当前位置:文档之家› 变频器的基本原理及特点

变频器的基本原理及特点

变频器的基本原理及特点
变频器的基本原理及特点

变频器的基本原理及特点

变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。常用三相交流异步电动机的结构为图1所示。定子由铁心及绕组构成,转子绕组做成笼型(见图2),俗称鼠笼型电动机。当在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。电机磁场的转速称为同步转速,用N表示

N=60f/p(r/min) (1)

式中:f—三相交流电源频率,一般为50Hz;p—磁极对数。当p=1时,N=3000r/min;p=2时,N=1500r/min。可见磁极对数p越多,转速N越慢。

转子的实际转速n比磁场的同步转速N要慢一点,所以称为异步电机,这个差别用转差率s表示:

s=[n1-n)/n1]×100%(2)

当加上电源转子尚未转动瞬间,n=0,这时s=1;起动后的极端情况n=N,则s=0,即s在0~1之间变化。一般异步电机在额定负载下的s=(1~6)%。

综合式(1)和式(2)可以得出

n=60f(1-s)/p (3)

图1 三相异步电动机结构示意图

1—机座;2—定子铁心;3—定子绕组;4—转子铁心;5—转子绕组

图2笼型电动机的转子绕组

1—铜环;2—铜条

由式(3)可以看出,对于成品电机,其磁极对数p已经确定,转差率s变化不大,则电机的转速n 与电源频率f成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。

但是,为了保持在调速时电机的最大转矩不变,必须维持电机的磁通量恒定,因此定子的供电电压也要作相应调节。变频器就是在调整频率(VariableFrequency)的同时还要调整电压(VariableVoltage),故简称VVVF(装置)。通过电工理论分析可知,转矩与磁通量(最大值)成正比,在转子参数值一定时,转矩与电源电压的平方成正比。

变频器的工作原理是把市电(380V、50Hz)通过整流器变成平滑直流,然后利用半导体器件(GTO、GTR或IGBT)组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制(SPWM)方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。上述的两次变换可简化为AC-DC-AC(交-直-交)变频方式。

图3

图3给出国产(深圳华为)变频器的原理图。图中各组成部分名称已经标出,DSP是微机编程器。

利用变频器可以根据电机负载的变化实现自动、平滑的增速或减速,基本保持异步电机固有特性转差率小的特点,具有效率高、范围宽、精度高且能无级变速的优点,这对于水泵,风机等设备是很适用的。

我国应用的变频器,国外产品以日本富士、三菱牌号较多,台湾普传产品也不少,国内有西普(西安)、艾伦(上海)、华为(深圳)、艾普斯(天津)等厂家的产品均在推广应用。

PWM型变频器的基本控制方式(DOC)

PWM型变频器的基本控制方式 通用的PWM型变频器是一种交—直—交变频,通过整流器将工频交流电整流成直流电,经过中间环节再由逆变器将直流电逆变成频率可调的交流电,供给交流负载。异步电动机调速时,供电电源不但频率可变,而且电压大小也必须能随频率变化,即保持压频比基本恒定。 PWM型变频器一般采用电压型逆变器。根据供给逆变器的直流电压是可变的还是恒定的,变频器可分成两种基本控制方式。 (1)变幅PWM型变频器这是一种对变频器输出电压和频率分别进行调节的控制方式,其基本电路如图3-3所示。中间环节是滤波电容器。 图2-3 变幅PWM型变频器 晶闸管整流器用来调压,与一般晶闸管调压系统一样,采用相位控制,通过改变触发脉冲的延迟角α来获得与逆变器输出频率相对应的不同大小的直流电压。逆变器只作输出频率控制,它一般是由6个开关器件组成,按脉冲调制方式进行控制。 图3-4所示是另一种直流电压可调的PWM变频电路。它采用二极管不可控整流桥,把三相交流电变换为恒定的直流电。分立斩波器电路,来改变输出直流电压的大小,通过逆变器输出三相交流电。 图2-4 利用斩波器的变频电路图 以上两种调压式变频电路,都需要两极可控功率级,相比较,采用晶闸管整流桥可以获得更大功率的直流电,由于可控整流桥采用相位控制,输入功率因数将随输出直流电压的减小而降低;而斩波式调压,输入功率变流级采用的是二级管整流桥,所以输入端有很高的功率因数,代价是多了一个斩波器。另外,就动态响应的快速性来说后者比前者好。 (2)恒幅PWM型变频器

恒幅脉宽调制PWM式变频电路如图3.3所示,它由二极管整流桥,滤波电容和逆变器组成。逆变器的输入为恒定不变的直流电压,通过调节逆变器的脉冲宽度和输出交流电压的频率,既实现调压又实现调频,变频变压都是由逆变器承担。此系统是目前使用较普遍的一种变频系统,其主电路简单,只要配上简单的控制电路即可。它具有下列主要优点: 1)简化了主电路和控制电路的结构。由二极管整流器对逆变器提供恒定的直流电压。在PWM逆变器内,在变频的同时控制其输出电压。系统只有一个控制功率级,从而使装置的体积小,重量轻,造价低,可靠性好。 2)由二极管整流器代替晶闸管整流器,提高了装置的功率因数。 3)改善系统的动态性能。PWM型逆变器的输出功率和电压,都在逆变器内控制和调节。因此,调节速度快,调节过程中频率和电压配合好,系统动态性能好。 4)对负载有较好的供电波形。PWM型逆变器的输出电压和电流波形接近正弦波,从而解决了由于以矩形波供电引起的电动机发热和转矩降低问题,改善了电动机运行性能。 图2-5 PWM型逆变器 但PWM型逆变器也有如下缺点: 1)在调制频率和输出频率之比固定的情况下,特别是在低频时,高次谐波影响较大,因而电动机的转矩脉动和噪声都较大。 2)在调制频率和输出频率之比作有级变化的情况下,往往使控制电路比较复杂。 3)器件的工作频率与调制频率有关。有些器件的开关损耗和换相电路损耗较大,而且需要采用导通和关断时间短的高速开关器件。 2.2.2 PWM型逆变器的基本工作原理

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

变频器结构及工作原理

变频器结构及工作原理 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1. 整流器 它与单相或三相交流电源相连接,产生脉动的直流电压。 2. 中间电路,有以下三种作用: a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。 b. 通过开关电源为各个控制线路供电。 c. 可以配置滤波或制动装置以提高变频器性能。 3. 逆变器 将固定的直流电压变换成可变电压和频率的交流电压。 4. 控制电路 它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是: a. 利用信号来开关逆变器的半导体器件。

b. 提供操作变频器的各种控制信号。 c. 监视变频器的工作状态,提供保护功能。 现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。 以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

三菱D700变频器设置基本操作步骤

变频器综合实验箱操作简介 三菱变频器D700型 参数设置基本步骤

变频器综合实验箱基本功能介绍 PLC 触摸屏模块变频器模块及变频器控制对象 特殊功能模块操作面板以及功能模块

变频器模块控制开关排列及操作方法简介 实验箱 总电源开关变频器调速及正反转控制开关。 注意:此开关是三位开关,在中间位是停止,向上是手动控制,向下可由PLC自动控制。 变频器操作面板

单位显示:LED 显示该单位时灯亮,两灯都不亮时显示的是电压值 变频器设置的基本步骤 LED 显示:显示频率,参数编号等 RUN :有运行信号时亮灯 或闪烁 MON :监视模式时亮灯PRM :参数设定模式时 亮灯 PU :PU 模式时灯亮EXT :外部运行模式 时灯亮 NET :网络运行模式 时灯亮 M 旋钮:用于变更频率的设定值、参数的设定值 MODE :用于切换各种设定模式,与【SET 】配合可设定变频器参数 RUN :在PU 模式下可启动变频器 SET :运行时可在Hz 、A 、V 间顺序切换 PU/EXT :用于切换PU 与外部运行模式。PU :面板运行模式。EXT :外部运行模式 注:以上均为简单说明,详细请看说明书 STOP/RESET:停止运行指令 变频器操作面板介绍

开机检查步骤: 首先检查控制开关,让其均处于中间位。 然后打开电源。此时操作面板的这些灯会亮。若PU灯不亮,请按【PU/EXT】 若仍是不亮就要进入参数设置使Pr.79=1 详细方法, 见后续设 置步骤

参数设置方法: 开始参数设置前先检查PU 灯是否亮,若亮可以进行如下操作。若PU 灯不亮而前述方法无效,则就需要将“参数Pr.79”设为 1 具体操作步骤如下。 以“参数全部清除ALLC=1”为例再次演示参数设置的步骤。 全部参数设置完毕后按【MODE 】退出,详见如下步骤。接通电源后,面板应有如下显示进入参数设置模式后,先旋转旋钮,选择P .79,按【SET 】一次出现2,再转动旋钮,选择1,按【SET 】一次,1和P .79闪烁,3秒内再次按【SET 】确定。然后再次按【SET 】进入参数选择,液晶显示P .125。 重复上述步骤,先旋转旋钮, 选择ALLC ,按【SET 】一次出现0,再转动旋钮,选择1,按【SET 】一次, 1 和ALLC 闪烁, 3 秒内再次按【SET 】确定。然后再次按【SET 】进入参数选择,液晶显示ER.CL 。 1.按【MODE 】,出现P .0或其它参数 2.旋转旋钮,参数出现变化当设置完所有给出的参数后,要退出参数设置,进入监控状态。按【MODE 】一次,显示屏显示E ---表示参数设置正确;然后再按一次【MODE 】退出参数设置,一般显示0.00Hz 。设置完成,变频器可以运行。如出现别的字符可能是变频器报错,需消除报错原因后才能运行。

变频器工作原理

1 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 2变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

变频器调速工作原理

变频器调速工作原理 目前交流调速电气传动已经上升为电气调速传动的主流,在电气传动领域内,由直流电动机占统治地位的局面已经受到了猛烈的冲击。 现在人们所说的交流调速传动,主要是指采用电子式电力变换器对交流电动机的变频调速传动,除变频以外的另外一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,由于其性能较差,终将会被变频调速所取代。交流调速传动控制技术之所以发展的如此迅速,和如下一些关键性技术的突破性进展有关,它们是电力电子器件(包括半控型和全控型器件)的制造技术、基于电力电子电路的电力变换技术、交流电动机的矢量变换控制技术、直接转矩控制技术、PWM(Pulse Width Modulation)技术以及以微型计算机和大规模集成电路为基础的全数字化控制技术等。 1变频器的发展 近二十年来,以功率晶体管GTR为逆变器功率元件、8位微处理器为控制核心、按压频比U/f控制原理实现异步机调速的变频器,在性能和品种上出现了巨大的技术进步。其一,是所用的电力电子器件GTR以基本上为绝缘栅双极晶体管IGBT所替代,进而广泛采用性能更为完善的智能功率模块IPM,使得变频器的容量和电压等级不断地扩大和提高。其二,是8位微处理器基本上为16位微处理器所替代,进而有采用功能更强的32位微处理器或双CPU,使得变频器的功能

从单一的变频调速功能发展为含有逻辑和智能控制的综合功能。其三,是在改善压频比控制性能的同时,推出能实现矢量控制和转矩直接控制的变频器,使得变频器不仅能实现调速,还可进行伺服控制。其发展情况可粗略地由以下几方面来说明。 1.容量不断扩大80年代采用BJT的PWM变频器实现了 通用化。到了90年代初BJT通用变频器的容量达到600KV A,400KV A 以下的已经系列化。前几年主开关器件开始采用IGBT,仅三四年的时间,IGBT变频器的单机容量已达1800KV A,随着IGBT容量的扩大,通用变频器的容量将随之扩大。 2.结构的小型化变频器主电路中功率电路的模块化、控 制电路采用大规模集成电路(LSI)和全数字控制技术、结构设计上采用“平面安装技术”等一系列措施,促进了变频电源装置的小型化。 3.多功能化和高性能化电力电子器件和控制技术的不断 进步,使变频器向多功能化和高性能化方向发展。特别是微机的应用,以其简练的硬件结构和丰富的软件功能,为变频器多功能化和高性能化提供了可靠的保证。由于全数字控制技术的实现,并且运算速度不断提高,使得通用变频器的性能不断提高,功能不断增强。 4.应用领域不断扩大通用变频器经历了模拟控制、数模 混合控制直到全数字控制的演变,逐步地实现了多功能化和高性能化,进而使之对各类生产机械、各类生产工艺的适应性不断增强。目前其应用领域得到了相当的扩展。如搬运机械,从反抗性负载的搬运车辆,带式运输机到位能负载的起重机、提升机、立体仓库、立体停

变频器结构及工作原理

变频器结构及工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1. 整流器 它与单相或三相交流电源相连接,产生脉动的直流电压。 2. 中间电路,有以下三种作用: a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。 b. 通过开关电源为各个控制线路供电。 c. 可以配置滤波或制动装置以提高变频器性能。 3. 逆变器 将固定的直流电压变换成可变电压和频率的交流电压。 4. 控制电路 它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是: a. 利用信号来开关逆变器的半导体器件。 b. 提供操作变频器的各种控制信号。 c. 监视变频器的工作状态,提供保护功能。

现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。 以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

变频器调试的基本方法和步骤

变频器调试的基本方法和步骤 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。 主要应用在风机、水泵的应用上。为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。以下谈下一般变频器调试的基本方法。 变频器调试的基本方法和步骤: 一、变频器的空载通电验 1、将变频器的接地端子接地。 2、将变频器的电源输入端子经过漏电保护开关接到电源上。 3、检查变频器显示窗出厂显示是否正常,如果不正确,应复位,否则要求退换。 4、熟悉变频器的操作键。一般的变频器均有运行(RUN)、停止(STOP)、编程(PROG)、数据P确认(DATAPENTER)、增加(UP、▲)、减少(DOWN、)等6个键,不同变频器操作键的定义基本相同。此外有的变频器还有监视(MONITORPDISPLAY)、复位(RESET)、寸动(JOG)、移位(SHIFT)等功能键。 二、变频器带电机空载运行 1、设置电机的功率、极数,要综合考虑变频器的工作电流。 2、设定变频器的最大输出频率、基频、设置转矩特性。通用变频器均备有多条VPf曲线供用户选择,用户在使用时应根据负载的性质选择合适的VPf曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电

变频器定义及工作原理概述

变频器定义及工作原理概述 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS 控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 VVVF:改变电压、改变频率 CVCF:恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中 n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性

变频器的调速原理)

变频器调速基本原理 变频器调速基本原理 1、变频器概述。 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。它的主电路都采用交—直—交电路。JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V,功率为0.75~800kW,工作频率为0~400Hz;JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V,功率为37~1000kW,工作频率为0~400Hz;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280~20000kW,工作频率为0~60Hz; 2、变频原理。 从理论上我们可知,电机的转速N 与供电频率f 有以下关系: )1(*60sP fN 其中: p ——电机极数 S——转差率 由式(1)可知,转速n 与频率f 成正比,如果不改变电动机的极数,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 3、节能调速原理 一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。因此浪费大量电能,属不经济的调节方式。从流体力学原理可知,风机的风量、水泵的流量与电机转速及电机功率的关系如下:当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦

下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,并有下述曲线、阴影部分表示采用变频器调速方式的节电效果,其节电可达30-40%效果十分明显。对不同使用频率时的节电率N%可查表。 上述原理也基本适用水泵,可见采用变频调速控制实现节电是有效的、惟一的途径。变频调速特点是效率高,无附加转差损耗,调速范围大、精度高、无级的。容易实现协调控制和闭环控制,可利用原有异步电动机对旧设备进行技术改造,它既保留了原有电动机,具有改造简单,可靠、耐用,维护方便的优点,即能达到节电的显著效果,又能恒压力的工艺需求,还能减小机械磨损。因此,可理论上认为风机、水泵采用交流调速来实现较大幅度的节能(可达20-50%)是种较为理想而实用的方法。 通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n 与流量Q,压力H以及轴功率P 具有如下关系:Q

变频器结构及工作原理

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1. 整流器 它与单相或三相交流电源相连接,产生脉动的直流电压。 2. 中间电路,有以下三种作用: a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。 b. 通过开关电源为各个控制线路供电。 c. 可以配置滤波或制动装置以提高变频器性能。 3. 逆变器 将固定的直流电压变换成可变电压和频率的交流电压。 4. 控制电路 它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是:

a. 利用信号来开关逆变器的半导体器件。 b. 提供操作变频器的各种控制信号。 c. 监视变频器的工作状态,提供保护功能。 现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。 以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

关电源损坏。3,开机运行无输出(电动机不启动)断开输出电机 线,再次开机后 观察变频器面板 显示的输入频 率,同时测量交 流输出端子。可 能原因是变频器 启动参数设置或 运行端子接线错 误、也可能是逆 变部分损坏或电 动机没有正确链 接到变频器。4,运行时“过电压”保护,变频器停止输出检查电网电压是 否过高,或者是 电机负载惯性太 大并且加减速时 间太短导致的制 动问题,请参考 第8条。 5变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。电机堵转或负载过大。可以检查负载情况或适当调整变频器参数。如无法奏效则说明逆变器部分出现老化或损坏。

变频器基本结构与原理

变频器基本结构与控制简介 1 变频器简介 1.1 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1.2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM 控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2 变频器中常用的控制方式 2.1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改

变频器的六大调速方法

电动机知识 变频器的六大调速方法 1.变极对数调速方法 这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。本方法适用于要求精度高、调速性能较好场合。变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。 2.串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装臵,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装

臵容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装臵故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。变频器调速原理及调速方法 3.绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 4.定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。调压调速的主要装臵是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点:调压调速线路简单,易实现自动控制;调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。调压调速一般适用于100KW以下的生产机械。 5.电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由

plc控制变频器调速

基 于 PLC 控 制 变 频 器 调 速 实 验 报 告 电控学院 电气

实训目的:本次实验针对电气工程及其自动化专业。通过综合实验,使学生对所学过的可编程控制器在电动机变频调速控制中的应用有一个系统的认识,并运用自己学过的知识,自己设计变频调速控制系统。要求用PLC控制变频器,通过光电编码器反馈速度信号达到电动机调速的精确控制,自己设计,自己编程,最后进行硬件、软件联机的综合调试,实现自己的设计思想。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生实验应做到以下几点: 1. 通过电动机变频调速控制系统实验,进一步了解可编程控制器在电动机变频调速控制中的应用。 2. 通过系统设计,进一步了解PLC、变频器及编码器之间的配合关系。 3. 通过实验线路的设计,实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 4. 培养动手能力,增强对可编程控制器运用的能力。 5. 培养分析,查找故障的能力。 6. 增加对可编程控制器外围电路的认识。 实训主要器件:欧姆龙CPM2AH-40CDR可编程控制器(PLC),欧瑞F1000-G系列变频器,三相异步电机 第一部分采样 转速的采样采用的是欧姆龙的光电编码器,结合PLC的高速计数器端子,实现高精度的采样。。 编码器是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是1还是0;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是1还是0,通过1和0的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 欧姆龙(OMRON)编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到

直流变频空调基本原理及结构

直流变频空调基本原理及结构 直流变频空调其关键在于采用了无刷直流电机作为压缩机,其控制电路与交流变频控制器基本一样。 (1)直流变频空调的基本原理 ?直流变频概念 我们把采用无刷直流电机作为压缩机的空调器称为“直流变频空调”从概念上来说是不确切的,因为我们都知道直流电是没有频率的,也就谈不上变频,但人们已经形成了习惯,对于采用无刷直流压缩机的空调器就称之为直流变频空调。 ?无刷直流电机 无刷直流电机与普通的交流电机或有刷直流电机的最大区别在于其转子是由稀土材料的永久磁钢构成,定子采用整距集中绕组,简单地说来,就是把普通直流电机由永久磁铁组成的定子变成转子,把普通直流电机需要换向器和电刷提供电源的线圈绕组转子变成定子。这样,就可以省掉普通直流电机所必须的电刷,而且其调速性能与普通的直流电动机相似,所以把这种电机称为无刷直流电机。无刷直流电机既克服了传统的直流电机的一些缺陷,如电磁干扰、噪声、火花可靠性差、寿命短,又具有交流电机所不具有的一些优点,如运行效率高、调速性能好、无涡流损失。所以,直流变频空调相对与交流变频空调而言,具有更大的节能优势。 ?转子位置检测 由于无刷直流电机在运行时,必须实时检测出永磁转子的位置,从而进行相应的驱动控制,以驱动电机换相,才能保证电机平稳地运行。实现无刷直流电机位置检测通常有两种方法,一是利用电机内部的位置传感器(通常为霍尔元件)提供的信号;二是检测出无刷直流电机相电压,利用相电压的采样信号进行运算后得出。在无刷直流电动机中总有两相线圈通电,一相不通电。一般无法对通电线圈测出感应电压,因此通常以剩余的一相作为转子位置检测信号用线,捕捉到感应电压,通过专门设计的电子回路转换,反过来控制给定子线圈施加方波电压;由于后一种方法省掉了位置传感器,所以直流变频空调压缩机都采用后一种方法进行电机换相。 ?直流变频空调与交流变频空调的电控区别

变频器调速基本步骤

一、变频器的空载通电实验 11 将变频器的接地端子接地。 21 将变频器的电源输入端子经过漏电保护开关接到电源上。 31 检查变频器显示窗的出厂显示是否正常,如果不正确,应复位,否则要求退换。 41 熟悉变频器的操作键。 一般的变频器均有运行(RUN) 、停止(STOP) 、编程(PROG) 、数据P确认(DATAPENTER) 、增加(UP、▲) 、减少(DOWN、") 等6 个键,不同变频器操作键的定义基本相同。此外有的变频器还有监视(MONITORPDISPLAY) 、复位(RESET) 、寸动(JOG) 、移位(SHIFT) 等功能键。 二、变频器带电机空载运行 11 设置电机的功率、极数,要综合考虑变频器的工作电流。 21 设定变频器的最大输出频率、基频、设置转矩特性。VPf 类型的选择包括最高频率、基本频率和转矩类型等项目。最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的VPf 类型图和负载特点,选择其中的一种类型。通用变频器均备有多条VPf 曲线供用户选择,用户在使用时应根据负载的性 质选择合适的VPf 曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略, 若仍保持VPf 为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进

变频器调试基本步骤

很多客户把变频器买回家都不知道怎么调试检测,盲目的安装上机上电,导致了很多因选型不对,或者买到的变频器不知道好坏等因素,而造成不必要的麻烦,这里给大家介绍一下进购变频器后首先应该做到以下几个步骤: 一、变频器的空载通电检验 1 将变频器的接地端子接地。 2 将变频器的电源输入端子经过漏电保护开关接到电源上。 3 检查变频器显示窗出厂显示是否正常,如果不正确,应复位,否则要求退换。 4 熟悉变频器的操作键。一般的变频器均有运行(RUN) 、停止(STOP) 、编程(PROG) 、数据P确认(DATAPENTER) 、增加(UP、▲) 、减少(DOWN、") 等6个键,不同变频器操作键的定义基本相同。此外有的变频器还有监视(MONITORPDISPLAY) 、复位(RESET) 、寸动(JOG) 、移位(SHIFT) 等功能键。如下图: 二、变频器带电机空载运行 1.设置电机的功率、极数,要综合考虑变频器的工作电流。 2.设定变频器的最大输出频率、基频、设置转矩特性。通用变频器均备有多条VPf 曲线供用户选择,用户在使用时应根据负载的性质选择合适的VPf 曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持VPf 为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。一般变频器均由用户进行人工设定补偿。 3.将变频器设置为自带的键盘操作模式,按运行键、停止键,观察电机是否能正常地启动、停止。. 4. 熟悉变频器运行发生故障时的保护代码,观察热保护继电器的出厂值,观察过载保护的设定值,需要时可以修改。变频器的使用人员可以按变频器的使用说明书对变频器的电子热继电器功能进行设定。当变频器的输出电流超过其容许电流时,变频器的过电流保护将切断变频器的输出。因此,变频器电子热继电器的门限最大值不超过变频器的最大容许输出电流。

变频器调速的基本工作原理

变频器调速的基本工作原理 根据电机转速的公式 n=n1(1-s)(1) N1=60f/p(2)式中:n-电机转速;n1-电机的同步转速;s-滑差;f-旋转磁场频率;P-电机极对数可知改变电机转速的方法有改变滑差s、改变旋转磁场频率f、改变电机极对数p三种。变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。是由由主电路和控制带电路组成的。主电路是给异步电动机提供可控电源的电力转换部分,变频器的主电路分为两类,其中电压型是将电压源的直流变换为交流的变频器,直流回路的滤波部分是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波部分是电感。它由三部分构成,将工频电源变换为直流功率的整流部分,吸收在转变中产生的电压脉动的平波回路部分,将直流功率变换为交流功率的逆变部分。控制电路是给主电路提供控制信号的回路,它有决定频率和电压的运算电路,检测主电路数值的电压、电流检测电路,检测电动机速度的的速度检测电路,将运算电路的控制信号放大的驱动电路,以及对逆变器和电动机进行保护的保护电路组成。现在大多数的变频器基本都采用交直交方式(VVVF变频或矢量控制),将工频交流电源通过整流器转换为直流电源,再把直流电源转换成近似于正弦波可控的交流电以供给电动机。以图1为例简单说明一下变频器的工作原理。三相交流电经过VD1~VD6整流后,正极经过RL,RL在这里是防止电流忽然变大。经过RL电流趋于稳定,晶闸管触点会导通。之后直流电压加在了滤波电容CF1、CF2上,这两个电容的作用

是让直流电波形变得更加平滑。之所以是两个电容是由于一个电容的耐压有限,所以用两个电容串联起来使用。均压电阻R1、R2是让CF1和CF2上的电压一样,两个电容的容量不同的话,分压就会不同,所以各并联了一个均压电阻。而中间的放电回路作用则是释放掉感性负载启动或停止时的反电势,用来保护逆变管V1~V6和整流管VD1~VD6。直流母线电压加到V1~V6六个IGBT上,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。 经历大约30年的研发与应用实践,随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而厂家仍然在不断地提高可靠性实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响,二要看对电网的谐波污染和输入功率因数,三要看本身的能量损耗(即效率)如何?这里仅以量大面广的交―直―交变频器为例,阐述

相关主题
文本预览
相关文档 最新文档