02-交错级数及其审敛法PPT
- 格式:pptx
- 大小:175.34 KB
- 文档页数:7
交错级数审敛法
提及交错级数,我们可以想起微积分中积分方法之一“交错级数定理”,它是“浓厚”理论,从证明角度来看,既复杂又有趣,例如,将求和类型积分表示中的常数变量和一个
无穷级数统一求出所求。
交错级数审档法是一种求解无穷级数的方法。
该方法的工作原理是:
首先,将化简的级数化为符号形式,使级数可以分解成不同的项;
其次,将每一项与相应的系数相乘;
然后,将所有的结果相加;
最后,用完整的数学证明来证明已结果是正确的。
也就是说,交错级数审档法是一种整理无穷级数并计算其值的方法,该方法用于将一
个无穷级数拆分为若干项进行处理,让计算更加容易和准确。
举例来说,假设我们想求解(1+1/2+1/4+1/8+...)的值。
首先,我们可以将级数表
达式拆分为(1 + 1 + 1/2 + 1/4 + 1/8 + ...),并将每一项乘以其系数,即(1 * 1 + 1 * 1 + 1 * 1/2 + 1 * 1/4 + 1 * 1/8 + ...),最后将所有项相加即可得到最后的结
果为2。
此外,交错级数审档法还可以用于证明数学定理等。
例如,我们想证明ϕ=(1+√5)/2为黄金比例,则可以将这个8次方程式拆分成8个项,并将每项乘以对应的系数
(1+1/2+1/4+1/8+...),然后将所有项相加即可得出1+√5=ϕ^2,从而证明ϕ就是黄金比例。
综上所述,交错级数审敛法是一种简单易用的、方便而有效的数学算法,它可以用来
计算无穷级数的值,也可以用于数学证明。