高等数学下——级数审敛法
- 格式:ppt
- 大小:972.50 KB
- 文档页数:12
正项级数的比较审敛法正项级数的比较审敛法是数学中一种常用的判别级数收敛性的方法。
通过与已知的收敛或发散级数进行比较,我们可以判断一个正项级数的收敛性。
本文将介绍正项级数的比较审敛法的基本原理和应用。
正项级数是指所有项都是非负数的级数。
我们知道,一个正项级数的收敛性与其项的大小相关。
如果一个级数的每一项都小于等于另一个级数的对应项,并且后者收敛,那么我们可以推断前者也收敛。
同样地,如果一个级数的每一项都大于等于另一个级数的对应项,并且后者发散,那么我们可以推断前者也发散。
这就是正项级数的比较审敛法的基本思想。
比较审敛法分为两种情况:比较法和极限比较法。
下面我们将分别介绍这两种方法。
一、比较法比较法是通过比较待判定级数与已知级数的大小关系来判断待判定级数的收敛性。
具体而言,我们选择一个已知的收敛级数和一个待判定级数,然后比较它们的项的大小。
如果待判定级数的每一项都小于等于已知级数的对应项,那么待判定级数也收敛;如果待判定级数的每一项都大于等于已知级数的对应项,那么待判定级数也发散。
比较法的关键在于选择合适的已知级数。
常用的已知级数包括调和级数、几何级数和指数级数等。
例如,我们可以使用调和级数来判断一个正项级数的收敛性。
调和级数是指形如1+1/2+1/3+1/4+...的级数。
根据比较法的原理,如果一个正项级数的每一项都小于等于调和级数的对应项,那么该正项级数也收敛。
二、极限比较法极限比较法是比较法的一种特殊情况。
当我们无法直接比较待判定级数和已知级数的项时,可以通过比较它们的极限值来判断待判定级数的收敛性。
具体而言,我们选择一个已知的收敛级数和一个待判定级数,然后比较它们的极限值。
如果待判定级数的极限值与已知级数的极限值相等或者待判定级数的极限值无穷大,那么待判定级数也收敛;如果待判定级数的极限值与已知级数的极限值比较大,那么待判定级数也发散。
极限比较法的关键在于计算级数的极限值。
对于一些常见的级数,我们可以通过取极限值来判断其收敛性。
无穷级数的审敛法与收敛性判别无穷级数是数学中的一个重要概念,利用无穷级数可以逼近函数的值。
但无穷级数是一个无限求和的概念,有可能会出现发散的情况,因此就有了收敛性判别和审敛法这两种方法来判定无穷级数是否收敛。
首先,让我们来看一下什么是无穷级数。
无穷级数是由无限多个数相加或相减所得到的一种数列求和方式,可以表示为以下形式:$$\sum_{n=1}^{\infty}a_n=a_1+a_2+a_3+\ldots+a_n+\ldots$$其中,$a_n$ 表示第 $n$ 个数。
接下来,我们来介绍几种判定无穷级数收敛的方法。
一、正项级数判别法如果一个无穷级数的每一项都是非负数,即 $a_n\geq 0$,那么我们可以使用正项级数判别法来判断无穷级数是否收敛。
正项级数判别法的结果是,如果级数 $\sum\limits_{n=1}^{\infty}a_n$ 收敛,那么 $\lim\limits_{n\rightarrow \infty}a_n=0$。
这个结论非常重要,因为如果 $\lim\limits_{n\rightarrow\infty}a_n\neq 0$,那么级数 $\sum\limits_{n=1}^{\infty}a_n$ 一定发散。
这是因为无穷级数的每一项都是非负数,如果$\lim\limits_{n\rightarrow \infty}a_n\neq 0$,那么随着$n$ 的增大,$a_n$ 的大小也会越来越大,因此级数就会发散。
二、比较判别法比较判别法是一种常用的判定无穷级数收敛性的方法。
比较判别法的基本思想是,将待判定的级数与一个已知收敛或发散的级数进行比较,从而得出原级数的收敛性。
比较判别法分为两种情况:比较判别法一和比较判别法二。
比较判别法一表述如下:对于两个正项级数$\sum\limits_{n=1}^{\infty}a_n$ 和 $\sum\limits_{n=1}^{\infty}b_n$,如果存在一个正整数 $N$,使得当 $n>N$ 时,有 $a_n\leq kb_n$,其中 $k$ 是一个正常数,那么有以下结论:- 当级数 $\sum\limits_{n=1}^{\infty}b_n$ 收敛时,级数$\sum\limits_{n=1}^{\infty}a_n$ 收敛。
高等数学公式空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB AB j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u KK K KK K K K K K K K K K K K KK KK K K K K K K ⋅×==⋅×=×=⋅==×=++⋅++++=++=⋅=⋅+=+=−+−+−== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+−=−+=+=++⎪⎩⎪⎨⎧+=+=+===−=−=−+++++==++=+++==−+−+−cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A K K多元函数微分法及应用z y z x y x y x y x y x F F yzF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx xudu y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x zdz −=∂∂−=∂∂=⋅−∂∂−∂∂=−==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==Δ+Δ=≈Δ∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅−=∂∂∂∂⋅−=∂∂∂∂⋅−=∂∂∂∂⋅−=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y −=−=−=−+−+−==⎪⎩⎪⎨⎧====−′+−′+−′′−=′−=′−⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线KK ωψϕωψϕωψϕ方向导数与梯度:上的投影。
级数的积分审敛法
1、比值判别法由于是正项级数,根据收敛的基本定理,级数收敛[公式]其部分和数
列收敛,因此对于正项级数,如果其部分和有上界,则可判别其收敛,反之发散。
即正项
级数收敛部分和数列有上界。
2、根值判别法。
3、对数审敛法
级数的敛散性定义:[公式]收敛[公式]部分和数列[公式]收敛,[公式].若级数[公式]收敛,则必有[公式],反之未必(如:调和级数).由此可知,若[公式],则级数[公式]
必发散。
方法二:比值辨别法
对于正项级数[公式],[公式]则该正项级数发散;[公式]则该正项级数收敛;[公式]
或[公式]不易计算或不存在,此方法失效。
注:对于多个式子连乘的,适合用比值判别法。
方法三:根值辨别法
对于正项级数:[公式]则该正项级数发散;[公式]则该正项级数收敛;[公式]或[公式]不易计算或不存在,此方法失效。
注:对于通项中含有以[公式]为指数幂的,适合用
根值判别法。
方法四:对数欧拉变换法
(1)若存在[公式],使当[公式]时,[公式],则正项级数[公式]收敛;(2)若[公式][公式][公式],则正项级数[公式]发散。
级数的审敛法
级数的审敛法是一种判定级数是否收敛或发散的方法。
下面介绍几种常用的审敛法:
1. 正项级数判别法:如果级数的各项都是非负数,并且级数的通项递减,则该级数收敛。
这是因为正项级数的部分和一定是递增有界的。
2. 比较判别法:设有两个级数∑a_n和∑b_n,如果在有限项后
总有a_n ≤ b_n,则如果∑b_n收敛,∑a_n也收敛;如果∑a_n
发散,∑b_n也发散。
这个方法常用于比较一个级数与已知的
收敛或发散的级数。
3. 比值判别法:对于一个级数∑a_n,如果在有限项后总有
a_(n+1)/a_n ≤ r < 1,则级数绝对收敛;如果在有限项后总有
a_(n+1)/a_n ≥ 1,则级数发散;如果在有限项后总有
a_(n+1)/a_n ≥ r > 1,则级数发散或者条件收敛。
4. 积分判别法:对于一个非负递减的函数f(x),如果∫f(x)dx从
1到无穷收敛,则级数∑f(n)也收敛;如果∫f(x)dx从1到无穷发散,则级数∑f(n)也发散。
这个方法利用了级数与函数的关系。
以上只是一些常用的审敛法,对于特定的级数,可能需要使用其他方法进行判断。