分析化学中的误差
- 格式:ppt
- 大小:1.03 MB
- 文档页数:60
化学分析中误差的影响因素及处理措施摘要:化学分析是利用化学方法测定物质化学成分的过程,在这个过程中,分析人员通过仪器、量器、容器等工具,使用有关化学试剂,经过一系列的操作步骤而得到化学分析测试数据。
本文从误差来源、误差控制、分析实验室质量保证、综合评价质量保证等方面对化学分析中的误差的产生进行讨论,并提出控制误差的方法。
关键词:化学分析误差因素处理措施化学分析是根据定量化学反应的计量关系,对待测组分进行分析测试的过程。
化学分析过程经常包含多个繁琐的步骤,往往需要经过一系列的复杂操作步骤才能得到化学分析的测试数据。
这其中,分析方法、分析过程、仪器与试剂精度、实验条件等方面都会对测量结果产生影响,并导致误差产生[1]。
一、分析化学中的误差种类由于化学实验中存在环境不同,借助因素不同以及操作者的不同而产生多种误差,在测验分析中,根据误差产生的原因和误差表现出来的特征可以将化学分析中存在的误差分为系统误差、随机误差和过失误差三种。
(一)系统误差系统误差是由于某种固定原因造成的,其测定结果要么偏高,要么偏低,其正负差值也呈现出一定的规律性,而且在同一条件下,进行重复测定后,还会呈现出误差,这就使其表现出单向性和重复性的特点。
根据系统误差形成的因素的不同,可以将系统误差产生的原因集结于方法误差、人为误差以及辅助品误差三种。
方法误差是指试验方法的科学性缺失,在化学反应过程中由于实验进程间断性实施,进行空间的不同,以及对指示剂的选择等造成其误差出现。
人为误差是指操作过程中分析人员的不正确性或是不规范化操作,引起实际值与正确值之间的偏差;或是由于分析人员自身因素造成,例如试剂点滴刻度的读数不可能完全标准。
辅助品误差,往往集中于容器误差、水和试剂误差两方面。
由于容器的刻度不准确,天平砝码不准确等原因,造成误差出现,而在试验中,试剂和水的比例误差以及受其他元素的干扰性等,而形成误差。
系统误差的大小,正负,从理论上讲,是能够检定和校正的。
分析化学中的误差及分析数据的处理第二章分析化学中的误差及分析数据的处理本章是分析化学中准确表达定量分析计算结果的基础,在分析化学课程中占有重要的地位。
本章应着重了解分析测定中误差产生的原因及误差分布、传递的规律及特点,掌握分析数据的处理方法及分析结果的表示,掌握分析数据、分析方法可靠性和准确程度的判断方法。
本章计划7 学时。
第一节分析化学中的误差及其表示方法一. 误差的分类1. 系统误差(systematic error ) ——可测误差(determinate error) (1) 方法误差: 是分析方法本身所造成的;如:反应不能定量完成;有副反应发生; 滴定终点与化学计量点不一致; 干扰组分存在等。
(2) 仪器误差: 主要是仪器本身不够准确或未经校准引起的;如:量器(容量平、滴定管等)和仪表刻度不准。
(3) 试剂误差: 由于试剂不纯和蒸馏水中含有微量杂质所引起; (4) 操作误差: 主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。
如滴定管读数总是偏高或偏低。
特性:重复出现、恒定不变(一定条件下) 、单向性、大小可测出并校正,故有称为可定误差。
可以用对照试验、空白试验、校正仪器等办法加以校正。
2. 随机误差(random error) ——不可测误差(indeterminate error) 产生原因与系统误差不同,它是由于某些偶然的因素所引起的。
如: 测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。
特性: 有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律)但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布) ,可用统计学方法来处理。
二. 准确度与精密度( 一) 准确度与误差(accuracy and error)准确度:测量值(X)与真值(,)之间的符合程度。
它说明测定结果的可靠性,用误差值来量度:绝对误差= 个别测得值- 真实值E=X- , (1) a但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。
化学实验中的误差分析在化学实验中,误差是无法避免的。
无论是人为因素还是仪器设备的限制,误差都会存在。
正确分析和处理这些误差对于实验结果的准确性和可靠性有着至关重要的影响。
本文将对化学实验中的误差进行分析,以帮助实验者更好地理解并处理实验误差。
1. 误差的定义和分类误差是指实验结果与真实值之间的差异,它可以分为系统误差和随机误差两种类型。
1.1 系统误差:由于仪器设备、实验方法或操作者引起的偏差,导致所有测量结果偏离真值的程度相同。
系统误差可以进一步分为仪器误差、方法误差和个人误差。
1.1.1 仪器误差:仪器本身固有的误差,例如仪器的不稳定性、漂移、零点偏差等。
1.1.2 方法误差:由于实验方法的限制导致的误差,例如反应条件难以控制、试剂纯度问题等。
1.1.3 个人误差:不同实验者由于操作习惯、技术水平等因素引起的误差。
1.2 随机误差:由于实验条件的无法完全控制以及测量本身的不确定性所导致的误差。
随机误差无法精确确定,但可以通过重复实验并取平均值来减小其影响。
2. 误差的影响与评估误差对实验结果的影响可能是积累性的,特别是系统误差。
因此,评估和控制误差至关重要。
2.1 影响因素的分析:在进行误差分析时,需要考虑各种因素的影响,如试剂纯度、仪器的准确性和稳定性、环境因素等。
2.2 误差的评估方法:常用的误差评估方法包括相对标准偏差(RSD)、相对误差(RE)以及置信区间等。
这些方法可以帮助实验者定量地评估误差的大小和可靠性。
2.3 误差的来源分析:通过对误差的来源进行分析,可以找出问题所在,并采取相应的措施来减小误差。
例如,校准仪器、优化实验方法、加强操作技巧等。
3. 误差的处理与纠正当发现实验中存在误差时,需要及时采取措施来处理和纠正误差,以获得更准确的结果。
3.1 数据去极值:如果实验数据中存在明显偏离的数据点,可以考虑剔除这些异常值,以保证实验结果的准确性。
3.2 数据平均:对于多次重复实验所得的数据,可以进行平均处理,以减小随机误差对结果的影响。
分析化学(第六版)总结第二章 误差和分析数据处理第一节 误差定量分析中的误差就其来源和性质的不同, 可分为系统误差、偶然误差和过失误差。
一、系统误差定义: 由于某种确定的原因引起的误差, 也称可测误差特点:①重现性, ②单向性, ③可测性(大小成比例或基本恒定)分类:1. 方法误差: 由于不适当的实验设计或所选方法不恰当所引起。
2. 仪器误差.由于仪器未经校准或有缺陷所引起。
3. 试剂误差.试剂变质失效或杂质超标等不合.所引起4. 操作误差.分析者的习惯性操作与正确操作有一定差异所引起.操作误差与操作过失引起的误差是不同的。
二、偶然误差定义: 由一些不确定的偶然原因所引起的误差, 也叫随机误差.偶然误差的出现服从统计规律, 呈正态分布。
特点:①随机性(单次)②大小相等的正负误差出现的机会相等。
③小误差出现的机会多, 大误差出现的机会少。
三、过失误差1.过失误差: 由于操作人员粗心大意、过度疲劳、精神不集中等引起的。
其表现是出现离群值或异常值。
a) 2.过失误差的判断——离群值的舍弃在重复多次测试时, 常会发现某一数据与平均值的偏差大于其他所有数据, 这在统计学上称为离群值或异常值。
离群值的取舍问题, 实质上就是在不知情的情况下, 区别两种性质不同的偶然误差和过失误差。
离群值的检验方法:(1)Q 检验法:该方法计算简单, 但有时欠准确。
设有n 个数据, 其递增的顺序为x1,x2,…,xn-1,xn, 其中x1或xn 可能为离群值。
当测量数据不多(n=3~10)时, 其Q 的定义为1) 具体检验步骤是:2) 将各数据按递增顺序排列;2)计算最大值与最小值之差;3)计算离群值与相邻值之差; 计算Q 值;5)根据测定次数和要求的置信度, 查表得到Q 表值;6)若Q >Q 表, 则舍去可疑值, 否则应保留。
该方法计算简单, 但有时欠准确。
(2)G 检验法:该方法计算较复杂, 但比较准确。
具体检验步骤是: 1)计算包括离群值在内的测定平均值;2)计算离群值与平均值 之差的绝对值3)计算包括离群值在内的标准偏差S4)计算G 值。
分析化学中的误差与数据处理分析化学中的误差与数据处理分析化学是科学领域中的一门重要学科,主要涉及物质的定性、定量分析,其结果的准确性对于科研和实际应用具有重要意义。
然而,由于各种因素的影响,分析结果中不可避免地存在误差。
因此,了解误差的来源和处理方法是保证分析化学结果准确性的关键。
一、误差概念误差是指分析结果与真实值之间的差异。
在分析化学中,误差分为系统误差和随机误差。
系统误差是由固定因素引起的,如仪器校准偏差或试剂不纯等,通常需要进行补偿或校正。
随机误差则是由于随机因素引起的,如环境温度和湿度波动等,这种误差通常是无法避免的。
二、数据处理方法1、数据分析:对实验获取的数据进行统计分析,如平均值、标准差、置信区间等,以评估数据的集中程度和离散程度。
2、统计推断:通过样本数据推断总体特征,如假设检验和方差分析等,以判断实验条件是否满足分析要求。
3、数据处理技术:如平滑滤波、微分分析、积分分析等,用于消除数据中的噪声或提取特征信息。
三、减少误差的方法1、选择合适的试剂和设备:使用高纯度试剂和精确的测量设备,有助于降低系统误差。
2、增加重复次数:通过多次实验取平均值,能够降低随机误差,提高结果的准确性。
3、标准化:通过标准物质的测定以及与标准方法的比对,能够发现和纠正系统误差。
4、校准:对仪器进行定期校准,确保仪器性能稳定,从而降低误差。
四、结论误差与数据处理在分析化学中具有重要意义。
了解误差来源和处理方法有助于提高分析结果的准确性。
通过选择合适的试剂和设备、增加重复次数、标准化和校准等措施,可以有效地降低误差,提高分析结果的准确性。
未来,随着科学技术的不断发展,分析化学中的误差与数据处理方法将会更加完善。
研究人员将继续探索新的方法和技术,以进一步提高分析结果的准确性。
加强分析化学教育和实践,培养专业人才,对于推动分析化学的发展和应用具有重要意义。
总之,误差与数据处理是分析化学中不可或缺的环节。
通过了解误差来源和处理方法,采取有效措施降低误差,可以提高分析结果的准确性,为科学研究和实际应用提供可靠支持。