x)
.
所以当x ≥ 1时 , f ( x) ≤ 0 .
即函数
f
(x)
2x 1 x2
单调减小.
即 un un+1 (n = 1 , 2 , 3 , ) .
(
n1
1 )n1
2n 1 n2
又
lim
n
un
lim
n
2n 1 n2
0
.
因此交错级数 (1)n1
n1
2n 1 n2
收敛
.
二、绝对收敛与条件收敛
高等数学第十二章 第三节
任意项级数敛散性判别法
第三节 任意项级数敛散性判别法
一、交错级数及其审敛法 二、绝对收敛与条件收敛 三、小结 提高题
一、交错级数收敛性判别法
在级数 un 中,总含有无穷多个正项和负项 n1
叫任意项级数.
1.定义: 如果级数的各项是正、负交错的,即
(-1)n-1 un = u1 - u2 + u3 - u4 +
如下:
u1v1, u1v2, u1v3, u2v1, u2v2, u2v3,
u3v1, u3v2, u3v3,
,
u1v
,
n
,
u2v
,
n
,
u3v
,
n
unv1, unv2, unv3,
,
un
v
,
n
将它们排成下面形状的数列.
对角线法
u1v1
u2v1
u3v1
u4v1
u1v 2 u2v 2 u3v2 u4v2
定义2 如果级数 un 收敛,则称级数 un 绝对收敛;
n=1
n=1