机械故障诊断学钟秉林第4章动态系统特性的频谱分析
- 格式:pptx
- 大小:923.95 KB
- 文档页数:38
机械控制工程之频率特性分析介绍机械控制工程中的频率特性分析是一种重要的分析方法,用于研究机械系统的动态响应和导致系统稳定性的因素。
频率特性分析可以帮助工程师了解机械系统的频率响应特性,从而进行系统设计、调节和优化。
频率特性分析通常通过传递函数来描述机械系统的响应特性。
传递函数是一个复数函数,它描述了输入信号与输出信号之间的关系。
在频率特性分析中,我们主要关注系统的幅频特性和相频特性。
幅频特性分析幅频特性分析是研究机械系统振幅响应随频率变化的分析方法。
通过幅频特性分析,我们可以了解机械系统在不同频率下的振幅响应情况。
在幅频特性分析中,我们会绘制振幅频率响应曲线(Bode图)。
Bode图是一种以对数坐标绘制的图形,横坐标表示频率,纵坐标表示振幅,通常使用分贝(dB)作为单位。
Bode图可以同时展示系统的增益和相位信息。
根据系统的传递函数,我们可以计算出不同频率下的系统增益和相位,并在Bode图上绘制出相应的曲线。
通过分析和比较Bode图,我们可以判断系统的稳定性、共振频率以及衰减能力等重要的特性。
幅频特性分析可以帮助我们设计合适的控制系统来满足特定的性能要求。
例如,如果我们希望系统具有较好的稳定性,我们可以通过调整系统的增益来实现;如果系统存在共振频率,我们可以通过调整系统的参数来避免或抑制共振现象。
相频特性分析相频特性分析是研究机械系统相位差随频率变化的分析方法。
通过相频特性分析,我们可以了解机械系统在不同频率下的相位响应情况。
在相频特性分析中,我们同样会绘制相频响应曲线。
相频响应曲线展示了系统的相位角随频率变化的情况。
相位角是指输入信号和输出信号之间的相位差,通常使用角度表示。
通过分析相频响应曲线,我们可以获得系统的相移角信息。
相移角的变化直接影响系统的稳定性和频率响应。
在设计机械控制系统时,我们通常会根据目标性能来调整系统的相位差,以实现系统的稳定性和响应速度。
频率特性分析的应用频率特性分析在机械控制工程中具有广泛的应用。
《机械故障诊断》考试试卷(A卷)一、填空(每空1分,共10分)1、设备诊断技术、修复技术和润滑技术已列为我国设备管理和维修工作的3项基础技术。
2、设备诊断技术是依靠传感技术和在线检测技术进行分析处理,机械故障诊断实质是利用运行中各个零部件的二_次效应,由现象判本质进行诊断。
3、ISO标准属于绝对判断标准。
4、固有频率与物体的初始情况无关,完全由物体的力学性质决定,是物体自身固有的。
5、一般地,可用啮合频率与其周围边带频的幅值差来指示齿轮的好坏。
、6、振动频谱中包含机器零部件的机械状态信息,振动诊断的任务从某种意义上讲,就是读谱图,把频谱上的每个频谱分量与监测的机器的零部件对照联系,给每条频谱以物理解释。
7、安装加速度传感器时,在安装面上涂一层硅脂的目的是__增加不平整安装表面的连接可靠性____________ 。
8、滚动轴承的振动诊断方法包括有效值和峰值判别法、峰值因数法、概率密度分析法(用峭度衡量)等。
二、单项选择(每题2分,共10分)1、设备故障诊断未来的发展方向是(d ) A感性阶段B量化阶段C诊断阶段D 人工智能和网络化2、(a )是目前所有故障诊断技术中应用最广泛也是最成功的诊断方法。
A振动诊断B温度诊断C声学诊断D光学诊断3、对于润滑油液的分析属于(c ) A.直接观测法B参数测定法C.磨损残渣测定法D .设备性能指标测定4、一台机器设备在运转过程中会产生各种频率项,但不包括下述的(a) A旋转频率项B常数频率项C齿轮频率项D 变量频率项5、 .仅需在一个修正面内放置平衡重量的是a。
A.力不平衡B .力偶不平衡C.动不平衡D .悬臂转子不平衡三、判断题(每题 2分,共10分)1、一般说来,设备的故障和征兆之间不存在一一对应的关系。
(V)2、数字化网络监测是离线监测的发展趋势。
(X )3、超声波诊断方法中包括超声波测厚技术。
(V)4、利用声响判断物品的质量是人们常用的简易方法。
(V)5、膨胀式温度计里面包括有水银温度计。
研究生课程教学大纲课程编号:S292011课程名称:机械故障诊断学开课院系:机电工程学院任课教师:刘文艺先修课程:机械工程测试技术,信号处理适用学科范围:机械工程学时:36 学分:2开课学期:2 开课形式:讲授课程目的和基本要求:本课程的授课对象是机械设计制造及其自动化专业硕士研究生,属机械类专业的专业选修课。
开设本课程的目的是研究以振动、噪声测量为基础、以信号处理和分析为手段的机械设备状态监测、故障诊断和故障预测的理论、方法以及技术。
该课程研究的内容为机械系统动态信号处理与分析及以上内容在典型机械零部件运行过程中的状态分析与识别。
在本课程中,培养学生利用所学知识正确分析与判断典型机械零部件运行过程中的状态的技能,并了解掌握故障诊断知识的更新及发展动向。
课程主要内容:本课程主要介绍机械故障诊断的基础理论和工程应用,阐述机械动态信号数学变换的本质、物理意义和工程背景。
内容包括信号的时域分析、频域分析、时频域分析,基于小波变换和第二代小波变换、模型以及动力学机理的故障诊断方法,故障微弱信号的随机共振、循环平稳理论以及盲源分离诊断技术,智能诊断与状态评估、典型故障诊断系统、远程监测诊断系统以及故障诊断标准(振动与噪声)等。
通过课程的学习,旨在使学生理解和掌握机械监测诊断领域的基础理论和方法及系统深入的专门知识,提高独立解决工程实际中设备运行维护与维修问题的能力,培养学生的科研创新能力。
课程主要内容如下:第1章绪论机械故障诊断的课程概述、机械故障诊断的意义、机械故障诊断的国内外研究现状、基础和关键科学问题及发展趋势分析。
第2章特征信号检测信号分析基础、数据采集与数字信号处理、工程信号分析基础、信号处理方法。
第3章动态系统特性的时域分析随机过程的基本概念及其数字特征,线性时间序列模型分析及其应用,工况状态变化趋势性模型分析,时间序列的预报信号的典型时域分析方法如时域统计分析、相关分析知识介绍。
第4章动态系统特性的频谱分析周期信号的傅里叶级数及频谱,非周期信号的傅里叶变换原理,傅里叶变换的周期性与离散性,频谱分析和FFT算法、相干分析、频谱细化分析、倒频谱分析、信号调制与解调分析、全息谱理论和方法介绍。