓄电池充电而建立了人类历史上第一台用于发电的风机,该风机属于垂直轴型风机,高10米,叶轮直径8米。
几乎在同一个时间克利夫兰市(美国俄亥俄州东北部城市)的Charles F. Brush利用当时在美国建造了当时已经算非常先进的风机,该风机高20米,风轮直径17m,有144个由雪松木制作的叶片,通过两级皮带传动带动一个12 KW的直流发电机。
其安全系统确保发电机在任何转速下电压不能超过90伏,控制系统控制发电机的输出电压保持在70伏左右。
Brush 风机解决了很多令人头疼的问题,它不仅实现了自动控制,而且运行了20年。
但是由于Brush 本人对空气动力学缺乏的充足认识,加之当时的空气动力学还没有形成相当完备的理论体系,使得其设计的风机虽有较好的扭距输出,但是能量转换效率较低。
1891年丹麦Askov大学教授Poul La Cour将气动翼型理论引入到风力发电机领域,并建造了一台只有四个叶片的直流风力发电机,该风机拥有相对较高的能量转换效率。
到1918年第一次世界大战结束时,丹麦已建造了120台Cour式风力发电机,总装机容量达到3MW,发电量占到丹麦电力总消耗的3%。
Blyth风机Brush风机Cour风机第一次世界大战之后,气动理论及相关技术发展到了一定的水平,所积累的大量经验促进了风电技术的进一步发展和理论的成熟。
1920年德国人Albert Betz(贝兹) 提出了风机从风中获得最大能量的物理学准则,1926年,他借鉴空气动力学中的翼形理论对风机叶片的外形进行优化设计,并由此得出了一种简便的设计方法,即著名的Betz设计理论。
今天,这些基本原理和方法还在为我们所使用。
在这之后的时间里研工作者在风机的叶片,风机的结构,控制准则等方面不断的进行发展和研究,进一步推动了风电技术的发展。
1、根据风速大小,如何使风力机组运行在不同状态? (1)风速很低时,机组处于停机状态; (2)风速达到或超过启动风速,机组进入变功率运行状态即随着风速增加发电功率也增加; (3)风速达到额定风速时,使机组的功率达到额定功率;(4)当风速过大,超过切出风速,为了机组的安全,机组将进入停机保护状态。
2、对转子施加最精确的气动影响方式是什么?有哪几种形式,如何实现?对转子施加最精准的气动影响方式是调整叶片的角度,即变桨。
可采取两种变桨形式: (1)迎风变桨:使叶片前缘迎风旋转; (2)顺风变桨:使叶片前缘顺风旋转。
3、发电机对转动系统的影响有哪几种? (1)同步发电机:借助励磁。
(2)变速发电机(同步或异步):通过控制AC - DC - AC 变流器。
(3)异步发电机:通过极数切换。
(4)带滑环的异步发电机:通过改变转子的电阻。
4、迎风变桨控制方式和顺风变桨控制方式的优缺点?迎风变桨优点:精确,运行稳定。
缺点:在强风时,变桨角度相对较大。
顺风变桨优点:变桨角小,停车控制容易实现, 缺点:风力机上的推力将很大5、风力发电机对控制系统的影响速度有什么要求? (1)偏航:360°/5 min 。
(2)变桨:(2°~8°)/s 。
(3)发电机转矩控制:快速。
(4)频率控制:高速。
6、PID 控制器的全称和时域表达式 全称为:比例积分微分控制器时域表达式:••++=+⎰x k xdt k x k y T y d i p d7、发电机的功率表达式及计算:5.0=Popt C v=6m/s π=3.14 R=50m 3/225.1m kg =ρ2/23R v C P Popt opt πρ=8、风力机机器常数表达式及计算5.0=Popt C 3/225.1m kg =ρ7opt =γ π=3.14 R=50m)2/(35opt Popt R C Q λρπ=1、外部作用在风力机上的激振力,按其作用时间可分为哪种?(1)常力(近似常力)。
风力机载荷
风力机载荷情况
风力机载荷是风力机设计和风力机认证时的重要依据,用于对风力机进行静强度和疲劳强度分析。
目前,国际上有很多规范、标准对风力机载荷做了详细的规定。
其中应用最广的是IEC61400-1标准。
1.载荷分类
作用在风力机上的载荷主要包括:
(1)空气动力载荷;
(2)重力载荷;
(3)惯性载荷,包括离心力和科氏力等;
(4)操纵载荷;
(5)其他载荷,如结冰载荷
根据载荷的性质,在风力机上的载荷可分为静载荷、定常载荷、周期载荷、瞬态载荷、脉冲载荷、随机载荷和谐振载荷等。
2.载荷情况
由不同的外部条件与风力机工作状态组合而成,主要包括:①正常外部条件与风力机正常工作状态组合;②正常外部条件与风力机故障工作状态组合;③极端外部条件与风力机正常工作状态组合。
根据IEC61400-1标准的规定,载荷情况如表5-1所列。
表5—1载荷情况
3.安全系数
风力机设计时,需要提供的是设计载荷F d ,它和实际载荷F r 的关系是:d f r F r F =, 式中r f ——载荷局部安全系数 见表5-2所示:
表5—2 载荷局部安全系数
风力载荷计算 风力机载荷特性 1.叶片上的载荷 (1)空气动力载荷
作用在叶片上的包括摆振方向的剪力Q yb 和弯矩M xb 、挥舞方向的剪力Q xb 和弯矩M yb
以及变桨距时,与变桨距力矩平衡的叶片俯仰力矩M zb 。
叶片上的空气动力载荷可根据2.2节中的动量——叶素理论计算,计算时先求出轴向诱导因子a 和周向诱导因子b ,再求得叶素上的气流速度三角形以及作用在叶素上的法向力dF n 和切向力dF t (前图 2—1),然后通过积分求出作用在叶片上的空气动力载荷Q xb ,Q yb ,M xb 和M yb 。
图2-1叶素上的气流速度三角形和空气动力分量
0R
2xb 0n r 1Q V cC dr 2ρ=ò
0R
2yb 0t r 1Q V cC dr 2ρ=ò
R
2yb 0n r 1M V cC rdr 2ρ=ò
R
2yb 0t r 1M V cC rdr 2ρ=ò
式中R ——风轮半径; r 0——轮毂半径。
一般翼型空气动力数据都是相对于翼型1/4弦线位置,因此,其俯仰力矩可表示为
22zb 0m 1
dM V c C dr 2
ρ=
式中C m ——翼型俯仰力矩系数。
(2)重力载荷
作用在叶片上的重力载荷对叶片产生摆振方向的弯矩,它随着叶片方位角的变化呈现周期的变化,是叶片的主要疲劳载荷。
叶片上每个叶素有一个集中质量m i ,则由它产生的重力矩M xg 为
R
xg i 0
M m r g rdr =
ò
()
(3)惯性载荷
叶片上的惯性载荷包括离心力和科氏力。
①离心力
由于风轮旋转而产生的作用在叶片上的离心力总是沿叶片向外的。
当由于作用在叶片上的挥舞方向弯矩使柔性叶片偏离风轮旋转平面时,叶片上的离心力在挥舞方向产生的弯矩可以减小叶片的偏离,称之为离心力刚化叶片效应。
在叶片上由离心力产生的挥舞弯矩M yc 可表示为
R
2yc i i 0
M Δl m Ωrdr =
ò
2
式中i Δl ——第i 段叶素偏离风轮旋转平面的距离。
②科氏力
当风轮旋转并同时作偏航运动时,叶片上产生垂直于风轮旋转平面上的科氏力载荷。
设风轮顺时针旋转速度为Ω(rad/s ),偏航顺时针旋转速度为Λ(rad/s ),则由科氏力产生的叶片挥舞弯矩M yk 可表示为
R
2yk i b 0
M 2ΩΛcos m r dr 2ΩΛcos I ψψ==ò2
式中I b ——叶片相对于叶根的惯性矩; ψ——叶片方位角。
(4)操纵载荷
作用在风力机上的操纵载荷是由于风力机操纵时,对其部件施加的附加载荷,并由该载荷引起风力机部件加速度响应而诱导产生的惯性载荷。
叶片上的操纵载荷主要是在气动刹车或变桨距时产生的。
2.轮毂上的载荷
作用在轮毂(风轮)上的载荷包括转矩、轴向力、偏航力矩和俯仰力矩。
一般,大型风力发电机组轮毂都是安置在整流罩内,因此,作用在轮毂上的载荷主要是由叶片的载荷传递到轮毂上。
作用在轮毂(风轮)上的转矩是风轮轴功率的来源,它由叶片摆振力矩M xb 合成产生,与叶片挥舞力矩一样随叶片的方位角变化,如图5-1所示。
失速型风力机和变速恒频型风力机风轮转矩随风速变化情况不同:在高风速区,失速型风力机靠叶片失速来控制转矩增加;而变速恒频风力机靠变化叶片桨距角来控制转矩,使得其转矩变化比失速型风力机更
平坦,如图5-2所示。
图5-1 风轮转矩随叶片方位角的变化
图5-2 风轮转矩随风速的变化情况
(a)300KW失速型风力机;(b)1500KW便速恒频型风力机
作用在轮毂(风轮)上的轴向力(推力)主要由叶片挥舞方向剪力F xb合成产生。
由于风剪切效应和塔影效应等影响,风轮轴向力(推力)随叶片方位角变化,如图5-3所示。
失速型风力机和变速恒频型风力机风轮推力随风速增大而增大;而变速恒频风力机则由于叶片桨距角的变化,使风轮推力随风速增大而减小,如图5-4所示。
图5-3 风轮轴向力随叶片方位角的变化
图5-4 风轮轴向力随风速的变化情况
(a)300KW失速型风力机;(b)1500KW变速恒频型风力机。
作用在轮毂(风轮)上的偏航力矩和俯仰力矩是由于风力机运行时风轮叶片不对称,叶片在不同方位角时受到不均匀的载荷以及风轮偏航运动和风轮倾角等影响而产生的。
图5-5给出了作用在轮毂(风轮)上的偏航力矩随叶片方位角的变化情况。
图5-5 风轮偏航力矩随叶片方位角的变化
3.主轴上的载荷
作用在主轴上的载荷主要是由于轮毂上的载荷传递的。
它包括转矩和两个方向(水平方向和垂直方向)的弯矩。
主轴上的转矩与轮毂上的转矩相等;主轴上的水平方向弯矩与轮毂(风轮)上的偏航力矩相等;主轴上的垂直方向弯矩与轮毂(风轮)上的俯仰力矩与风轮系统的重力矩合成产生。
除上述载荷外,还有在机械刹车时作用在主轴上的摩擦力和因发电机并网和掉网时作用在主轴上的冲击载荷。
图5-6给出了某风力机在停机过程中作用在主轴上的转矩的时间历程曲线,由图可知,在停机过程中对主轴作用一个脉冲载荷。
图5-6 风力机停机过程中的载荷时间历程曲线
4.机舱上的载荷
机舱上的载荷包括作用在机舱罩上的载荷和作用在机舱底座上的载荷。
作用在机舱罩上的载荷主要是空气动力载荷,作用在机舱底座上的载荷除了由风轮系统传递的载荷外,还包
括机舱内传动系统传递的载荷。
5.偏航系统上的载荷
偏航系统上的载荷主要是从机舱传递的载荷,除重力外,还包括偏航力矩、俯仰力矩、轴向力与侧向力。
另外,风力机作偏航运动时,在偏航系统中还会产生操纵载荷。
6.塔架上的载荷
作用在塔架上的载荷包括扭矩和两个方向(轴向和侧向)的弯矩以及塔顶上的重力载荷。
塔架上的载荷除了由偏航系统和系统传递的载荷外,还包括直接作用在塔架上的空气动力载荷和塔架自身的重力载荷。
需要指出的是上面所述的风力机载荷计算方法是没有采用风力机气动弹性模型,当考虑风力机气动弹性时,由于风力机的一些部件,如叶片、塔架会产生动力响应,从而产生交变载荷。
目前已有一些专门的软件,如FLEX4在进行风力机气动弹性稳定性分析同时可以预测风力机载荷。