第6讲 谱估计4.最大熵法
- 格式:ppt
- 大小:256.50 KB
- 文档页数:21
谱熵的计算方法概述及解释说明1. 引言1.1 概述谱熵是一种用于衡量信号复杂性和不确定性的数学工具。
它基于信号的频谱分布来计算信号的信息熵,可以提供对信号统计特征的重要洞察。
谱熵广泛应用于各个领域,包括信号处理、数据压缩和图像识别等。
1.2 文章结构本文将全面介绍谱熵的计算方法以及其应用场景,并对计算方法进行优缺点分析。
文章内容主要包括以下几个方面:首先,在第2节中详细阐述了谱熵的定义与原理。
通过解释其数学模型和核心思想,我们可以更好地理解谱熵的含义和作用。
其次,在第3节中探讨了在不同领域中谱熵的应用场景。
我们将重点关注信号处理、数据压缩和图像识别领域,并列举一些典型案例来说明谱熵在这些领域中的实际应用价值。
接着,在第4节中对谱熵计算方法进行了深入分析,并评估其优缺点。
我们将探讨谱熵作为信息度量工具时所具备的优势以及在实际应用中可能存在的限制。
最后,在第5节中,我们对本文进行总结,并展望了谱熵未来的发展方向及其应用前景。
通过回顾现有研究成果和对未来趋势的探索,可以为相关领域的科学家和工程师提供启示和参考。
1.3 目的本文的目的是为读者介绍谱熵的计算方法,并深入探讨其在不同领域中的应用。
通过阅读本文,读者将了解到谱熵作为一种重要的信息度量方法,其在信号处理、数据压缩和图像识别等领域中的实际价值。
此外,我们还将分析谱熵计算方法的优缺点,以期能够全面评估其适用性和局限性。
最终,我们希望通过本文对谱熵进行全面概述,从而促进相关领域的进一步研究和应用发展。
2. 谱熵的计算方法:2.1 定义与原理:谱熵是一种衡量信号复杂性的指标,用于描述信号频谱的均匀分布程度。
在信号处理领域,谱熵常被用来度量信号的信息丰富程度和预测能力。
其计算方法基于信息论中的熵概念,通过对信号频谱进行统计分析得出。
2.2 基本概念解释:在计算谱熵之前,首先需要了解几个基本概念:- 频谱:频率域上表示信号各频率成分强度的函数。
- 幅度谱:描述信号不同频率成分幅度大小的函数。
基于Burg 算法的最大熵谱估计一、 实验目的使用Matlab 平台实现基于Burg 算法的最大熵谱估计二、 Burg 算法原理现代谱估计是针对经典谱估计方差性能较差、分辨率较低的缺点提出并逐渐发展起来的,其分为参数模型谱估计和非参数模型谱估计。
而参数模型谱估计主要有AR 模型、MA 模型、ARMA 模型等,其中AR 模型应用最多。
ARMA 模型功率谱的数学表达式为:212121/1)(∑∑=-=-++=p i i j i q i i j i j e a e b e P ωωωσ其中,P(e j ω)为功率谱密度;s 2是激励白噪声的方差;a i 和b i 为模型参数。
若ARMA 模型中b i 全为0,就变成了AR 模型,又称线性自回归模型,其是一个全极点模型: 2121/)(∑=-+=p i i j i j e a e P ωωσ研究表明,ARMA 模型和MA 模型均可用无限阶的AR 模型来表示。
且AR 模型的参数估计计算相对简单。
同时,实际的物理系统通常是全极点系统。
要利用AR 模型进行功率谱估计,必须由Yule - Walker 方程求得AR 模型的参数。
而目前求解Yule - Walker 方程主要有三种方法: Levinson-Durbin 递推算法、Burg 算法和协方差方法。
其中Burg 算法计算结果较为准确,且对于短的时间序列仍能得到较正确的估计,因此应用广泛。
研究最大熵谱估计时,Levinson 递推一直受制于反射系数K m 的求出。
而Burg 算法秉着使前、后向预测误差平均功率最小的基本思想,不直接估计AR 模型的参数,而是先估计反射系数K m ,再利用Levinson 关系式求得AR 模型的参数,继而得到功率谱估计。
Burg 定义m 阶前、后向预测误差为:∑=-=mi m m i n x i a n f 0)()()( (1)∑=*--=mi m i n x i m a n g m 0)()()( (2) 由式(1)和(2)又可得到前、后预测误差的阶数递推公式:)1()()(11-+=--n g K n f n f m m m m (3))1()()(11-+=--*n g n f K n g m m m m (4)定义m 阶前、后向预测误差平均功率为:∑=+=Nmn m m m n g n f P ])()([2122(5) 将阶数递推公式(3)和(4)代入(5),并令0=∂∂mmK P ,可得∑∑+=--+=*---+--=N m n m m Nm n m m m n g n f n g n f K 12121111])1()([21)1()((6)三、 Burg 算法递推步骤Burg 算法的具体实现步骤:步骤1 计算预测误差功率的初始值和前、后向预测误差的初始值,并令m = 1。
最大熵模型算法今天我们来介绍一下最大熵模型系数求解的算法IIS算法。
有关于最大熵模型的原理可以看专栏里的这篇文章。
有关张乐博士的最大熵模型包的安装可以看这篇文章。
最大熵模型算法 1在满足特征约束的条件下,定义在条件概率分布P(Y|X)上的条件熵最大的模型就认为是最好的模型。
最大熵模型算法 23. IIS法求解系数wi先直接把算法粘贴出来,然后再用Python代码来解释。
这里也可以对照李航《统计学习方法》P90-91页算法6.1来看。
这个Python代码不知道是从哪儿下载到的了。
从算法的计算流程,我们明显看到,这就是一个迭代算法,首先给每个未知的系数wi赋一个初始值,然后计算对应每个系数wi的变化量delta_i,接着更新每个wi,迭代更新不断地进行下去,直到每个系数wi都不再变化为止。
下边我们一点点儿详细解释每个步骤。
获得特征函数输入的特征函数f1,f2,...,fn,也可以把它们理解为特征模板,用词性标注来说,假设有下边的特征模板x1=前词, x2=当前词, x3=后词 y=当前词的标记。
然后,用这个特征模板在训练语料上扫,显然就会出现很多个特征函数了。
比如下边的这句话,我/r 是/v 中国/ns 人/n用上边的模板扫过,就会出现下边的4个特征函数(start,我,是,r)(我,是,中国,v)(是,中国,人,ns)(中国,人,end,n)当然,在很大的训练语料上用特征模板扫过,一定会得到相同的特征函数,要去重只保留一种即可。
可以用Python代码得到特征函数def generate_events(self, line, train_flag=False):"""输入一个以空格为分隔符的已分词文本,返回生成的事件序列:param line: 以空格为分隔符的已分词文本:param train_flag: 真时为训练集生成事件序列;假时为测试集生成事件:return: 事件序列"""event_li = []# 分词word_li = line.split()# 为词语序列添加头元素和尾元素,便于后续抽取事件 if train_flag:word_li = [tuple(w.split(u'/')) for w inword_li if len(w.split(u'/')) == 2]else:word_li = [(w, u'x_pos') for w in word_li]word_li = [(u'pre1', u'pre1_pos')] + word_li + [(u'pro1', u'pro1_pos')]# 每个中心词抽取1个event,每个event由1个词性标记和多个特征项构成for i in range(1, len(word_li) - 1):# 特征函数a 中心词fea_1 = word_li[i][0]# 特征函数b 前一个词fea_2 = word_li[i - 1][0]# 特征函数d 下一个词fea_4 = word_li[i + 1][0]# 构建一个事件fields = [word_li[i][1], fea_1, fea_2, fea_4] # 将事件添加到事件序列event_li.append(fields)# 返回事件序列return event_li步进值 \delta_{i} 的求解显然delta_i由3个值构成,我们一点点儿说。