结构力学电子教案
- 格式:pptx
- 大小:657.65 KB
- 文档页数:25
线性代数电子教案一、引言1.1 课程介绍线性代数的定义和意义课程目标和学习内容1.2 电子教案的特点互动性和趣味性自主学习和协作学习1.3 软件使用说明软件安装和运行功能介绍和操作指南二、行列式2.1 行列式的定义和性质行列式的概念行列式的计算规则2.2 行列式的计算方法按行(列)展开拉普拉斯展开2.3 克莱姆法则克莱姆法则的原理克莱姆法则的应用三、矩阵3.1 矩阵的定义和运算矩阵的概念和表示矩阵的加法和数乘3.2 矩阵的逆矩阵的逆的定义和性质矩阵的逆的计算方法3.3 矩阵的特殊类型单位矩阵对角矩阵零矩阵四、向量空间4.1 向量空间的概念向量空间的基本性质向量空间的子空间4.2 向量的线性相关性线性相关的定义和判定线性无关的性质和应用4.3 基底和坐标基底的概念和选择向量的坐标表示和转换五、线性方程组5.1 线性方程组的解法高斯消元法克莱姆法则5.2 齐次线性方程组齐次线性方程组的解集自由变量和特解5.3 非齐次线性方程组非齐次线性方程组的解法常数变易法和待定系数法六、特征值和特征向量6.1 特征值和特征向量的定义矩阵的特征值和特征向量的概念特征多项式的定义和求解6.2 特征值和特征向量的计算特征值和特征向量的求解方法矩阵的对角化6.3 特征值和特征向量的应用矩阵的相似对角化实对称矩阵和正交矩阵七、二次型7.1 二次型的定义和标准形二次型的概念二次型的标准形7.2 配方法和正定性配方法的应用二次型的正定性判定7.3 惯性定理和二次型的几何意义惯性定理的表述和证明二次型在几何上的意义八、向量空间的同构8.1 向量空间的同构概念同构的定义和性质同构的判定条件8.2 线性变换和矩阵线性变换的概念和性质线性变换与矩阵的关系8.3 线性变换的图像和核线性变换的图像线性变换的核(值域)九、特征空间和最小二乘法9.1 特征空间的概念特征空间的定义和性质特征空间的维数9.2 最小二乘法原理最小二乘法的定义和目标最小二乘法的应用9.3 最小二乘法在线性回归中的应用线性回归问题的最小二乘解回归直线的性质和分析十、线性代数在实际应用中的案例分析10.1 线性代数在工程中的应用结构力学中的矩阵方法电路分析中的节点电压和回路电流10.2 线性代数在计算机科学中的应用计算机图形学中的矩阵变换机器学习中的线性模型10.3 线性代数在其他学科中的应用物理学中的旋转和变换经济学中的线性规划十一、矩阵分解11.1 矩阵分解的概念矩阵分解的意义和目的矩阵分解的类型11.2 LU分解LU分解的定义和算法LU分解的应用和优点11.3 QR分解QR分解的定义和算法QR分解的应用和优点十二、稀疏矩阵12.1 稀疏矩阵的定义和性质稀疏矩阵的概念稀疏矩阵的存储和运算12.2 稀疏矩阵的应用稀疏矩阵在科学计算中的应用稀疏矩阵在数据挖掘中的应用12.3 稀疏矩阵的优化算法稀疏矩阵的压缩技术稀疏矩阵的快速运算算法十三、线性代数在图像处理中的应用13.1 图像处理中的线性代数概念图像的矩阵表示图像变换和滤波13.2 图像增强和复原图像增强的线性方法图像复原的线性模型13.3 图像压缩和特征提取图像压缩的线性算法图像特征提取的线性方法十四、线性代数在信号处理中的应用14.1 信号处理中的线性代数概念信号的矩阵表示和运算信号处理的基本算法14.2 信号滤波和降噪信号滤波的线性方法信号降噪的线性模型14.3 信号的时频分析信号的傅里叶变换信号的小波变换十五、线性代数的现代观点15.1 向量空间和线性变换的公理化向量空间和线性变换的公理体系向量空间和线性变换的分类15.2 内积空间和谱理论内积空间的概念和性质谱理论的基本原理15.3 线性代数在数学物理中的作用线性代数在微分方程中的应用线性代数在量子力学中的应用重点和难点解析本文档详细地介绍了线性代数的主要知识点,旨在帮助学生更好地理解和掌握线性代数的基础理论知识和应用能力。
2.1 几何可变系统和几何不变系统工程结构是用来承受和传递外载荷的系统。
一个工程结构通常是由若干个构件用某种方法联结而成的。
它在承受载荷作用时,各构件只允许发生材料的弹性变形,而不应发生构件间相对的机械运动。
如图2.1(a)所示的系统,如果不考虑弹性变形,系统也未发生破坏,则其几何形状与位置均保持不变,这样的系统,我们称之为几何不变系统。
但是,对如图2.1(b)所示的系统,在载荷作用下,即使不考虑弹性变形,它的形状和位置也将改变,这样的系统,我们称之为几何可变系统,它是不能用来承受和传递外载荷的。
所以,凡是工程结构必须是几何不变系统。
图2.1对系统进行几何组成分析的目的在于:判断该系统是否为几何不变系统,以决定其能否作为工程结构使用;研究并掌握几何不变系统的组成规则,以便合理安排构件,设计出合理的结构;根据系统的组成规则,确定结构的性质(静定系统还是静不定系统),以便选用相应的计算方法。
3.2 静定桁架的内力桁架是由某些杆系结构经过简化而得到的计算模型,其特点是:(1)各元件均为直杆;(2)各杆两端均用没有摩擦的理想铰链相连接;(3)杆的轴线通过铰心,称铰心为桁架的结点;(4)载荷和支座反力仅作用在各结点上。
由于理想铰链没有摩擦力,故不能传递力矩。
显然,在载荷仅作用在结点上时,若不计杆的自重,各杆都只受到两端结点的作用力,且在此二力作用下处于平衡。
因此,桁架的杆件均为“二力杆”,即杆两端受到大小相等、方向相反、沿着杆轴线的两个力作用。
杆子横截面上只有轴力,这些轴力就是所要计算的桁架内力。
静定桁架是一种没有多余约束的结构,它的内力计算原则上,只要把桁架分解为若干自由体(结点)和约束(杆),用未知力代替约束的作用,对所有的自由体列出全部静力平衡方程式,所得方程式数与包含的未知力数相等。
由于结构是几何不变的,方程组有唯一解。
解这联立方程组就可得到静定桁架的内力。
但在工程实际中,往往可以运用下述两种方法:结点法和截面法。
建筑力学》课程教学大纲课程编码:课程类别:专业基础课适用专业:建筑工程开课部门:土木建筑工程学院学时:64编写:1.课程定位和设计思路在高等职业教育中,要注重专业知识的传授,重视实践技能的训练。
还应考虑到学生终身学习的愿望,培养他们具备一定的科学探究能力,具有创新意识和进取精神。
力争将建筑工程领域的新材料、新工艺、新技术等及时引入课程教学。
因此《建筑力学》课程的构建应注重使学生从感性认识上升到理性认识的过程,注重把理论知识运用到工程实际的能力的培养,注重本课程和其他专业课程的融合和衔接,使学生的综合素质得到全面发展。
1.1课程的性质与作用建筑力学是建筑装饰专业的一门专业基础课,属必修课性质。
它包括理论力学、材料力学和结构力学几部分。
通过本课程的学习,要求学生了解一般建筑结构的组成方式,对建筑结构的受力性能具有明确的基本概念和必要的基础知识,对结构内力、应力及位移的分析计算问题具有初步的能力,从而使学生能对一般的建筑工程问题进行初步分析,为学习后续的专业如钢筋混凝土与砌体结构、钢结构等专业课程提供一定的力学基础。
学习本课程要求有较好的数学基础知识。
《建筑力学》课程在本专业人才培养方案及课程体系中的作用主要表现在以下方面:1. 本课程从高等职业教育的特点出发,确立课程目标是传授专业基础知识培养学生的技术应用能力。
通过本课程的学习,使学生具备现代建筑行业高等技术应用性人才所需要的技术基础理论和技术技能。
注重培养学生解决实际问题的能力,为学习后续专业课程打下必备的基础。
同时还要注重学生素质的培养,提高学生综合能力和创新意识,加强学生专业素质和职业道德观念。
2. 本课程是建筑装饰工程专业知识体系的重要组成部分,它与诸多学科密切相关,是结构设计、结构工程施工等的理论基础,因此是建筑装饰工程技术人员必备的专业理论知识。
本课程是在学习了高等数学课程后开设的,为后续专业课程打基础的专业技术基础课程,在专业课程体系中处于基础地位。
第十二章 动量矩定理第一、二节 质点和质点系的动量矩 动量矩定理教学时数:2学时教学目标:1、 对动量矩的概念有清晰的理解2、 熟练的计算质点系的动量矩教学重点:质点系的动量矩 质点系的动量矩定理教学难点:质点系的动量矩定理 教学方法:板书+PowerPoint教学步骤: 一、引言由静力学力系简化理论知:平面任意力系向任一简化中心简化可得一力和一力偶,此力等于平面力系的主矢,此力偶等于平面力系对简化中心的主矩。
由刚体平面运动理论知:刚体的平面运动可以分解为随同基点的平动和相对基点的转动。
若将简化中心和基点取在质心上,则动量定理(质心运动定理)描述了刚体随同质心的运动的变化和外力系主矢的关系。
它揭示了物体机械运动规律的一个侧面。
刚体相对质心的转动的运动变化与外力系对质心的主矩的关系将有本章的动量矩定理给出。
它揭示了物体机械运动规律的另一个侧面。
二、质点和质点系的动量矩 1、质点的动量矩设质点M 某瞬时的动量为v m ,质点相对固定点O 的矢径为r,如图。
质点M 的动量对于点O 的矩,定义为质点对于点O 的动量矩,即()v m r v m M L O O ⨯==()v m M O垂直于△OMA ,大小等于△OMA 面积的二倍,方向由右手法则确定。
类似于力对点之矩和力对轴之矩的关系,质点对固定坐标轴的动量矩等于质点对坐标原点的动量矩在相应坐标轴上的投影,即 ()d mv v m M L xy Z z ==质点对固定轴的动量矩是代数量,其正负号可由右手法则来确定。
动量矩是瞬时量。
在国际单位制中,动量矩的单位是s m kg /2⋅ 2、质点系的动量矩(1)质点系对固定点的动量矩设质点系由n 个质点组成,其中第i 个质点的质量为i m ,速度为i v ,到O 点的矢径为i r,则质点系对O 点的动量矩(动量系对点的主矩)为:()∑∑⨯==i i i i i O O v m r v m M L即:质点系对任一固定点O 的动量矩定义为质点系中各质点对固定点动量矩的矢量和。