五年级奥数第01讲
- 格式:doc
- 大小:597.00 KB
- 文档页数:5
小学数学奥数基础教程(五年级)木教程共30讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们己经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1把+, X,:四个运算符号,分别填入下面等式的。
内,使等式成立(每个运算符号只准使用一次):(501307) O (1709) =12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定的位置。
当“:”在第一个O内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一利填法,不合题意。
(5913-7) X (17+9) o当在第二或第四个O内时,运算结果不可能是整数。
当在第三个。
内时,可得下面的填法:(5+13X7) 4- (17-9) 二12。
例2将1〜9这九个数字分别填入下式中的口中,使等式成立:口口□ X □ □=□ □ X □ □=5568o解:将5568质因数分解为5568=2X3X29。
由此容易知道,将5568 分解为两个两位数的乘积有两种:58X96和64X87,分解为一个两位数与一个三位数的乘积有六种:12X464, 16X348, 24X232,29X192, 32X174, 48X116。
显然,符合题意的只有下面一种填法:174X32=58X96=5568o例3在443后面添上-•个三位数,使得到的六位数能被573整除。
9 6口口5 3 4r~ oo3 b 8 9)3 3口2 6 7分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。
由4430004-573=773 (71)推知,443000+(573-71)二443502 一定能被573整除,所以应添502。
例4己知六位数33口口44是89的倍数,求这个六位数。
小学奥数基础教程(五年级)第1讲数字迷(一) 第16讲巧算24第2讲数字谜(二) 第17讲位置原则第3讲定义新运算(一) 第18讲最大最小第4讲定义新运算(二) 第19讲图形得分割与拼接第5讲数得整除性(一) 第20讲多边形得面积第6讲数得整除性(二) 第21讲用等量代换求面积第7讲奇偶性(一) 第22讲用割补法求面积第8讲奇偶性(二) 第23讲列方程解应用题第9讲奇偶性(三) 第24讲行程问题(一)第10讲质数与合数第25讲行程问题(二)第11讲分解质因数第26讲行程问题(三)第12讲最大公约数与最小公倍数(一) 第27讲逻辑问题(一)第13讲最大公约数与最小公倍数(二) 第28讲逻辑问题(二)第14讲余数问题第29讲抽屉原理(一)第15讲孙子问题与逐步约束法第30讲抽屉原理(二)第1讲数字谜(一)数字谜得内容在三年级与四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及得知识多,思考性强,所以很能锻炼我们得思维。
这两讲除了复习巩固学过得知识外,还要讲述数字谜得代数解法及小数得除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式得○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果就是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”得位置。
当“÷”在第一个○内时,因为除数就是13,要想得到整数,只有第二个括号内就是13得倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能就是整数。
当“÷”在第三个○内时,可得下面得填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中得□中,使等式成立:□□□×□□=□□×□□=5568。
尾数和余数【名师解析】自然数末尾的数字称为自然数的尾数;除法中,被除数减去商与除数积的差。
尾数与余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。
【例题精讲】例1、写出除333后余3的全部两位数。
练习、317除以一个两位数后余数是2,符合条件的两位数有哪些?例2、9519...999个⨯⨯⨯⨯积的个位数字是几?练习、61201161...616161个⨯⨯⨯⨯积的尾数是几?例3、 64...4444100÷个,当商是整数时,余数是多少?练习、1355 (5555)2001÷个,当商是整数时,余数是多少?例4、有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。
这一列数中第2001个数除以4,余数是多少?练习、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。
在这一串数字中,第1991个数被3除,所得的余数是几?例5、已知,甲数除以9余7,乙数除以9余5,甲数比乙数大。
(1)甲、乙两数的和除以9余数是几?(2)甲、乙两数的差除以9余数是几?(3)甲、乙两数的积除以9余数是几?练习、甲数除以5余3,乙数除以5余2,甲数比乙数大,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?例6、有一个自然数,用它分别去除70,98,143,都有余数(余数不为0),三个余数的和是25。
这个数是。
练习、有一个自然数,用它分别去除63,80,32都有余数,得到的三个余数的和是10,这个数是。
【选讲】有一个(大于1)数,除122,148,187得到相同的余数,这个数是。
练习、某个大于1的自然数分别去除442,297,210得到相同的余数,则该自然数是 。
【综合精练】1、写出除349后余4的全部两位数。
2、写出除1095后余3的全部三位数。
3、)3631(50)3631(...)3631()3631(⨯⨯⨯⨯⨯⨯⨯个积的尾数是几?4、9919...999个⨯⨯⨯⨯积的个位数是多少?5、下列各小题中,当商是整数时,余数各是多少?(1)46...666650÷ 个 (2)78 (8888)80÷个(3)744...44441000÷ 个 (4)51 (1111)1000÷个6、把71化成小数,那么小数点后面第100位上的数字是多少?7、一列数1,2,4,7,11,16,22,29,...。
⼩学五年级奥数讲义(教师版)30讲全⼩学奥数基础教程(五年级)第1讲数字迷(⼀)第16讲巧算24第2讲数字谜(⼆) 第17讲位置原则第3讲定义新运算(⼀) 第18讲最⼤最⼩第4讲定义新运算(⼆) 第19讲图形的分割与拼接第5讲数的整除性(⼀) 第20讲多边形的⾯积第6讲数的整除性(⼆) 第21讲⽤等量代换求⾯积第7讲奇偶性(⼀)第22讲⽤割补法求⾯积第8讲奇偶性(⼆)第23讲列⽅程解应⽤题第9讲奇偶性(三)第24讲⾏程问题(⼀)第10讲质数与合数第25讲⾏程问题(⼆)第11讲分解质因数第26讲⾏程问题(三)第12讲最⼤公约数与最⼩公倍数(⼀)第27讲逻辑问题(⼀)第13讲最⼤公约数与最⼩公倍数(⼆)第28讲逻辑问题(⼆)第14讲余数问题第29讲抽屉原理(⼀)第15讲孙⼦问题与逐步约束法第30讲抽屉原理(⼆)第1讲数字谜(⼀)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少⽅法。
例如⽤猜想、拼凑、排除、枚举等⽅法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及⼩数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填⼊下⾯等式的○内,使等式成⽴(每个运算符号只准使⽤⼀次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应⾸先确定“÷”的位置。
当“÷”在第⼀个○内时,因为除数是13,要想得到整数,只有第⼆个括号内是13的倍数,此时只有下⾯⼀种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第⼆或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下⾯的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填⼊下式中的□中,使等式成⽴:□□□×□□=□□×□□=5568。
从课本到奥数(五年级)第一讲小数的简便运算简便运算,就是用比较简捷、巧妙的方法计算出算式的得数。
一道计算题的简便算法常常不止一种。
小数的简便运算一般分为两个方面:(1)利用加、减、乘、除法的运算性质巧算;(2)巧用特殊数之间四则运算时表现出的一些特性巧算。
计算时,仔细观察算式的特点,观察算式中数与数之间的关系,确定正确的简便运算方法,简捷、巧妙地计算出算式的得数。
难题点拨①计算:⑴0.125×400 ⑵2.5×10.8点拨:观察上面两道算式,算式⑴中,400可以写成8×50:算式⑵中,10.8可以写成10+0.8。
这两道题都可以利用特殊数之间四则运算时表现出的一些特殊巧算。
0.125×400 =0.125×8×50=1×50=50 2.5×10.8=2.5×(10+0.8)=2.5×10+2.5×0.8=25+2=27想一想做一做1.0.125×96=0.125×(100-4)=0.125×100-0.125×4 =12.5-0.5 =12 2.1.25×88=1.25×(80+8)=1.25×80+1.25×8=100+10=1103. 0.25×40.4 =0.25×(40+0.4)=12.5×(10+0.8) =0.25×40+0.25×0.4 =10+0.1 =10.14. 12.5×10.8= 125+10=135难题点拨②计算: 199.7×19.98-199.8×19.96点拨:观察算式发现,19.98扩大到它的10倍就是199.8,因此我们先将减号前面的部分写成19.97×199.8,再利用乘法的分配律巧算。
五年级奥数完整教案奥数第一讲巧算小朋友,你是不是在日常生活和解答数学问题时,经常要进行计算?在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法哦,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
一、计算:9.996+29.98+169.9+3999.5解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。
当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376二、计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02—0.01=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)=0.04×25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01 =1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)=1三、计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
五年级上册奥数第一讲 循环与周期1、你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组的第20个图形是什(1)○△○△○△○△○△……(2)○□□○□□○□□○……(3)○○◇◇○○◇◇○○……2、流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再次5红,4黄,3绿,2黑,1白,……继续下去,第2000个小球是什么颜色?3、有一列数:5、6、2、4、5、6、2、4……(1)第129个数是多少?(2)这129个数相加的和是多少?7、把1/7化为循环小数,问小数点后第1999个数字是几?这1999个数字总和是几?9、(1)求19943的尾数。
(2)求1001100210033719⨯⨯的尾数。
(3)求13712131712+-的尾数。
10、(1)求111……111(1994个1)除以13所得的余数是多少?(2)已知a=19911991……1991,则a除以13所得的余数是多少?1993除以7所得的余数是多少?11、求1994第二讲容斥原理1、502班学生报名参加课外活动小组,每人都报名参加。
统计的结果是:参加作文小组的有39人,参加数学小组的有32人,作文、数学小组都参加的有26人。
那么这个班共有学生多少人?2、503班在期末考试中语文得优秀的有12人,数学得优秀的有18人,老师请行优秀的同学都举手,数了数,只有25人。
两科都得优秀的有多少人?3、一个车间有80个工人,其中每个工人或者会骑自行车,或者会游泳,或者两样都会。
现在知道会骑自行车的有65人,会骑自行车又会游泳的有30人,问会游泳的有多少人?4、501班有48名学生,在一节自修课上,做完语文作业的有30人,做完数学作业的有20人,语文、数学都做完的有6人。
求语文、数学都没做完的有多少人?5、在1~1000的1000个自然数中,能被5或7整除的共有多少个?6、505班参加体育活动的学生有25人,参加音乐活动的有26人,参加美术活动的有24人,同时参加体育、音乐活动的有16人,同时参加音乐、美术活动的有15人,同时参加美术、体育活动的有14人,三个活动都参加的有5人。
小学五年级上册数学奥数知识点讲解第1课《数的整除问题》试题附答案
答案
五年级奥数上册:第一讲数的整除问题习题解答
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。
可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第20讲行程问题讲义专题简析行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1、甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?练习1.甲、乙两汽车同时从两地出发,相向而行。
甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米处相遇。
求两地之间的路程是多少千米?2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米。
求A、B两城之间的距离?3.下午放学时,小红从学校回家,每分钟走100米,同时,妈妈也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习1.兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗全部给五(1)班的同学去植,平均每人植多少棵树?例3、甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?练习1.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
1
⑴将假分数化成带分数:83,257,8711
⑵将带分数化成假分数:234,1518,715
分数基本性质及简单运算
★★
2
将下列分数约分:1221,1684,911001
★★
3
将下列各组分数通分:⑴45和37;⑵913和739
计算下列各式:2747111111=________;1273528=________。
★★★
★★
4
计算下列各式:15495660=________;481317=________。
★★★
5
在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
例1 ★★
⑴把下列假分数化为带分数
87,5623,2011
2008
⑵把下列带分数化为假分数
135,367,1
1
2007
A.⑴117,10223,312008;⑵165,457,20082007
B.⑴117,6223,312008;⑵165,457,20082007
C.⑴117,10223,312008;⑵165,457,20092007
D.⑴217,10223,312008;⑵165,457,20082007
例2 ★★
把下面分数化成最简分数: 1537,12111。
A.11,43 B.25,311 C.51,43 D.
31
,
43
例3 ★★
将下列分数通分:1345和
A.452020和 B.5122020和 C.4152020和 D.
510
2020
和
例4★★★
计算下列各式:
39
711
( );3573645( )
A.9677,147185 B.9677,4760 C.8677,147180 D.9677, 147180
例5 ★★★
我们来看看分数的乘除法
计算下列各式: 28157549( ), 315711( )。
A.435,1135 B.635,1528 C.477,177 D.335,1135