模拟乘法器及其应用
- 格式:ppt
- 大小:1.25 MB
- 文档页数:26
第六章集成模拟乘法器及其应用内容简介集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于电子测量仪表、通信系统,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
知识教学目标了解集成模拟乘法器的基本工作原理和单片集成模拟乘法器的简单应用。
技能教学目标会进行模拟乘法器调幅电路的调整和测试。
本章重点集成模拟乘法器的基本特性。
本章难点集成模拟乘法器的基本运算电路。
6.1 集成模拟乘法器6.1.1 集成模拟乘法器的基本工作原理一、模拟乘法器的基本特性模拟乘法器的电路符号如图6.1.1所示,它有两个输入端、一个输出端。
若输入信号为ux 、uY,则输出信号uo为式中,K称为乘法器的增益系数,单位为V-1。
图6.1.1 模拟乘法器电路符号根据乘法运算的代数性质,乘法器有四个工作区域,由它的两个输入电压的极性来确定,并可用X—Y平面中的四个象限表图。
能够适应两个输入电压四种极性组合的乘法器称为四象限乘法器;若只对一个输入电压能适应正、负极性,而对另一个输入电压只能适应一种极性,则称为二象限乘法器;若对两个输入电压都只能适应一种极性,则称为单象限乘法器。
式(6.1.1)表示,一个理想的乘法器中,其输出电压与在同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。
对于一个理想的乘法器,当ux 、uY中有一个或两个都为零时,输出均为零。
但在实际乘法器中,由于工作环境、制造工艺及元件特性的非理想性,当ux=0,u Y =0时,u≠0,通常把这时的输出电压称为输出失调电压;当ux=0,uY≠0(或u Y =0,u x ≠0)时,u 0≠0,称这时的输出电压为u Y (或u x )的输出馈通电压。
输出失调电压和输出馈通电压越小越好。
此外,实际乘法器中增益系数K 并不能完全保持不变,这将引起输出信号的非线性失真,在应用时需加注意。
模拟乘法器及其应用学院:信息工程专业班级:电信1206姓名:李嘉辛学号: 0121209310603摘要模拟乘法器是一种普遍应用的非线性模拟集成电路。
模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。
它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
Analog multiplier is a kind of widely used nonlinear analog integrated circuits.Analog multiplier can be achieved between two unrelated analog multiplication function.It is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and processing.In the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication process.The function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.一、实验目的1.了解模拟乘法器的工作原理2.掌握利用乘法器实现AM调制、DSB调制、同步检波、倍频等几种频率变换电路的原理3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,通过MATLAB掌握对AM调制、DSB调制、同步检波、倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。
第6章模拟乘法器及其应用6・1变跨导型模拟乘法器6.2单片模拟乘法器6.3乘法器应用6.1变跨导型模拟乘法器1U T )、、纤1丄2 (2 U 丁丿变跨导型模拟乘法器原理电路如图6-1所示,它是一个具有恒流源的差动放大器,只是厶受输入电压竹控制,约控制V3 管的集电极电流厶,即1o ~式中,A 为V3的跨导。
■i + tk2U T )( 1 \1+丄.生2 U T )上面各式近似条件是1如2内。
差动电路的跨导为_ di c8m_ du x 2U T 2U T这样,差动电路的输出电压为c cl c2乞〜 ---------------Q Irytk2U T° 2U T差动电流■为AR C-^u x u y=A{u x u y冷=g m R c^X作为实用乘法器而言,它存在下列三个问题:(1)由于控制厶的输入电压约必须是单极性的,所以基本电路称作两象限乘法器,即如,约均为正或纵为负、约为正。
如果希望◎纬均可正可负,则就会有更大的实用意义。
为此,必须解决四象限相乘问题。
(2)线性范围太小。
为此,必须引入线性化措施,以扩大线性范围。
(3)相乘增益A】与内有关,即儿与温度有关,需要解决温度引起的不稳定性问题。
6.1.2双差动乘法器R Rc _ + c%+ 6u y—o-\T\T XTHI X34厂6厂L一 仇34‘51 +假定晶体管V]〜V6的特性相同,组成三个差分对管,其中V3, V4和V5、V6组成集电极交叉连接的双差分对,由输入电压棘控制; V], V2组成的差分对由输入电压约控制,并给V3, V4和V5, V6提供电流厶和厶。
根据差动电路的原理,可以列出u1 —2U T( 、 1-加厶I2t/J)‘u 1-th —2U(Ux 2U r %> (6-7)1三5=f1 +1 +也上^I 25丿第宀章集咸栈叙乗诙器及其疹< ' 总差动输出电流心为ic =(4 - h = (,3 + J 一 °4 +‘6)输出电皿为娱卫严IE 詮h 益当输入电压足够小,即件竹均小于50mV 时,贝【JI ()R rA .UZ Q —2 U x Uy 二 A U x Uy心斗1UT式中r4[/ —为双差动乘法器的相乘增益;I Q th2U Tth2U T第氏章集战議叙乘诙器及其疹生6.1.3线性化变跨导乘法器:"第耳章集咸模叙乘该器及漠拓L_ “_…-一二—假定V DI ,V D 2及V]A ,V]B 都是匹配的,则预失真网络输出电压%为Av U ^ 1 +U 天—I^DI — U D 2 ~ Tl\B ]—1。
模拟乘法器的原理及应用1. 引言模拟乘法器是一种电子器件,可以对输入的两个模拟信号进行乘法运算。
它在电子领域中具有广泛的应用,例如在模拟信号处理、功率管理、通信系统等方面。
本文将介绍模拟乘法器的原理和常见的应用场景。
2. 模拟乘法器的原理模拟乘法器的原理基于模拟电路中的乘法运算。
它通常由两个输入端和一个输出端组成。
输入端接收两个模拟信号,输出端输出两个输入信号的乘积。
模拟乘法器的核心部件是乘法单元。
乘法单元通常采用差分放大器、电流镜等元件构成,利用其特性进行模拟信号的乘法运算。
差分放大器可以将输入信号相乘,并输出其结果。
模拟乘法器还可能包含其他辅助元件,例如补偿电路、滤波器等。
补偿电路用于提高乘法器的线性度和带宽,滤波器用于滤除输出信号中的噪声和杂散信号。
3. 模拟乘法器的应用3.1 信号处理模拟乘法器在信号处理领域中有广泛的应用。
它可以用于信号调制、混频、频谱分析等方面。
例如,在无线通信系统中,模拟乘法器可以用于调制信号到指定的载波频率,实现信号的传输和接收。
3.2 功率管理模拟乘法器在功率管理中也扮演重要角色。
例如,它可以用于电源管理芯片中的电压调整功能。
通过控制乘法器的输入信号,可以实现对输入电压的调整和电源效率的优化。
3.3 通信系统在通信系统中,模拟乘法器常用于解调、调制和调节信号功率等功能。
例如,在调制解调器中,模拟乘法器可以将数字信号转换为模拟信号,并通过调制器将其传输到目标设备。
3.4 音频处理模拟乘法器在音频处理中也有一定的应用。
例如,在音频混合器中,模拟乘法器可以将多个音频信号进行混合和调整,实现音频效果的增强和处理。
4. 模拟乘法器的发展趋势随着电子技术的不断发展,模拟乘法器也在不断演进和改进。
在新一代模拟乘法器中,更加关注功耗和带宽的优化。
同时,模拟乘法器的精度和速度也在不断提高。
5. 结论模拟乘法器是一种重要的电子器件,具有广泛的应用领域。
本文介绍了模拟乘法器的原理和常见的应用场景。