芳烃联合装置工艺技术简介
- 格式:pdf
- 大小:776.50 KB
- 文档页数:18
芳烃联合装置的设计优化曹坚(中国石化工程建设公司,北京,100101)摘要:以某石化公司拟新建的450 kt/a对二甲苯芳烃联合装置为个案,从技术和经济评价两方面对几个不同处理量的工艺装置的组合方案进行了设计计算,探讨了利用富含芳烃的乙烯裂解汽油作为芳烃原料的可行性和优越性。
关键词:芳烃联合装置优化石油化工厂中的乙烯和芳烃联合装置是最基本的两个基础原料装置,其原料大多来源于石脑油。
因此如何优化乙烯和芳烃原料,减少对原料石脑油的依赖程度,优化芳烃联合装置设计方案,是当前发展石油化工的重要课题。
对二甲苯(PX)主要用于生产精对苯二甲酸(PTA)和对苯二甲酸二甲酯(DMT),而PTA和DMT再和乙二醇、1,4-丁二醇等生成聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇酯(PBT)等聚酯。
PET、PBT是进一步生产涤纶、聚酯切片、聚酯中空容器和轮胎工业用聚酯帘子布的原材料。
此外,PX还是生产涂料、染料、农药和医药的原料。
在世界合成纤维的产量中涤纶占63%,可以说PX是化纤工业最主要的原料之一。
并且聚酯还是重要的包装材料,在美国,此种用途现已超过纤维。
随着世界聚酯消费量的不断增长,PX的消耗也随之稳步增长。
由于PX装置流程复杂,主要原料通常是石脑油,与上游炼油装置关系紧密,公用工程及储运系统要求高,因此在我国PX装置都建设在炼油厂下游,单独的或民营的PX生产厂目前还没有。
但是以PX作为原料的PTA装置以及再下游的聚酯装置的合资化、民营化投资趋势目前在江浙地区发展很快,正是这一地区的PTA及聚酯装置的飞速发展直接导致了我国在未来几年内PX的严重短缺。
因此,为满足我国PX不断增长的市场需求,未来几年内,除已有PX装置挖潜扩能外,建设新的PX装置势在必行。
1 芳烃原料的优化方案1.1原料选择在石油化工厂中,芳烃联合装置通常以对二甲苯(联产邻二甲苯)为目的产品,作为下游PTA装置的原料。
要生产最大量的对二甲苯,除了催化重整和乙烯裂解汽油中的二甲苯外,主要是采用歧化烷基转移的工艺方法把甲苯和C9芳烃在分子筛催化剂作用下进行歧化和烷基转移反应生成混合二甲苯和苯,混合二甲苯再通过二甲苯临氢异构化工艺转化为对二甲苯。
芳烃联合装置节能措施及效益分析摘要:持续改造和芳烃装置是炼油化工企业的主要生产单元之一。
因为改革能为芳烃装置提供原料,所以一般来说是作为组合单位建造的。
连续重整装置以精制石脑油和加氢裂化重石脑油为原料,以氢为副产品,生产高辛烷值汽油的混合组分,一般包括原料预处理、连续重整和催化剂再生装置。
芳烃装置采用改性油或购买的混合二甲苯作为原料生产苯、甲苯、对二甲苯和邻二甲苯。
吸附牵引技术的芳烃装置一般包括芳烃抽提取、不成比例、吸附分离、异构化、二甲苯提取和供应单元。
目前,世界上只有三家公司能够提供全套工艺包技术,包括中国石化自主开发的连续重整和芳烃成套技术。
关键词:芳烃装置;静设备;节能;优化引言受市场影响,河北新启元能源技术开发有限公司的芳烃抽提装置断断续续地启动和停止,每次启动时都需要建立调整质量的周期,只有质量质量设置合格后,才能输送材料,设备的周期调整时间通常为12小时,这使得公共能耗高,设备占用量低。
因此,通过优化工艺流程,将三塔(萃取、剥离、回收塔)的溶剂循环转化为两塔(萃取、回收塔),可以加快启动周期的调整时间,减少公共能源的使用,提高设备的整体经济效益。
1芳烃联合装置工艺流程芳烃联合装置的工艺流程见图1所示。
来自加氢装置的石脑油进入2#连续重整装置,经过反应、精馏的重整脱戊烷油C+5进入重整油分离塔,塔顶物料C6、C7经冷却后送至芳烃抽提装置,塔底C7以上的物料通过白土塔脱除烯烃后与歧化装置甲苯塔塔底产物混合送入二甲苯塔第73层塔盘,异构化脱庚烷塔塔底产物送至二甲苯塔第39层塔盘。
二甲苯塔塔顶物料作为吸附分离原料,塔底物至重芳烃塔。
重芳烃塔塔顶物料送至歧化装置作原料,塔底物料经冷却后送出装置。
在吸附分离单元经吸附、解吸后得到产品对二甲苯送出装置,抽余液(贫二甲苯)送至异构化进行反应,再送至二甲苯塔。
图1芳烃联合装置工艺流程示意2芳烃抽提装置蒸汽用能现状及分析在芳香抽提装置中,3.7 MPa(g)过热蒸汽和锅炉水从装置管网通过过热器和过热器,产生3.7 MPa(g)satt蒸汽和2.2 MPa(g)satt蒸汽,分别发送到每个蒸汽消耗装置。
1、简述芳烃的主要来源及主要生产过程。
芳烃最初全部来源于煤焦化工业,但焦化芳烃在数量上、质量上都渐渐不能满足有机工业需求,为弥补不足,品质优良的石油芳烃得到迅速发展,已成为芳烃主要来源,约占全部芳烃的80%。
芳烃的主要生产过程:Ⅰ石脑油催化重整生产芳烃Ⅱ裂解汽油生产芳烃Ⅲ轻烃芳构化与重芳烃的轻质化2、芳烃的主要产品有哪些?各有何用途?芳烃主要产品有三苯(苯、甲苯、二甲苯)、C9芳烃、萘等。
苯:可以用来合成苯乙烯、环己烷、苯酚、苯胺及烷基苯等;甲苯:有机合成的优良溶剂,还可以合成异氰酸酯、甲酚,或通过歧化和脱烷基制苯。
对二甲苯:用于生产对苯二甲酸,进而生产对苯二甲酸乙二醇酯、丁二醇酯等聚酯树脂。
聚酯树脂是生产涤纶纤维、聚酯薄片,聚酯中空容器的原料。
间二甲苯:主要用途是生产对苯二甲酸及少量的间苯二腈,后者是生产杀菌剂的单体,间苯二甲酸则是生产不饱和聚酯树脂的基础原料。
邻二甲苯:主要是生产领苯二甲酸酐,进而生产增塑剂,如领苯二甲酸二辛酯、领苯二甲酸二丁酯等。
C9芳烃:目前主要分离出偏三甲苯和均三甲苯用于制偏苯三酸酐和均苯四甲酸二酐等,用于涂料,合成树脂等。
萘:主要用于生产染料、鞣料、润滑剂、杀虫剂、防蛀剂等。
3、试论芳烃转化的必要性与意义,主要的芳烃转化反应有哪些?开发芳烃的转化是为了依据市场的供求调节和平衡各种芳烃的产量,解决供需不平衡的矛盾。
主要的芳烃转化反应如下Ⅰ.异构化反应:间二甲苯转化为对二甲苯及邻二甲苯;Ⅱ.歧化反应:甲苯歧化为二甲苯。
Ⅲ.烷基化反应:苯与乙烯通过烷基化转化为乙苯;Ⅳ.脱烷基化:甲苯和氢气通过脱烷基化转化为苯。
4、试分析我国与美国、日本的芳烃生产各有何特点及其原因。
焦化芳烃生产:我国焦化芳烃主要采用硫酸精制法,少数新建大型焦化厂采用催化加氢精制法。
日本、美国的焦化厂全部采用催化加氢精制法。
石油芳烃的生产:目前以石油为原料是生产芳烃主要方法,美国资源丰富,苯的需求量也较大,需通过甲苯脱烷基制苯补充苯的不足,而对二甲苯与邻二甲苯主要从催化重整油中分离而得,很少采用烷基转移与二甲苯异构化等工艺过程。
芳烃联合装置工程大型化探讨摘要:芳烃最初来源于煤焦化工艺,但焦化芳烃在数量、质量上不能满足有机工业需求。
为弥补不足,品质优良的石油芳烃得到迅速发展,目前已成为芳烃主要来源,占全部芳烃来源的80%以上。
芳烃联合装置是石油化工芳烃原料的核心生产装置,它以直馏、乙烯裂解汽油或加氢裂化重石脑油等为原料,生产苯、甲苯、邻二甲苯、间二甲苯、对二甲苯(PX)和重芳烃等芳烃类产品。
典型的芳烃联合装置通常包括二甲苯分离、吸附分离和二甲苯异构化、歧化及烷基转移、苯甲苯分馏、芳烃抽提等装置,在炼油工业催化重整通常也归属于芳烃联合装置。
文中主要是指以制取高纯度PX为目标的芳烃联合装置。
关键词:PX;芳烃装置;工程大型化;反应器;塔引言随着国民经济的快速发展,化工原料的需求日益旺盛,芳烃作为重要的化工原料,是承接上游炼化及下游化纤、化工行业的重要桥梁。
大型芳烃联合装置以连续重整装置的重整脱戊烷油、化工装置的加氢裂解汽油等为原料,主要产品为对二甲苯,同时副产苯、粗甲苯、抽余油、重芳烃、富氢气、富乙烷轻质气等。
联合装置主要由二甲苯分馏、吸附分离、芳烃抽提、苯/甲苯分馏、歧化汽提、异构化六套装置组成。
其中,二甲苯分馏、吸附分离、芳烃抽提、苯/甲苯分馏、歧化汽提均以精馏分离过程为主,涉及塔釜再沸、塔顶冷凝、进出料换热、各装置间的热集成等多个传热过程,需要大量传热设备的参与,近年来各种强化传热技术也逐渐应用到芳烃联合装置中,其中强化沸腾传热技术的应用为芳烃装置的节能降耗,以及芳烃装置的大型化发展提供了有力保障1芳烃联合装置工程大型化发展历程工程大型化通常有2层含义:装置规模大型化及设施极限值大型化。
20世纪50年代,美国德克萨斯州有了世界第1套芳烃装置。
70年代,美国UOP公司开始转让Parex吸附分离工艺。
日本东丽株式会社在1970年研究成功类似吸附工艺,称为Aromax工艺。
20世纪90年代,法国Axens(IFP)公司和英国BP公司先后进行了分离PX技术的研究,“Eluxyl法分离”、“深冷结晶分离”和“络合分离”等工艺相继问世并用于工业生产。
芳烃联合装置是炼化一体化原油加工中的重要组成部分,其主要作用是通过催化剂的作用将原油中的不饱和烃、饱和烃以及杂质分子进行分解、重组和裂解,从而生产出高附加值的芳烃化合物,如苯、甲苯、二甲苯、乙苯(BTX)[1]。
芳烃联合装置也可以裂解重负荷的原油分子,将其分解成较小的碳链分子,从而提高产品的选择性和降低产品中杂质的含量[2]。
芳烃联合装置还能生产一些可替代燃料的产品,如甲醇和二甲醚,这些产品在燃料领域具有广泛的应用,特别是作为清洁燃料的替代品[3]。
芳烃联合装置在炼化一体化原油加工中扮演着关键的角色,通过催化作用、分解和重组反应,提高了芳烃产品的产量和质量,同时去除了原油中的杂质,为石化工业提供了重要的化工原料和清洁燃料。
1 C8芳烃资源优化利用1.1 C8芳烃的来源及特点C8芳烃,又称为甲基萘或甲基萘基芳烃,是一类含有8个碳原子的环烃化合物。
其通常是从石化工业中的裂解过程中获得的,主要来源包括裂解轻烃、液化石油气和催化裂解等。
C8芳烃具有一系列特点,如稳定的分子结构、高化学反应活性、具有一定的毒性和易挥发性等。
1.2 C8芳烃转化为对二甲苯技术分析将C8芳烃转化为对二甲苯是一项重要的技术,因为对二甲苯是一种重要的化工中间体,用于制造塑料、涂料、树脂、溶剂和纤维等[4]。
该技术的步骤通常包括3个方面。
(1)裂解:C8芳烃首先经过催化或非催化裂解,将其分解成较小的芳香烃分子,通常在高温和压力下进行。
(2)同分异构体分离:在裂解产物中,不仅包含对二甲苯,还包括甲苯、乙苯和其他同分异构体。
通过分馏和分离技术,将对二甲苯从其他成分中分离出来。
(3)同分异构体转化:将分离得到的甲苯、乙苯等同分异构体转化为对二甲苯,通常通过芳烃异构化或选择性氧化等催化反应进行。
1.3 优化利用为了优化C8芳烃的资源利用,以下措施可以考虑。
(1)催化技术优化:采用高效的催化剂和反应条件,提高对二甲苯的选择性,降低其他副产物的生成。
工艺流程简述1)总工艺流程直馏石脑油和加氢裂化石脑油混合后在石脑油加氢装置(NHT Unit)通过加氢处理及汽提脱去硫、氮、砷、铅、铜、烯烃和水等杂质。
在连续重整装置中把石脑油中的烷烃和环烷烃转化成芳烃,并副产大量的富氢气体。
其中一部分产氢用于异构化、歧化和预加氢装置,其余部分则送到炼厂其它加氢装置。
连续重整装置的重整油经过脱戊烷塔脱去C5-馏分进入重整油分离塔。
乙烯裂解汽油从边界来后先与重芳烃塔顶物流换热后进入重整油分离塔。
塔顶C6/C7送到SED装置把C6/C7馏分中的芳烃和非芳烃分开。
混合芳烃和歧化汽提塔底物混合送到苯-甲苯分馏装置的苯塔。
苯塔顶产生高纯度的苯产品,塔底物流送到甲苯塔。
甲苯塔顶生产C7芳烃,其中一部分C7芳烃与重芳烃塔塔顶物流混合送到歧化装置,其余部分作为汽油调组分送出装置。
甲苯塔底物料与重整油塔底物料、异构化产物混合送到二甲苯塔,二甲苯塔塔顶的混合二甲苯送到吸附分离装置,在这里PX作为产品被分离出来。
含有EB、MX 和OX的吸附分离抽余液去异构化装置,PX达到新的平衡。
异构化脱庚烷塔底物循环回二甲苯塔。
二甲苯塔底的C9+送到重芳烃塔,重芳烃塔顶物料C9组分一部分送到歧化装置,其余部分作为汽油调和组分送出装置。
重芳烃塔塔底物料作为燃料油供装置内使用。
2)直馏石脑油加氢装置直馏石脑油进入原料缓冲罐(1510-D101),由预加氢进料泵(1510-P101A/B)泵送与预加氢循环压缩机(1510-K101A/B)来的循环氢混合后进入预加氢进料换热器(1510-E101A/B/C)和预加氢进料加热炉(1510-F101),加热后进入预加氢反应器(1510-R101)和脱氯反应器(1510-R102)。
已脱除硫、氮、氯的预加氢反应产物与硫化氢、氨及含氢气体一起通过与原料换热,再注入凝结水以溶解因冷却可能在下游设备形成的氨盐。
再经预加氢产物空冷器(1510-A101),预加氢产物后冷器(1510-E102)冷却后进入预加氢产物分离罐(1510-D102)。
芳烃联合装置节能降耗方法探讨摘要:随着能源资源的日益紧张和环境问题的加剧,节能降耗已成为各行各业关注的焦点。
芳烃联合装置作为石化行业中的重要工艺,其能源消耗也成为亟待解决的问题之一。
本文旨在探讨芳烃联合装置的节能降耗方法,以提高生产效率、减少能源消耗,达到可持续发展的目标。
基于此,本篇文章对芳烃联合装置节能降耗方法探讨进行研究,以供参考。
关键词:芳烃;联合装置;节能降耗;研究引言芳烃联合装置是石化行业中常见的生产工艺之一,它在生产芳烃类化工产品方面具有重要地位。
然而,由于能源消耗和环境污染等问题,如何实现节能降耗已成为当前该领域中亟待解决的难题。
本文旨在探讨芳烃联合装置的节能降耗方法,以期为相关行业提供一些参考和借鉴。
1芳烃联合装置能耗较高的实际表现1.1炼制过程芳烃联合装置的生产流程通常需要进行煤制气、裂解、重整等一系列复杂的化学反应。
这些反应需要消耗大量的能源,如煤炭、天然气或石油等。
1.2能源转化效率由于芳烃联合装置中涉及多个工艺环节,能源转化效率可能不高。
部分能源可能被浪费或损失,导致能耗增加。
1.3设备能效设备在运行过程中存在能量损失的情况,例如传热效率低、循环泵功率消耗大、泄漏等问题,都会引起额外的能耗。
1.4运行管理对于芳烃联合装置来说,合理的运行管理非常重要。
操作不当、设备维护不到位等因素可能导致能源的浪费,增加能耗。
2传统芳烃联合装置的节能方法2.1工艺优化通过对芳烃联合装置的生产工艺进行优化,减少能源的消耗。
可以采用新的催化剂或催化剂组合,提高反应的选择性和转化率,降低废料产生量。
同时,通过提高产品纯度和回收利用废热等方式,实现能源的有效利用。
2.2设备改进优化和改进关键设备,提高设备的能效。
例如,改善换热器的结构和管路设计,提高传热效率,减少热能损失;采用高效的分离设备,提高产品分离和回收利用的效率;改造泵站,减少泵功率消耗等。
2.3节约利用废热利用余热回收装置对废气、废水以及高温烟气中的热能进行回收和再利用。