当前位置:文档之家› 模拟乘法器电路设计

模拟乘法器电路设计

模拟乘法器电路设计
模拟乘法器电路设计

★★世纪期刊网-专业期刊论文原文服务网站★★【关于我们】

世纪期刊网专业提供中文期刊及学术论文、会议论文的原文传递及下载服务。

【版权申明】

世纪期刊网提供的电子版文件版权均归属原版权所有人,世纪期刊网不承担版权问题,仅供您个人参考。

【联系方式】

电子邮件 support@https://www.doczj.com/doc/c743052.html,

【网站地址】

世纪期刊网https://www.doczj.com/doc/c743052.html,

【网上购书推荐商家】

当当网卓越网读书人网

京东IT数码商城

本次文章生成时间:2010-8-11 21:46:34

文章内容从第二页开始!

请将本站向您的朋友传递及介绍!

直流稳压电源设计模拟电子技术

课程设计说明书 题目:直流稳压电源设计 课程名称:模拟电子技术 学院:电子信息与电气工程学院学生姓名: 学号: 专业班级: 指导教师: 2015年 6 月6日

课程设计任务书

固定直流稳压电源设计 摘要: 通过模拟电子技术设计固定直流稳压电源,主要运用变压器,整流二极管,电解电容,稳压器等器件.该固定直流稳压系统先通过将220V市电降压,再经过整流二极管1N4007进行整流,通过电容滤波之后,采用稳压芯片7805,7905分别对其进行稳压,从而输出的稳定电压(+5V/-5V)。 关键词:变压;整流;滤波;稳压;

目录 1.设计背景 (1) 1.1设计背景 (1) 1.2设计目的 (1) 2.设计方案 (1) 2.1电路概述 (1) 2.2整流电路 (3) 2.3稳压电路 (4) 2.4固定直流稳压电源电路设计 (5) 3.方案实施 (6) 3.1电路仿真设计与仿真 (6) 3.2Altium Designer设计原理图及PCB设计 (7) 3.3电路板的制作与调试 (8) 3.4相关数据测量 (8) 4.结果与结论 (9) 5.收获与致谢 (9) 6.参考文献 (10) 7.附件 (10) 7.1电路实物图 (10) 7.2元器件清单 (11)

1. 设计背景 1.1设计背景 随着科技日新月异的发展,越来越多的小型电子产品出现在我们身边,它们一般都需要稳定的直流电源供电,电池作为低效率,高污染的产品不能得到广泛的使用,而我们最常见到的电源就是220V的交流电源,再次情况下,我们设计了一个转换装置,从而可以使其给小型电子设备供电,达到及节能又环保,既方便有快捷的目的。 1.2设计目的 设计这个固定直流稳压电源是为了锻炼学生的动手能力,理论与实践相结合,更有利于同学们在学习中积极的思考,培养同学们对学习的兴趣;而且,检验了同学们对电路仿真软件和DXP这些软件的熟悉程度,进一步加深了对这些软件的理解,提高了应用能力;另外,让同学们看到,理论知识在现实生活中的应用,知道了这些知识的重要性,要更加努力的学习。本次课程设计就是在这样的一个背景下而进行的一次十分重要的实习安排。 2. 设计方案 2.1电路概述 根据电路的特点和性质,电路可有这几部分组成,变压器电路部分,整流电路部分,滤波电路部分,稳压电路部分。 变压器电路可以使电压达到设备可以使用的一个电压范围,如下图所示。 整流电路使用来把变压器副边通过的交流电压转换为直流电压,满足设备需要直流电源供电的要求。即将正弦波电压转换为单一方向的脉动电压,半波整流电路和全波整流电路的输出波形如下图所示。但实际情况是整流后还含有较大的交流分量,会影响负载电路的正常工作。 滤波电路是用来进一步的减少电路中的交流分量,增加电路中的直流分量,使输出电压平滑。理想情况下,应将交流分量全部滤掉,使滤波电路的输出电压仅为

模拟乘法器及其应用

模拟乘法器及其应用

摘要 模拟乘法器是一种普遍应用的非线性模拟集成电路。模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。 Analog multiplier is a kind of widely used nonlinear analog integrated multiplier can be achieved between two unrelated analog multiplication is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.

模拟电路课程设计题目

电子技术(模拟电路部分)课程设计题目 一、课程设计要求 1、一个题目允许两个人选择,共同完成电子作品,但课程设计报告必须各自独立完成。 2、课程设计报告按给定的要求完成,要上交电子文档和打印文稿(A4)。 3、设计好的电子作品必须仿真,仿真通过后,经指导老师检查通过后再进行制作。 4、电子作品检查时间:2010年3月4日,检查通过作品需上交。 4、课程设计报告上交时间:2010年5月20日前。 二、课程设计题目 方向一、波形发生器设计 题目1:设计制作一个产生方波-三角波-正弦波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目2:设计制作一个产生正弦波-方波-三角波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目3:设计制作一个产生正弦波-方波-锯齿波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④锯齿波峰-峰值为2V,占空比可调;

⑤设计电路所需的直流电源可用实验室电源。 题目4:设计制作一个方波/三角波/正弦波/锯齿波函数发生器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2V,占空比可调; ④三角波峰-峰值为2V; ⑤锯齿波峰-峰值为2V; ⑥设计电路所需的直流电源可用实验室电源。 方向二、集成直流稳压电源设计 题目1:设计制作一串联型连续可调直流稳压正电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目2:设计制作一串联型连续可调直流稳压负电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目3:设计制作一串联型二路输出直流稳压正电源电路。 设计任务和要求 ①一路输出直流电压12V;另一路输出5-12V连续可调直流稳压电源; ②输出电流I O m=200mA; ③稳压系数Sr≤0.05;

模拟运算电路(三)

实验五模拟运算电路(三) 一、实验目的 1、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念。 2、熟练掌握运算放大电路的故障检查和排除方法,以及输入阻抗、输出阻抗、增益、幅频 特性、传输特性曲线的测量方法。 二、实验原理 三、预习思考 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。 T:TIP 参数名称参数值参数意义及设计时应该如何考虑 直流参数 输入 失调电压V IO 1(T) <6mV 该参数表示使输出电压为零时需要在输入端作用的电压差。理 想运放当输入电压为零时,其输出电压也为零,但实际运放当 输入电压为零时,其输出端仍有一个偏离零的直流电压,这是 由于运放电路参数不对称所引起的。 输入 偏置电流I IB 80(T)<500nA 该参数指运算放大器工作在线性区时流入输入端的平均电流。 指运放输入级差分对管的基极电流 12 , B B I I,通常由于晶体管参

数的分散性,12B B I I ≠。输入偏置电流的大小,在电路外接电阻确定之后,主要取决于运放差分输入级的性能,当他的β值太小时,将引起偏置电流增加。从使用角度看,偏置电流愈小,由信号源内阻变化引起的输出电压变化也愈小。 输入 失调电流I IO 20(T)<200nA 该参数是指流入两个输入端的电流之差。输出电压为零时,两 输入端静态电流的差值,即12io B B I I I =-。其典型值为几十至 几百Na .由于信号源内阻的存在,io I 会引起一输入电压,破坏放大器的平衡,使放大器输出电压不为零。io I 越小越好,他反映了输入级有效差分对管的不对称程度。 失调电压温漂 αV IO 20/uV C ±? 该参数指温度变化引起的输入失调电压的变化,通常以 /uV C ? 为单位表示.指在规定范围内io V 的温度系数。 共模抑制比K CMR 70(T)<90dB 差模电压增益VD A 与共模电压增益VC A 之比 开环差模 电压增益A VD 6 10 集成运放工作在线性区,接入规定的负载,无负反馈情况下的 直流差模电压增益。VD A 与输出电压0V 的大小有关。通常是在规定的输出电压幅度(如010V V =±)测得的值。VD A 又是频率的函数,频率高于某一数值后,VD A 的数值开始下降。 输出 电压摆幅V OM +/-10 ~14 正负输出电压的摆动幅度极限 差模输入电阻R ID 0.3~2M Ω 输出电阻R O 75 Ω 交流参数 增益带宽积G.BW 0.7~1.6MHZ 增益带宽积A OL * ? 是一个常量,定义在开环增益随频率变化的特性曲线中以-20dB/十倍频程滚降的区域。运放的增益是随信号的频率而变化的,输出电压随信号频率增大而使其下降到最大值的0.707倍的频率范围,称为带宽。 转换速率S R 0.25~0.5V/us (RL>2K) 该参数是指输出电压的变化量与发生这个变化所需时间之比的最大值。SR 通常以V/μs 为单位表示, 有时也分别表示成正向变化和负向变化。当运放在闭环情 况下,其输入端加上大信号(通常为阶跃信号时) ,其输出电压 波形将呈现一定的延时,其主要原因是运放内部电率中的电容 充放电需要一定的时间。SR 表示运放在闭环状态下,每1us 时间内输出电压变化的最大值。 极限参数 最大差模 输入电压V IOR 30V ± 反相和同相输入端所能承受的最大电压值。超过这个电压值, 运放输入级某一侧的BJT 将出现发射结的反向击穿,而使运放的性能显著恶化,甚至可能造成永久性损坏。 最大共模 13V ± 运放所能承受的最大共模输入电压。超过IC R V 值,它的共模抑

乘法器应用电路

第6章 集成模拟乘法器及其应用 6.1集成模拟乘法器 教学要求: 1.掌握集成模拟乘法器的基本工作原理; 2.理解变跨导模拟乘法器的基本原理; 3.了解单片集成模拟乘法器的外部管脚排列及外接电路特点。 一、集成模拟乘法器的工作原理 (一)模拟乘法器的基本特性 模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。其符号如下图所示,K 为乘法器的增益系数。 1.模拟乘法器的类型 理想乘法器—对输入电压没有限制, u x = 0 或 u y = 0 时,u O = 0,输入电压的波形、幅度、极性和频率可以是任意的 。 实际乘法器—u x = 0 , u y = 0 时,u O 1 0,此时的输出电压称为输出输出失调电压。u x = 0,u y 1 0 (或 u y = 0,u x 1 0)时,u O 1 0,这是由于u y (u x )信号直接流通到输出端而形成的,此时 的输出电压为u y (u x )的输出馈通电压。 (二)变跨导模拟乘法器的基本工作原理 变跨导模拟乘法器是在带电流源差分放大电路的基础上发展起来的,其基本原理电路如下图所示。

在室温下,K为常数,可见输出电压u 与输入电压u y、u x的乘积成正比,所以差分放大电路具有乘法功 O 能。但u y必须为正才能正常工作,故为二象限乘法器。当u Y较小时,相乘结果误差较大,因I C3随u Y而变,其比值为电导量,称变跨导乘法器 . 二、单片集成模拟乘法器 实用变跨导模拟乘法器由两个具有压控电流源的差分电路组成,称为双差分对模拟乘法器,也称为双平 衡模拟乘法器。属于这一类的单片集成模拟乘法器有MC1496、MC1595等。MC1496内部电路如下图所示。

模拟乘法器AD834的原理与应用

模拟乘法器AD834的原理与应用 1.AD834的主要特性 AD834是美国ADI公司推出的宽频带、四象限、高性能乘法器,其主要特性如下: ●带符号差分输入方式,输出按四象限乘法结果表示;输出端为集电极开路差分电流结构,可以保证宽频率响应特性;当两输入X=Y=±1V时,输出电流为±4mA; ●频率响应范围为DC~500MHz; ●乘方计算误差小于0.5%; ●工作稳定,受温度、电源电压波动的影响小; ●低失真,在输入为0dB时,失真小于0.05%; ●低功耗,在±5V供电条件下,功耗为280mW; ●对直通信号的衰减大于65dB; ●采用8脚DIP和SOIC封装形式。 2.AD834的工作原理 AD834的引脚排列如图1所示。它有三个差分信号端口:电压输入端口X=X1-X2和Y=Y1-Y2,电流输出端口W=W1-W2;W1、W2的静态电流均为8.5mA。在芯片内部,输入电压先转换为差分电流(V-I转换电阻约为280Ω),目的是降低噪声和漂移;然而,输入电压较低时将导致V-I转换线性度变差,为此芯片内含失真校正电路,以改善小信号V-I转换时的线性特性。电流放大器用于对乘法运算电路输出的电流进行放大,然后以差分电流形式输出。 AD834的传递函数为: W=4XY (X、Y的单位为伏特,W的单位为mA) 3.应用考虑 3.1 输入端连接

尽管AD834的输入电阻较高(20kΩ),但输入端仍有45μA的偏置电流。当输入采用单端方式时,假如信号源的内阻为50Ω,就会在输入端产生1.125mV的失调电压。为消除该失调电压,可在另一输入端到地之间接一个与信号源内阻等值的电阻,或加一个大小、极性可调的直流电压,以使差分输入端的静态电压相等;此外,在单端输入方式下,最好使用远离输出端的X2、Y1作为输入端,以减小输入直接耦合到输出的直通分量。 应当注意的是,当输入差分电压超过AD834的限幅电平(±1.3V)时,系统将会出现较大的失真。 3.2 输出端连接 采用差分输出,可有效地抑制输入直接耦合到输出的直通分量。差分输出端的耦合方式,可用RC耦合到下一级运算放大器,进而转换为单端输出,也可用初级带中心抽头的变压器将差分信号转换为单端输出。 3.3 电源的连接 AD834的电源电压允许范围为±4V~±9V,一般采用±5V。要求VW1和VW2的静态电压略高于引脚+VS上的电压,也就是+VS引脚上的电去耦电阻RS应大于W1和W2上的集电极负载电阻RW1、RW2。例如,RS为62Ω,RW1和RW2可选为49.9Ω,而+V=4.4V,VW1=VW2=4.6V,乘法器的满量程输出为±400mV。 引脚-VS到负电源之间应串接一个小电阻,以消除引脚电感以及去耦电容可能产生的寄生振荡;较大的电阻对抑制寄生振荡有利,但也会使VW1和VW2的静态工作电压降低;该电阻也可用高频电感来代替。 4.应用实例 AD834主要用于高频信号的运算与处理,如宽带调制、功率测量、真有效值测量、倍频等。在某航空通信设备扩频终端机(如图2所示)的研制中,笔者应用AD834设计了扩频信号调制器和扩频信号接收AGC电路。

模电-模拟运算电路实验

实验五 模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 i F O U R U -=

关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10KΩ, R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图5-3 同相比例运算电路 4) 差动放大电路(减法器)

模拟电子课程设计仿真

1、集成运放的应用电路 (1)参考电路图如下: (2)应用仿真库元件,3D元件分别进行仿真,熟悉示波器的使用2、电流/电压(I/V)转换器的制作与调试 (1)参考电路图如下:

(2)要求将0~10毫安电流信号转换成0~10伏电压信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。 3、电压/电流(V/I)转换器的制作与调试(1)参考电路图如下: (2)要求将0~10伏电压信号转换成0~10毫安电流信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。

4、电子抢答器制作 (1)参考电路图如下: (2)电路的工作原理: 本电路使用一块时基电路NE555,其高电平触发端6脚和低电平触发端2脚相连,构成施密特触发器,当加在2脚和6脚上的电压超2/3V CC时,3脚输出低电平,当加在2脚和6脚上的电压低于1/3V CC时,3脚输出高电平。按下开关SW,施密特触发器得电,因单向可控硅SCR1~SCR4的控制端无触发脉冲,SCR1~SCR4关断,2脚和6脚通过R1接地而变为低电平,所以3脚输出高电平,绿色发光二极管LED5发光,此时抢答器处于等待状态。 K1~K4为抢答键,假如K1最先被按下,则3脚的高电平通过K1作用于可控硅SCR1的控制端,SCR1导通。红色发光二极管LED1发光,+9V电源通过LED1和SCR1作用于NE555的2脚和6脚,施密特触发器翻转,3脚输出低电平,LED5熄灭。因3脚输出为低电平,所以此后按下K2~K4时,SCR2~SCR4不能获得触发脉冲,SCR2~SCR4维持关断状态,LED2~LED4不亮,LED1独亮说明按K1键者抢先成功,此后主持人将开关SW起落一次。复位可控硅,LED1熄灭,LED5亮,抢答器又处于等待状态。 220V市电经变压器降压,VD1~VD4整流,C滤波,为抢答器提供+9V直流电压。VD1~VD4选IN4001,C选用220μF/15V。R1和R2选1KΩ,LED1~LED4选红色发光二极管,LED5选绿色发光二极管。SW为拨动开关,K1~K4为轻触发开关,单向可控硅选2P4M,IC 为NE555。 (3)完成电路的制作与调试。 5、交替闪光器的制作与调试 (1)参考电路图如下:

模拟乘法器设计____模拟电路课程设计

乘法运算电路 1、课程设计的目的 模拟电子技术基础课程设计是学习模拟电子技术基础课程之后的实践教学环节。其目的是训练学生综合运用学过的模拟电子技术的基础知识。独立完成查找资料,选择方案,设计电路,撰写报告等工作。使学生进一步理解所学本课程的内容。并理论联系实际提高和培养学生的创新能力,为后续课程的学习毕业设计。毕业后的工作打下基础。 2、设计方案论证 理想模拟乘法器具备的条件:1.r i1和r i2为无穷大;2.r o为零; 3. k值不随信号幅值而变化,且不随频率而变化; 4.当u X或u Y为零时u o为零,电路没有失调电压、噪声。 由乘法电路的输出电压正比于其两个输入电压的乘积,即 u o = u I1u I2 求对数,得: 再求指数,得: 所以可以利用对数电路、求和电路和指数电路,得到乘法运算电路,其方块图1为: 对数电路 对数电路 u I1 u I2 ln u I1 ln u I2 求和电路 ln u I1+ ln u I2 指数电路

u O = u I1u I2 图1 乘法运算电路方块图 2.1 Multisim介绍 Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。它的前身为 EWB(Electronics Workbench)软件。它以界面形象直观、操作方便、分析功能强大、易学易用等突出优点,早在20世纪90年代初就在我国得到迅速推广,并作为电子类专业课程教学和实验的一种辅助手段。21世纪初,EWB 5.0更新换代推出EWB 6.0,并更名为Multisim 2001;2003年升级为Multisim 7.0;2005年发布Multisim 8.0时其功能已十分强大,能胜任电路分析、模拟电路、数字电路、高频电路、RF电路、电力电子及自动控制原理等个方面的虚拟仿真,并提供多达18种基本分析方法。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。2.1.1破解版Multisim7安装方法注:电脑第一次安装Multisim7,须安装两遍;第二次及以后安装均会将跳过第一遍步骤,直接从第二遍步骤开始。第一遍安装步骤:(1)双击Multisim7破解版文件夹/双击Electronics Workbench MULTISMv7.0文件夹/Setup/Next/ 接受协议/Next安装DAO3.5。(2)第一遍安装结束,问是否现在重起计算机?选择“NO”/Finish。第二遍安装步骤:(1)仍双击Electronics Workbench MULTISMv7.0文件夹下的Setup/Next/接受协议/在Serial栏输入任意密码,Next/要求第二次输入密

完整版模拟电子电路实验报告

. 实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R 和R组成的分压电路,并在发射极中接有电阻R,以稳定放大器的静态工EB1B2作点。当在放大器的输入端加入输入信号u后,在放大器的输出端便可得到一i个与u相位相反,幅值被放大了的输出信号u,从而实现了电压放大。0i 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B2B1基极电流I时(一般5~10倍),则它的静态工作点可用下式估算B教育资料.. R B1U?U CCB R?R B2B1 U?U BEB I??I EC R E

)R+R=UU-I(ECCCCEC电压放大倍数 RR // LCβA??V r be输入电阻 r R/// R=R/beiB1 B2 输出电阻 R R≈CO由于电子器件性能的分散性比较大,因此在设计和制作晶 体管放大电路时, 为电路设计提供必离不开测量和调试技术。在设计前应测量所用元器件的参数,还必须测量和调试放大器的静态工作点和各要的依据,在完成设计和装配以后,因此,一个优质放大器,必定是理论设计与实验调整相结合的产物。项性能指标。除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。消除干扰放大器静态工作点的测量与调试,放大器的测量和调试一般包括:与自激振荡及放大器各项动态参数的测量与调试等。、放大器静态工作点的测量 与调试 1 静态工作点的测量1) 即将放大的情况下进行,=u 测量放大器的静态工作点,应在输入信号0 i教育资料. . 器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位U、U和U。一般实验中,为了避 ECCB免断开集电极,所以采用测量电压U或U,然后算出I的方法,例如,只要 测CEC出U,即可用E UU?U CECC??II?I,由U确定I(也可根据I),算出CCC CEC RR CE同时也能算出U=U-U,U=U-U。EBEECBCE为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I(或U)的调整与测试。 CEC静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u的负半周将被削底,O 如图2-2(a)所示;如工作点偏低则易产生截止失真,即u的正半周被缩顶(一 O般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端 加入一定的输入电压u,检查输出电压u的大小和波形是否满足要求。如不满Oi

实验二集成运算放大器的应用模拟运算 (1)

实验七 集成运算放大器的应用(一) 模拟运算电路 预习部分 一、实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。 ⑧脚为空脚。 当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 1) 反相比例运算电路 电路如图2-7-2所示。对于理想运放, 该电路 的输出电压与输入电压之间的关系为 Uo =-(R F / R 1)Ui 为了减小输入级偏置电流引起的运算误差,在 同相输入端应接入平衡电阻 R 2=R 1‖R F 。 2) 反相加法电路 图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路 电路如图2-7-3所示,输出电压与输入电压之间的关系为 F i F i F O //R //R R R U R R U R R U 2132211 =??? ? ??+-= 图2-7-1 μA741管脚图

3) 同相比例运算电路 图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F 当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图2-7-4 同相比例运算电路 4) 差动放大电路(减法器) 对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路 反相积分电路如图2-7-6所示。在理想化条件下,输出电压uo 等于 ()()01 C t i O U dt U RC t U +-=? 式中 Uc(o)是t =0时刻电容C 两端的电压值,即初始值。 如果u i (t)是幅值为E 的阶跃电压,并设Uc(o)=0,则 ()RC E Edt RC t U t O -=-=?01 即输出电压 Uo(t)随时间增长而线性下降。显然R C 的数值越大,达到给定的Uo 值所需的时间就越长。积分输出电压所能达到的最大值受集成运放最大输出范围的限值。 ()121 i i F O U U R R U -=

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

东南大学模电实验报告模拟运算放大电路

东南大学电工电子实验中心 实验报告 课程名称:模拟电路实验 第一次实验 实验名称:模拟运算放大电路(一)院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师:

实验一 模拟运算放大电路(一) 一、实验目的: 1、 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。 2、 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。 3、 了解运放调零和相位补偿的基本概念。 二、实验原理: 1、反向比例放大器 反馈电阻R F 值一般为几十千欧至几百千欧,太大容易产生较大的噪声及漂移。R 的取值则应远大于信号源v i 的内阻。 若R F = R ,则为倒相器,可作为信号的极性转换电路。 2、电压传输特性曲线 双端口网络的输出电压值随输入电压值的变化而变化的特性叫做电压传输特性。电压传输特性在实验中一般采用两种方法进行测量。一种是手工逐点测量法,另一种是采用示波器X-Y 方式进行直接观察。 示波器X-Y 方式直接观察法:是把一个电压随时间变化的信号(如:正弦波、三角波、锯齿波)在加到电路输入端的同时加到示波器的X 通道,电路的输出信号加到示波器的Y 通道,利用示波器X-Y 图示仪的功能,在屏幕上显示完整的电压传输特性曲线,同时还可以 测量相关参数。 具体测量步骤如下: F V R A =- R

(1) 选择合理的输入信号电压,一般与电路实际的输入动态范围相同,太大除了会影响测量结果以外还可能会损坏器件;太小不能完全反应电路的传输特性。 (2) 选择合理的输入信号频率,频率太高会引起电路的各种高频效应,太低则使显示的波形闪烁,都会影响观察和读数。一般取50~500Hz 即可。 (3) 选择示波器输入耦合方式,一般要将输入耦合方式设定为DC,比较容易忽视的是在X-Y 方式下,X 通道的耦合方式是通过触发耦合按钮来设定的,同样也要设成DC。 (4) 选择示波器显示方式,示波器设成X-Y 方式,对于模拟示波器,将扫描速率旋钮逆时针旋到底就是X-Y 方式;对于数字示波器,按下“Display”按钮,在菜单项中选择X-Y。 (5) 进行原点校准,对于模拟示波器,可把两个通道都接地,此时应该能看到一个光点,调节相应位移旋钮,使光点处于坐标原点;对于数字示波器,先将CH1 通道接地,此时显示一条竖线,调节相应位移旋钮,将其调到和Y 轴重合,然后将CH1 改成直流耦合,CH2 接地,此时显示一条水平线,调节相应位移旋钮,将其调到和X 轴重合。 3、电压增益(电压放大倍数A V) 电压增益是电路的输出电压和输入电压的比值,包括直流电压增益和交流电压增益。实验中一般采用万用表的直流档测量直流电压增益,测量时要注意表笔的正负。 交流电压增益测量要在输出波形不失真的条件下,用交流毫伏表或示波器测量输入电压V i(有效值)或V im(峰值)或V ip-p(峰-峰值)与输出电压V o(有效值)或V om(峰值)或 V op-p(峰-峰值),再通过计算可得。 三、预习思考: 1、设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 2、设计一个电路满足运算关系V O= -2V i1 + 3V i2 四、实验内容: 1、23页实验内容1,具体内容改为: (I)图5-1电路中电源电压±15V,R1=10kΩ,R F=100 kΩ,R L=100 kΩ,R P=10k//100kΩ。 按图连接电路,输入直流信号V i分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同V i时的V o值,列表计算A vf并和理论值相比较。其中V i通过电阻分压电路产生。

工程师常用模拟电路设计1

工程师常用模拟电路设计、计算、仿真及制作 湖北民族大学杨庆 概述 模拟电路是电子技术类工程师必须熟练掌握的课程,在模拟电路中有许多基本电路是工程师们在设计电子系统必不可少的。例如,几乎绝大部分的电子系统都需要将交流电源变为直流电源,供电子系统使用,因此整流、滤波、稳压等模拟电路就成为电子工程师必须熟练掌握的电路。又如,各种传感器采集的信号通常都非常微弱,必须放大到一定程度,才能利用计算机处理,因此各种放大电路也就是工程师们必须熟练掌握的电路。但是在实际工作中,模拟电路往往并没有引起工程师们的足够重视。有鉴于此,本书将模拟电路中的常用电路的设计、计算、仿真及制作做一个归纳,供工程师及电子爱好者参考。 第一章二极管及其应用电路 1.1整流二极管及其应用电路 1.1.1二极管半波整流及电容滤波电路 1)二极管半波整流电路 最简单的二极管整流电路是二极管半波整流电路,其电路原理如图1.1所示。半波整流电路的计算参数主要有如下: V L=0.45V1 V D=V1 I L=V L/R L=0.45V1/R L 2)二极管半波整流电容滤波电路 二极管半波整流电容滤波电路如图1.2所示。半波整流电容滤波电路的计算参数主要有如下: V L=0.6V2 V D=V2 I L=V L/R L=0.6V2/R L 半波整流电路由于其纹波太大,应用较少,但在对电压要求不高时,由于其电路简单,仍然有一些应用,特别在输入交流电压的频率较高时,应用不少。 电路图1.1和电路图1.2仿真如图1.3及1.4所示。

D1 RL V1XSC1 A B Ext Trig + +_ _+_ 二极管半波整流电路简单,只要二极管极性注意不接反就行。 1.1.2二极管全波整流电路 1)二极管全波整流电路 常见的二极管全波整流电路如图1.5所示。全波整流电路的计算参数主要有如下: V L =0.9V 1 V D =2V 1 I L =V L /R L =0.9V 1/R L 全波整流电路需用一个双绕组变压器,通过二极管D1、D2将变压器次级电压V1整流变成两个同向的半波整流电压在RL 上合成为一个全波整流电压,其仿真波形图如图1.7所示。 2)二极管全波整流电容滤波电路 图1.1二极管半波整流电路图1.2二极管半波整流电容滤波电路 图1.3图1.1仿真输出电压波形图1.4图1.2仿真输出电压波形 图1.5全波整流电路

模拟乘法器

沈阳大学科技工程学院 模拟乘法器 1.课程设计目的 随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。 在本次课程设计实验中,通过对高频电子线路的振幅调制与解调,模拟乘法器的学习设计出由双差分对乘法器为主构成的乘法器常规调幅电路,通过对电路的设计,参数的确定,设计出了方案,按照设计的电路图在Multisim 仿真软件中画出具体的仿真电路图并进行了调试,观察实验结果并与课题要求的性能指标做了对比,最后对实验结果经行了分析总结。 2.设计方案论证 2.1 乘法器常规调幅的设计作用 随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。用集成模拟乘法器可以构成性能优良的调幅和解调电路,其电路元件参数通常采用器件典型应用参数值。作调幅时,高频信号加到输入端,低频信号加到Y 输入端;作解调时,同步信号加到X 输入端,已调信号加到Y 输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。 2.2乘法器常规调幅设计 调制就是指携带有用信息的调制信号去控制高频载波信号解调是调制的逆过程,将有用的低频信号从高频载波中还原出来。调幅过程是非线性变换的过程。 普通调幅是用需传送的信息(调制信号))(t u Ω去控制高频载波)(t u c 的振幅,使其随调制信号)(t u Ω的规律而变化。 调幅时,载波的频率和相位不变,而振幅将随调制信号线性变化。若载波信号为 t U t u c cm c ωcos )(=,调制信号为)(t u Ω。则普通调幅波的振幅为: )()(t u k U t U a cm cm Ω+=

相关主题
文本预览
相关文档 最新文档