人教版小学数学五年级奥数训练第40讲 综合题
- 格式:doc
- 大小:37.00 KB
- 文档页数:6
第1讲和差倍问题1.甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米?2.甲乙两个仓库共运进货物1260吨,如果从甲仓库调出120吨货物到乙仓库,则两个仓库的货物一样多,求甲乙两仓库原来运进货物各多少吨?3.甲乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨?4.用80米长的铁丝网靠墙围一个长方形的场地(靠墙的一面不用铁丝网),对着墙的一面是长,长比宽多20米,求这块长方形场地的面积是多少?5.甲乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生多少人?6.甲乙两个工程队共1980人,甲队为了支援乙队,抽出285人调入乙队,这时乙队人数还比甲队少24人,求甲乙两队原有工人多少人?7.甲乙两数的差及商都等于6,那么甲、乙两数的和等于多少?8.一篮苹果比一篮桔子重40千克,苹果重量是桔子的5倍,苹果、桔子各有多少千克?9.小红铅笔的支数是小明的2倍,她从中拿出15支捐给了希望工程,正好是小红小明支数的总和的一半,小红原有铅笔多少支?10.学校图书馆有文艺书与科技书共605本,文艺书的本数比科技书的3倍多50本,图书馆有文艺书和科技书各多少本?11.禽养场今年养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场今年的鸡鸭各多少只?12.姐姐和妹妹共做了340朵小红花,后来姐姐把她做的红花送给了小明30朵,妹妹自己又做了20朵,这时姐姐做的小红花是妹妹的5倍。
问原来姐姐,妹妹各做了多少朵红花?13.甲乙两数的差是9,甲数的1/6和乙数的1/4相等,甲数是多少?乙数是多少?14.已知大小两个数的差是5.49,将较大数的小数点向左移动一位,就等于较小数。
较大的数是多少?较小的数是多少?15.有两筐苹果,如果从第一筐拿出9个放到第二筐,两筐苹果个数相等;如果从第二筐拿出12个放到第一筐,则第一筐苹果的个数等于第二筐的2倍。
新人教五年级上册总复习奥数题精选姓名:学校:班级分数:1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。
那么有多少人两个小组都不参加?2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。
那么语文成绩得满分的有多少人?3、50名同学面向老师站成一行。
老师先让大家从左至右按1,2,3, (49)50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。
问:现在面向老师的同学还有多少名?4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。
按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。
那么游艺会为该项活动准备的奖品铅笔共有多少支?5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。
问绳子共被剪成了多少段?答案:1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=344,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=2275,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90例1 有4堆外表上一样的球,每堆4个。
《数学小学三年级奥数专题》第40讲一题多解一、专题简析:一题多解是指从不同角度,运用不同的思维方式来解答同一道题的思考方法,经常进行一题多解的训练,可以锻炼我们的思维,使头脑更灵活。
在进行一题多解的练习时,要根据题目的具体情况,首先确定思维的起点,然后沿着不同的思考方向,就能找到不同的解题方法。
在寻求一题多解时,还应该特别选择解决问题的简便方法和最佳途径。
二、精讲精练例1:有一个正方形池塘,四周种树,每边种8棵,每个顶点种一棵,每两棵树之间距离都相等。
四周一共种了多少棵树?练习1、在一个正方形的菜地四周围篱笆,每个顶点插一根,每两根篱笆之间的距离相等,每边有12根篱笆,四周一共围了多少根篱笆?2、有一个三角形花圃周围种松树,每个顶点种一棵,每边种10棵,每两棵之间距离相等,周围一共种了多少棵?例2:一瓶花生油连瓶一共重800克,吃掉一半油,连瓶一起称,还剩550克。
瓶里原有多少克油?空瓶重多少克?练习二1、一袋大米,连袋共重50千克。
吃掉一半后,连袋剩下26千克。
大米重多少千克?袋重多少千克?2、一筐苹果连筐共重85千克,倒去一半后,连筐共重45千克。
苹果和筐各重多少千克?例3:甲班有42人,乙班有35人,开学时来了25位新同学,怎样分才能使两班学生人数相等?练习三1、小明有18枝铅笔,小红有15枝铅笔,妈妈又买来13枝铅笔,怎样分,才能使两人铅笔一样多?2、甲仓库有粮食420吨,乙仓库有粮食370吨,又运来粮食180吨,怎样分,才能使两仓库粮食一样多?例4:从小青家经小红和小强家到学校有450米,从小青家到小强家有390米,从学校到小红家有320米。
从小红家到小强家有多少米?练习四1、亮亮经过小明、小丹家到电影院共500米,从亮亮家到小丹家是270米,从小明家到电影院是410米。
从小明家到小丹家多少米?2、小敏外出旅游乘车回家,从汽车站经医院、商店到家共1000米,从汽车站到商店是620米,从医院到家是690米。
小学五年级奥数题试卷及答案50题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学五年级奥数题试卷及答案50题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学五年级奥数题试卷及答案50题(word版可编辑修改)的全部内容。
小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件.当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
(完整版)⼩学五年级奥数题及答案(附精讲)⼩学五年级奥训练题及答案(精讲)⼀、⼯程问题1.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。
现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。
⼄单独做完这件⼯作要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。
如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。
现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。
已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。
单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。
甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。
现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?⼆.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数⽐兔的腿数少28条,,问鸡与兔各有⼏只?三.数字数位问题1.把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是⼩于100的两个⾮零的不同⾃然数。
小学奥数举一反三五年级1 40完整版小学奥数举一反三五年级1-40完整版小学数学奥林匹克一对三和五年级1-40完整版目录第1课平均数第2课平均数第3课矩形和正方形的周长第4课矩形和正方形的面积第10课图形的数量。
5 14第6课尾数和余数18第7课一般应用问题(I)20第8课一般应用问题(II)23第9课一般应用问题(III)26第10课数字矩阵29第11课周期问题33第12课损益问题36第13课长方体和立方体(I)39第14课长方体和立方体(II)42课15长方体和立方体(III)44第16课多重问题(I)47第17课多重问题(II)50第18课组合图形区域(I)53第19课组合图形区域57第20课关于数字的有趣问题61第21课错误尝试解决问题64第22课通过绘图解决问题67第23课分解质量因子分解质量因子最大公约数最小公倍数(I)77最小公倍数(II)80行程问题(I)83行程问题(II)86行程问题(III)89行程问题(IV)92公式之谜包含和排除(包含和排除原则)97第34课替换问题100第35课估价问题103第37课简单列表109第38课最大和最小问题112第39课推理问题115第40课杂项主题118第1讲平均数(一)专题分析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系来解决一些稍微复杂的问题?必须记住以下数量关系:平均数=总数量÷总份数总数量=平均数×总份数=总份数×平均数例1.有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?变异训练一.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2.四个人,a、B、C和D,体重120公斤。
三个人,a、C和D,体重126公斤。
第三十一讲分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。
分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。
分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。
例1 一块正方体木块,体积是1331立方厘米。
这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。
例2 一个数的平方等于324,求这个数。
(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。
例3 相邻两个自然数的最小公倍数是462,求这两个数。
(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。
*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC 是一个三位数。
求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。
1673=239×7答:ABC代表239。
例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。
2304=2×2×2×2×2×2×2×2×3×3=(2×2×2×2×3)×(2×2×2×2×3)=48×48正方形的边长是48米。
人教版五年级下册数学奥数题带答案图文百度文库一、拓展提优试题1.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.2.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.3.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.4.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.5.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)6.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.7.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.8.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.9.用0、1、2、3、4这五个数字可以组成个不同的三位数.10.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.11.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.12.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.13.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.14.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.15.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).16.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.17.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.18.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.19.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.20.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.21.数一数,图中有多少个正方形?22.(15分)如图,正六边形ABCDEF 的面积为1222,K 、M 、N 分别AB ,CD ,EF 的中点,那么三角形PQR的边长是 .23.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A ,B ,C 满足:①A +B +C =79②A ×A =B ×C 那么,这个自然数是 .24.已知13411a b -=,那么()20132065b a --=______。
第40讲综合题
一、专题简析:
本周的题目与前面有所区别,种类繁多,题型各异,综合性较强,所用的知识较杂,有的题目需要涉及一些解题技巧。
因此,解答以下的题目时需要多动脑筋,展开联想,灵活运用各种知识和方法。
二、精讲精练
例1 甲、乙两人进行3000米长跑,甲离终点还有5000米时,乙距终点还有600米。
照这样跑下去,当甲到达终点时,乙距终点还有多少米?
练习一
1、在1000米赛跑中,当甲离终点100米时,乙离终点190米。
照这样计算,当甲到达终点时,乙离终点还有多少米?
2、甲、乙、丙三人进行100米赛跑,当甲到达终点时,乙离终点还有10米,丙落后乙10米。
照这样的速度,当乙到达终点时,丙离终点还有多少米?
例2 豹子和狮子进行100米往返比赛。
豹子一步3米,狮一步2米,但豹子跑2步的时间狮子跑3步。
谁获胜?
练习二
1、甲、乙、丙三人进行60米赛跑,当甲到达终点时,比乙领先10米,比丙领先20米。
如果按原速前进,当乙到达终点时,将比丙领先多少米?
2、甲走2步的距离乙要走5步,甲走3步的时间乙可以走8步。
他们谁走得快?
例3有一口9米深的井,蜗牛和乌龟同时从进底向上爬。
因为井壁滑,蜗牛白天向上爬2米,晚上向下滑1米;乌龟白天向上爬3米,晚上向下滑1米。
当乌龟爬到井口时,蜗牛距井口多少米?
练习三
1、一只蜗牛从9米深的井底向上爬,白天向上爬5米,晚上又退下4米。
这只蜗牛几天几夜才能爬到井口?
2、从1000里减去125,加上120,再减去125,加上120……,按这样的方式进行运算,当运算结果为0时,一共减去了多少个125?
例4 把盒中200只红球进行调换。
每次调换必须首先从盒中取出3只红球,然后再放入2只白球。
那么,在最后一次调换之前盒中的球数是多少?
练习四
1、玩具箱里有100块长方体积木,每次拿出3块长方体积木,再放进2块正方体积木。
如此交换下去,在最后一次交换之前,箱里一共有多少块积木?
2、盒子里有黑、白棋子各40粒。
每次取出3粒白的,放进2粒黑的,经过多少次取放后,盒中的黑棋子是白棋子的2倍?
例5 给一本书编上页码共要用789个数字,这本书有多少页?
练习五
1、给一本书编页码,从第1页编到300页,一共要用多少个数字?
2、给一本书编页码,一共用了1179个数字,这本书有多少页?
三、课后作业:
1、甲、乙两车同时从A城出发开往270千米处的B城,甲车每小时行45千米,乙车每小时行40千米。
出发4小时后乙车加速,结果两车同时到达B地。
乙车后来每小时行多少千米?
2、B处的兔子和A处的狗相距56米,狗跑3次的时间与兔子跳4次的时间相同。
兔子跳出112米的C处被狗追上。
兔子一跳前进多少米?
3、盒子中有棋子若干粒。
从中取出3粒,再接着放进5粒。
当取了18次3粒而第18次还没有放进5粒时,盒中有棋子100粒。
盒中原来有棋子多少粒?
4、盒子里的白球个数是红球的3倍,每次从盒里取2个白球和2个红球,取若干次后红球正好取完,而白球还有32个。
原来盒里共有多少个球?
5、编一本童话书的页码刚好用去183个数字,被弟弟撕去4张纸后,留下的页码还有175个数字。
被撕掉的是哪几页?。