非线性动力学讲义02(绪论2)-1-岳宝增
- 格式:ppt
- 大小:4.95 MB
- 文档页数:48
非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。
课程名称:非线性动力学一、课程编码:0100016课内学时:32学分:2二、适用学科专业:动力学与控制、航空及航天学科相关专业三、先修课程:理论力学,非线性振动力学,积分变换四、教学目标通过本课程的学习使学生理解非线性动力学中的平衡点、稳定性、分岔、混沌等基本概念和基础理论;掌握非线性动力系统的几何分析原理和计算机数值仿真的基本方法;提升学生对复杂非线性动力学系统的建摸和动力学分析能力。
五、教学方式课堂讲授与课堂讨论六、主要内容及学时分配1.绪论6学时1.1非线性动力学学科的发展及其与经典力学的关系1.2非线性动力学系统的基本特征和工程应用1.3非线性系统研究的基本方法2.线性系统动力学简介4学时2.1二阶系统中状态方程2.2平衡点的基本概念及分类2.3相平面与几何方法2.4单摆动力学初步3.保守系统动力学4学时3.1保守系统基本特征3.2首次积分与能量方法3.3典型的几种保守系统4.分岔的基本理论4学时4.1稳定性及分岔的基本概念4.2基本分岔类型4.3极限环与霍夫分岔4.4倍周期分岔5.混沌动力学8学时5.1混沌的基本概念5.2连续系统及离散系统混沌简介5.3李亚普诺夫指数5.4受外激励的单摆系统非线性动力学6.分形动力学2学时6.1分形的基本概念6.2分形的特征6.3分形维度7.非线性动力学系统动的控制4学时7.1非线性控制的基本理论和方法7.2分岔的控制与切换7.3混沌的控制与同步7.4同宿环及异宿环动力学与控制七、考核与成绩评定成绩以百分制衡量。
成绩评定依据:平时作业成绩占10%,专题讨论20%,期末笔试成绩占80%。
八、参考书及学生必读参考资料参考书1.刘秉正.《非线性动力学》[M].北京:高等教育出版社,20042.Nayfeh A H.Applied Nonlinear Dynamics.New York,1995必读参考资料:3.胡海岩.《应用非线性动力学》[M].北京:航空工业出版社,20004.龙运佳.《混沌振动研究》[M].北京:清华大学出版社,1996九、大纲撰写人:岳宝增。
非线性动力学的理论与应用第一章介绍非线性动力学(Nonlinear Dynamics)是指研究非线性系统运动的学科,与传统的线性动力学不同,它所研究的系统是依赖于初始条件及过程中反馈、耗散及非线性耦合等的状态变化规律。
非线性动力学模型可以是连续的,也可以是离散的,涉及到许多数学工具,包括微积分、常微分方程、偏微分方程、拓扑学、代数几何等。
第二章研究内容非线性动力学研究的主要内容是非线性动力系统在自然界、生产生活和科学技术中的应用和理论。
这里说的非线性动力系统,主要指具有非线性特性的动力系统,包括天气气候预测、生物学、生物医学、材料科学、航空航天等等各个领域的动力学系统。
1.混沌理论混沌理论是非线性动力学中的核心之一,也是最吸引人的方向之一。
混沌现象是随着时间推进,系统状态的巨大变化,这是由于微小的初始条件的微小变化而引起的。
混沌现象最早是由美国数学家李雅普诺夫(A.N.Kolmogorov)提出的,其主要特点是系统的轨迹看似毫无规律可寻,在函数中体现出一些随机的性质。
2.非周期振荡非周期振荡是非线性动力学的另一个重要方向。
它是指系统为适应外部环境和内部自身反馈机制作出的一种非线性动态的运动状态。
非周期振荡可以被看作是一种自适应的机制,可以在动态环境中寻找到对稳定性更好的点,也可以用于刻画非线性振动系统的动态特性。
3.射影演化动力学射影演化动力学是指在相空间上进行射影变换,通过将相空间上的点映射到下一时刻的点来描述系统的真实运行情况。
射影动力学模型的研究主要涉及轨道的几何特征和混沌现象的显现。
第三章应用非线性动力学在实际中有广泛的应用场景,其主要应用包括:1.天气气候预测天气气象研究是非线性动力学应用的早期领域之一。
天气系统本身包含着复杂的非线性特性,可以用非线性动力学方法来研究气象系统的稳定性和不稳定性,进而提高天气预报的精度。
2.生物学研究在生物学中,非线性动力学在神经生理学、心理学、进化生物学、群体生物学、生态学等方面都有很重要的应用,可以帮助揭示复杂的生物系统中的动态机制和交互关系。
非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。