分析化学中的误差及数据处理(精)
- 格式:doc
- 大小:2.00 MB
- 文档页数:18
第二章 误差和分析数据处理(课后习题答案)1. 解:①砝码受腐蚀:系统误差(仪器误差);更换砝码。
②天平的两臂不等长:系统误差(仪器误差);校正仪器。
③容量瓶与移液管未经校准:系统误差(仪器误差);校正仪器。
④在重量分析中,试样的非被测组分被共沉淀:系统误差(方法误差);修正方法,严格沉淀条件。
⑤试剂含被测组分:系统误差(试剂误差);做空白实验。
⑥试样在称量过程中吸潮:系统误差;严格按操作规程操作;控制环境湿度。
⑦化学计量点不在指示剂的变色范围内:系统误差(方法误差);另选指示剂。
⑧读取滴定管读数时,最后一位数字估计不准:偶然误差;严格按操作规程操作,增加测定次数。
⑨在分光光度法测定中,波长指示器所示波长与实际波长不符:系统误差(仪器误差);校正仪器。
⑩在HPLC 测定中,待测组分峰与相邻杂质峰部分重叠:系统误差(方法误差);改进分析方法。
2. 答:表示样本精密度的统计量有:偏差、平均偏差、相对平均偏差、标准偏差、相对标准偏差。
因为标准偏差能突出较大偏差的影响,因此标准偏差能更好地表示一组数据的离散程度。
3. 答:定量分析结果是通过一系列测量取得数据,再按一定公式计算出来。
每一步测量步骤中所引入的误差都会或多或少地影响分析结果的准确度,即个别测量步骤中的误差将传递到最终结果中,这种每一步骤的测量误差对分析结果的影响,称为误差传递。
大误差的出现一般有两种情况:一种是由于系统误差引起的、另一种是偶然误差引起的。
对于系统误差我们应该通过适当的方法进行改正。
而偶然误差的分布符合统计学规律,即大误差出现的概率小、小误差出现的概率大;绝对值相等的正负误差出现的概率相同。
如果大误差出现的概率变大,那么这种大误差很难用统计学方法进行处理,在进行数据处理时,就会传递到结果中去,从而降低结果的准确性。
4. 答:实验数据是我们进行测定得到的第一手材料,它们能够反映我们进行测定的准确性,但是由于“过失”的存在,有些数据不能正确反映实验的准确性,并且在实验中一些大偶然误差得到的数据也会影响我们对数据的评价及对总体平均值估计,因此在进行数据统计处理之前先进行可疑数据的取舍,舍弃异常值,确保余下的数据来源于同一总体,在进行统计检验。
2.6 分析化学中的误差定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。
在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。
即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。
同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。
这表明,在分析过程中,误差是客观存在,不可避免的。
因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。
2.6.1 误差与准确度分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。
准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。
误差又可分为绝对误差(absolute error )和相对误差(relative error )。
绝对误差(E )表示测定值(x )与真实值(x T )之差,即E =x - x T (2-13)相对误差(E r )表示误差在真实值中所占的百分率,即 %100Tr ⨯=x E E (2-14)例如,分析天平称量两物体的质量分别为1.6380 g 和0.1637 g ,假设两物体的真实值各为1.6381 g 和0.1638 g ,则两者的绝对误差分别为:E 1=1.6380-1.638= -0.0001 g E 2=0.1637-0.1638= -0.0001 g两者的相对误差分别为:E r1=%1006381.10001.0⨯-= -0.006% E r2=%1001638.00001.0⨯-= -0.06%由此可见,绝对误差相等,相对误差并不一定相等。
在上例中,同样的绝对误差,称量物体越重,其相对误差越小。
分析化学第六版第3章分析化学中的误差与数据处理及答案work Information Technology Company.2020YEAR第三章分析化学中的误差与数据处理一、判断题(对的打√, 错的打×)1、滴定分析的相对误差一般要求为小于0.1%,滴定时消耗的标准溶液体积应控制在10~15mL。
(B)2、、分析测定结果的偶然误差可通过适当增加平行测定次数来减免。
(A)3、标准偏差可以使大偏差能更显著地反映出来。
(A)4、所谓终点误差是由于操作者终点判断失误或操作不熟练而引起的。
(B)5、测定的精密度好,但准确度不一定高,消除了系统误差后,精密度好,测定结果的准确度就高。
(A)6、置信区间的大小受置信度的影响,置信度越大,置信区间越小。
(B)二、选择题:1、下列论述中错误的是( D )A、方法误差属于系统误差B、系统误差具有单向性C、系统误差又称可测误差D、系统误差呈正态分布2、下列论述中不正确的是( C )A、偶然误差具有随机性B、偶然误差服从正态分布C、偶然误差具有单向性D、偶然误差是由不确定的因素引起的3、下列情况中引起偶然误差的是( A )A、读取滴定管读数时,最后一位数字估计不准B、使用腐蚀的砝码进行称量C、标定EDTA溶液时,所用金属锌不纯D、所用试剂中含有被测组分4、分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称( C)A、0.1000克以上B、0.1000克以下C、0.2克以上D、0.2克以下5、分析实验中由于试剂不纯而引起的误差是( A)A、系统误差B、过失误差C、偶然误差D、方法误差6、定量分析工作要求测定结果的误差 ( C )A、没有要求B、等于零C、在充许误差范围内D、略大于充许误差7、可减小偶然误差的方法是( D )A、进行仪器校正B、作对照试验C、作空白试验D、增加平行测定次数8、从精密度就可以判断分析结果可靠的前提是( B)A、偶然误差小B、系统误差小C、平均偏差小D、标准偏差小9、[0.1010×(25.00-18.80)]/1000结果应以几位有效数字报出( B)A、5B、4C、 3D、210、用失去部分结晶水的Na2B4O7·10H2O标定HCl溶液的浓度时,测得的HCl浓度与实际浓度相比将( B)A、偏高B、偏低C、一致D、无法确定11、pH 4.230 有几位有效数字( B)A、4B、 3C、 2D、 112、某人以差示光度法测定某药物中主成分含量时,称取此药物0.0250g,最后计算其主成分含量为98.25%,此结果是否正确;若不正确,正确值应为( D)A、正确B、不正确,98.0%C、不正确,98%D、不正确,98.2%13、一个样品分析结果的准确度不好,但精密度好,可能存在 ( C )A、操作失误B、记录有差错C、使用试剂不纯D、随机误差大14、某学生用4d法则判断异常值的取舍时,分以下四步进行,其中错误的步骤为( A )A、求出全部测量值的平均值B、求出不包括待检值(x)的平均偏差C、求出待检值与平均值之差的绝对值D、将平均偏差与上述绝对值进行比较15、有一组平行测定所得的分析数据,要判断其中是否有异常值,应采用 ( B )A、t检验B、格鲁布斯法C、F检验D、方差分析16、标定某标准溶液的浓度,其3次平行测定的结果为:0.1023,0.1020,0.1024 mol·L-1。
分析化学中的误差及分析数据的处理分析化学中的误差及分析数据的处理第⼆章分析化学中的误差及分析数据的处理本章是分析化学中准确表达定量分析计算结果的基础,在分析化学课程中占有重要的地位。
本章应着重了解分析测定中误差产⽣的原因及误差分布、传递的规律及特点,掌握分析数据的处理⽅法及分析结果的表⽰,掌握分析数据、分析⽅法可靠性和准确程度的判断⽅法。
本章计划7学时。
第⼀节分析化学中的误差及其表⽰⽅法⼀. 误差的分类1. 系统误差(systematic error )——可测误差(determinate error) (1)⽅法误差:是分析⽅法本⾝所造成的;如:反应不能定量完成;有副反应发⽣;滴定终点与化学计量点不⼀致;⼲扰组分存在等。
(2)仪器误差:主要是仪器本⾝不够准确或未经校准引起的;如:量器(容量平、滴定管等)和仪表刻度不准。
(3)试剂误差:由于试剂不纯和蒸馏⽔中含有微量杂质所引起; (4)操作误差:主要指在正常操作情况下,由于分析⼯作者掌握操作规程与控制条件不当所引起的。
如滴定管读数总是偏⾼或偏低。
特性:重复出现、恒定不变(⼀定条件下)、单向性、⼤⼩可测出并校正,故有称为可定误差。
可以⽤对照试验、空⽩试验、校正仪器等办法加以校正。
2. 随机误差(random error)——不可测误差(indeterminate error)产⽣原因与系统误差不同,它是由于某些偶然的因素所引起的。
如:测定时环境的温度、湿度和⽓压的微⼩波动,以其性能的微⼩变化等。
特性:有时正、有时负,有时⼤、有时⼩,难控制(⽅向⼤⼩不固定,似⽆规律)但在消除系统误差后,在同样条件下进⾏多次测定,则可发现其分布也是服从⼀定规律(统计学正态分布),可⽤统计学⽅法来处理。
⼆. 准确度与精密度(⼀)准确度与误差(accuracy and error)准确度:测量值(x)与真值(,)之间的符合程度。
它说明测定结果的可靠性,⽤误差值来量度:绝对误差 = 个别测得值 - 真实值E=x- , (1) a但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。
第三章 分析化学中的误差及数据处理 本章基本要求: 1 掌握误差和偏差的基本概念、准确度与精密度的概念和衡量其大小的方式;了解误差的分类、特点、产生的原因及其减免测定误差的措施。了解准确度与精密度之间的关系和它们在实际工作中的应用。 2 掌握有效数字的概念、有效数字在分析测定中的应用规则、可疑数据的取舍和有效数字的运算规则。 3 掌握平均值的置信区间的概念和计算;掌握t检验法、F检验法以及Q检验法的应用;了解随机误差的分布特征—正态分布。 4 掌握通过选择合适的分析方法、用标准样品对照、减小测量误差和随机误差、消除系统误差等提高分析结果准确度的方法。
分析人员用同一种方法对同一个试样进行多次分析,即使分析人员技术相当熟练,仪器设备很先进,也不可能做到每一次分析结果完全相同,所以在分析中往往要平行测定多次,然后取平均值代表分析结果,但是平均值同真实值之间还可能存在差异,因此分析中误差是不可避免的。 §3.1 分析化学中的误差 一 真值(xT) 某一物理量本身具有的客观存在的真实值。真值是未知的、客观存在的量。在特定情况下认为是已知的: 1 理论真值(如某化合物的理论组成,例:纯NaCl中Cl的含量) 2 计量学约定真值(如国际计量大会确定的长度、质量、物质的量单位如米、千克等;标准参考物质证书上给出的数值;有经验的人用可靠方法多次测定的平均值,确认消除了系统误差。) 3 相对真值(如认定精确度高一个数量级的测定值作为低一级测量值的真值。(如标准试样(在仪器分析中常常用到)的含量)
二 平均值(x) 12...nxxxxn 强调:n 次测量值的算术平均值虽不是真值,但比单次测量结果更接近真值,是对真值的最佳估计,它表示一组测定数据的集中趋势。
三 中位数 (xM) 一组测量数据按大小顺序排列,中间一个数据即为中位数XM,当测量值的个数位数时,中位数为中间相临两个测量值的平均值。
例1. 小 10.10,10.20,10.40,10.46,10.50 大 x=10.33 xM=10.40
例2. 10.10,10.20,10.40,10.46,10.50,10.54 x=10.37 xM=10.43 它的优点是能简单直观说明一组测量数据的结果,且不受两端具有过大误差数据的影响。例3:当有异常值时, 10.10,10.20,10.40,10.46,10.50,12.80 xM=10.43 x=10.74 很多情况下,用中位数表示“中心趋势”比用平均值更实际。其缺点是不能充分利用数据,因而不如平均值准确。 四 准确度和误差 1 准确度:指测量值与真值之间接近的程度,其好坏用误差来衡量,用相对误差较好。 2 误差(E):测定结果与真实值之间的差值 (1) 绝对误差:测量值与真值间的差值,Ea=x-xT 测量值大于真实值,误差为正误值;测量值小于真实值,误差为负误值。误差越小,测量值的准确度越好;误差越大,测量值的准确度越差。 (2) 相对误差:绝对误差占真值的百分比,Er= x - xT /xT×100%=Ea/xT 100% 相对误差有大小、正负之分,它能反映误差在真实结果中所占的比例,因此在绝对误差相同的条件下,代测组分含量越高,相对误差越小;反之,相对误差越大。 例: 某同学用分析天平直接称量两个物体,一为5.0000g,一为0.5000g, 试求两个物体的相对误差。 解:用分析天平称量,两物体称量的绝对误差均为0.0001g, 则两个称量的相对误差分别为
五 精密度和偏差 1 精密度: 平行测定结果相互靠近的程度,用偏差衡量 2 偏差(d): 测量值与平均值的差值,用 d表示
(1) 绝对偏差:个别测得值x-测得平均值x,即: d=x-x 0di 偏差的大小反映了精密度的好坏,即多次测定结果相互吻合的程度。偏差有正负号,如果将各单次测定的偏差相加,其和应为0或接近为0。
(2) 相对偏差(dr):绝对偏差与平均值的比值,即:dr = d / x 100%
(3)平均偏差(d): 各单个偏差绝对值的平均值 ,即:12...nddddn (4)相对平均偏差(dr):平均偏差与测量平均值的比值,即:dr=d/x 100% (5)标准偏差:21()1niixxSn 强调:1 S是表示偏差的最好方法,数学严格性高,可靠性大,能显示出较大的偏差。 测定次数在3-20次时,可用S来表示一组数据的精密度, 2 式中n-1称为自由度,表明n次测量中只有n-1个独立变化的偏差。因为n个偏差之和等于零,所以只要知道n-1个偏差就可以确定第n个偏差了, 3 S与相对平均偏差的区别在于:第一,偏差平方后再相加,消除了负号,再除自由度和再开根,标准偏差是数据统计上的需要,在表示测量数据不多的精密度时,更加准确和合理。 4 S对单次测量偏差平方和不仅避免单次测量偏差相加时正负抵消,更重要的是大偏差能更显著地反映出来,能更好地说明数据的分散程度。 例:有二组数据,各次测量的偏差为: +0.3,-0.2,-0.4,+0.2,+0.1,+0.4, 0.0,-0.3,+0.2,-0.3; 0.0, +0.1,-0.7,+0.2,-0.1,-0.2,+0.5,-0.2,+0.3,+0.1; 解:两组数据的平均偏差均为0.24,但明显看出第二组数据分散大。因为S1=0.28; S2=0.33 (注意计算S时,若偏差d=0时,也应算进去,不能舍去),可见第一组数据较好。
(6) 相对标准偏差(Sr、RSD、CV):100%rsSx 六 准确度与精密度的关系
A B C D A. 准确且精密 B. 不准确但精密 C.准确但不精密 D.不准确且不精密 结论:准确度高精密度一定高;精密度是保证准确度的前提;精密度好,准确度不一定好,可能有系统误差存在;精密度不好,衡量准确度无意义;在确定消除了系统误差的前提下,精密度可表达准确度;准确度及精密度都高说明结果可靠。 七 极差(R):又称全距或范围误差 ,即:R=xmax-xmin
相对极差 = R/x 100% 八 公差(阅读P45):生产部门对于分析结果允许误差表示法,超出此误差范围为超差,分析组分越复杂,公差的范围也大些。 九 系统误差和随机误差 1.系统误差:由某种固定原因造成,使测定结果系统地偏高或偏低。可用校正地方法加以消除。 特点:(1)单向性:要么偏高,要么偏低,即正负、大小有一定地规律性 (2)重复性:同一条件下,重复测定中,重复地出现; (3)可测性:误差大小基本不变。 来源:(1)方法误差—选择的方法不够完善:重量分析中沉淀的溶解损失、滴定分析中终点误差-用其他方法校正 (2)仪器误差—仪器本身的缺陷: 天平两臂不等,滴定管,容量瓶刻度不准、砝码磨损-校准(绝对、相对) (3)操作误差: 颜色观察(多实践) (4)试剂误差—所用试剂有杂质: 去离子水不合格;试剂纯度不够(含待测组份或干扰离子)-空白实验 (5)主观误差—个人误差,操作人员主观因素造成: 对指示剂颜色辨别偏深或偏浅;滴定管读数不准。 2. 随机误差:由某些不固定偶然原因造成,使测定结果在一定范围内波动,大小、正负不定,难以找到原因,无法测量。不存在系统误差的情况下,测定次数越多其平均值越接近真值。一般平行测定4-6次 特点:(1)不确定性;(2)不可避免性。只能减小,不能消除。每次测定结果无规律性,多次测量符合统计规律。 3.过失:其实质是一种错误,由粗心大意引起,可以避免的,必须重 做 !如:加错指示剂、记录错误等
图1 系统误差与随机误差的比较 项目 系统误差 随机误差
产生原因 固定因素,有时不存在 不固定因素,总是存在
分类 方法误差、仪器与试剂误差、 主观误差 环境的变化因素、主观的变化因素等
性质 重现性、单向性(或周期性)、 可测性 服从概率统计规律、不可测性 影响 准确度 精密度 消除或减小的方法 校正 增加测定的次数
十 误差的传递(自阅) 1 系统误差的传递 (1) 加减法 R =mA+nB-pC ER =mEA+nEB-pEC (2)乘除法 R =mA×nB/pC ER/R =EA/A+EB/B-EC/C (3) 指数运算 R =mAn ER/R =nEA/A (4) 对数运算 R =mlgA ER =0.434mEA/A 2 随机误差的传递 (1)加减法 R =mA+nB-pC sR2 =m2sA2+n2sB2+p2sC2 (2)乘除法 R =mA×nB/pC sR2/R2 = sA2/A2+ sB2/B2+ sC2/C2 (3) 指数运算 R =mAn sR/R =nsA/A (4) 对数运算 R=mlgA sR =0.434msA/A 3 极值误差:最大可能误差 R=A+B-C ER=|EA|+|EB|+|EC| R=AB/C ER/R=|EA/A|+|EB/B|+|EC/C| §3.2 有效数字及运算规则 一 有效数字:实际能测到的数字。在有效数字中, 只有最后一位数是不确定的,可疑的。有效数字位数由仪器准确度决定,它直接影响测定的相对误差。 1 零的作用: (1)数字前“0”定位作用不计有效数字,数字中、后的计入有效数字 : 0.03040(四位) 1.0008(五位)0.0382(三位)0.0040(两位) (2) 数字后的0含义不清楚时, 有效位数不确定、含糊: 3600(有效位数不确定、含糊,因为可看成是4位有效数字,但它也可能是2位或3位有效数字,分别写成指数形式表示为3.600×103,3.6×103,3.60×103);1000 (有效位数不确定、含糊,原因同上,分别写成指数形式表示为1.0×103, 1.00×103, 1.000 ×103) 2 倍数、分数、常数可看成具有无限多位有效数字:103、1/3、、e 3 pH,pM,lgc,lgK等对数值,有效数字的位数取决于小数部分(尾数)位数,因整数部分代表该数的方次。例: pM=5.00 (二位) [M]=1.0×10-5 (二位);PH=10.34(二位);pH=0.03(二位) 4 数据的第一位数大于等于8的,可多计一位有效数字,如 9.45×104, 95.2%, 8.65(四位) 5 不能因为变换单位而改变有效数字的位数,如: 24.01mL 24.0110-3 L 6 误差只需保留1~2位 二 有效数字的修约规则:“四舍六入五成双” 1 当测量值中修约的那个数字等于或小于4时,该数字舍去。如:3.1483.1 2 等于或大于6时,进位。如:0.7360.74 3 等于5时(5后面无数据或是0时),如进位后末位数为偶数则进位,舍去后末位数位 偶数则舍去,如:75.576。 当5后面还有不是0的任何数时,进位,如:2.4512.5、1.25131.3 4 修约数字时,只允许对原测量值一次修约到所需要的位数,不能分次修约(一次修约) 如:13.474813.47(对)、如:13.4565 13.456 13.46 13.5 14(错) 三 运算规则 1 加减法:当几个数据相加减时,它们和或差的有效数字位数,应以小数点后位数最少的数据为依据,因小数点后位数最少的数据的绝对误差最大。例: 0.0121 + 25.64 + 1.05782 = ? 绝对误差 ±0.0001 ±0.01 ±0.00001 由于在加合的结果中总的绝对误差值取决于25.64,所以 0.0121+25.64+1.05782=0.01+25.64+1.06=26.71。又如:50.1+1.45+0.5812=52.1 2 乘除法:当几个数据相乘除时,它们积或商的有效数字位数,应以有效数字位数最少的数据为依据,因有效数字位数最少的数据的相对误差最大。 例: 0.0121 × 25.64 × 1.05782 = ? 相对误差 ±0.8% ±0.4% ±0.009% 由于结果的相对误差取决于 0.0121,因它的相对误差最大,所以