菲涅耳衍射和分数傅里叶变换.
- 格式:ppt
- 大小:960.00 KB
- 文档页数:20
菲涅耳衍射、夫琅和费衍射和傅立叶变换利用基尔霍夫或瑞利-索末菲衍射公式计算衍射光场复振幅分布虽然准确, 但是在计算积分时存在数学上的困难。
在一定条件下对瑞利-索末菲衍射公式进行近似, 便可以将衍射现象划分为两种类型——菲涅耳衍射和夫琅和费衍射, 也称近场衍射与远场衍射。
§4-1 菲涅耳衍射夫琅和费衍射的划分先简单分析一下单色光经过衍射小孔后的衍射现象。
下图表示一个单色平面波垂直照射到圆孔Σ上(圆孔直径大于波长)的情形。
若在离Σ很近的K1处观察透过的光, 将看到边缘比较锐利的光斑, 其形状、大小和圆孔基本相同, 可看作是圆孔的投影。
这时光的传播可看作是直线进行的。
若距离再远些, 例如在K2处, 将看到一个边缘模糊的略大的圆光斑, 光斑内有一圈圈的亮暗环, 这时光斑已不能看作是圆孔的投影了。
随着距离的增大, 光斑范围将不断扩大, 但光斑中圆环数目则逐渐减小(如K3处的情况), 而且环纹中心的明暗也表现为交替出现。
当观察平面距离很远时, 如在K4处, 将看到一个较大的中间亮, 边缘暗, 且在边缘外有较弱的亮暗交替的光斑。
此后观察距离再增大时, 只是光斑扩大, 但光斑形状不变。
通常菲涅耳衍射指近场衍射, 夫琅和费衍射指远场衍射。
下面我们根据瑞利-索末菲衍射公式来讨论远和近的范围是怎样划分的。
考虑无限大的不透明屏上的一个有限孔径Σ对单色光的衍射。
设平面屏有直角坐标系(x1, y1), 在平面观察区域有坐标系(x, y), 两者坐标平行, 相距z 。
一、 菲涅耳衍射(近场衍射)在第三章里我们已经得到开孔的瑞利-索末菲衍射公式是⎰⎰∑=dS K r e P U j P U jkr)()(1)(10θλ在图所示的坐标系下, 上式可以写为⎰⎰∑-+-+-+-+=1121212)()(110)()()(),(1),(21212dy dx K y y x x z ey x U j y x U y y x x z jk θλ假设观察屏和衍射屏的距离z 远远大于Σ的线度和观察范围的线度, 那么在z 轴附近1)(≈θK}8])()[(2)()(1{])()(1[)()(4221212212121212121212 +-+-+-+-+=-+-+=-+-+=z y y x x z y y x x z zy y z x x z y y x x z r的情况下, 忽略二阶以上小量, 有]2)()(1{)()(2212121212z y y x x z y y x x z r -+-+≈-+-+=所以⎰⎰⎰⎰⎰⎰⎰⎰∑-+-∑-+-+∑-+-+∑-+-+=≈-+-+≈-+-+=112)()(11011]2)()(1[1101122121]2)()(1[1101121212)()(1102121221212212121212),(1),(1]2)()(1[),(1)()()(),(1),(dy dx e y x U e jz dy dx e y x U jz dy dx z y y x x z ey x U j dy dx K y y x x z ey x U j y x U zy y x x jkjkzz y y x x jkz zy y x x jkz y y x x z jk λλλθλ这一近场近似公式称为菲涅耳衍射公式。
光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。