课堂用非线性动力学讲义第三部分
- 格式:pdf
- 大小:2.71 MB
- 文档页数:67
非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。
第二章 SDOF 自治系统的定性分析一、基本概念0),(=+u u p u(1)令uu u u ==21,将之化为状态方程的形式 )(),(221u f u u u p uu u=⎩⎨⎧-== 或 (2)这里f (u )为向量场。
初初始条件为20021001)()(u t u u t u ==,(3)1.相空间、广义相空间、相轨线、积分曲线、相图相空间特性应从物理意义出发,在相空间尚未选定之前,微分方程本身不能确定系统的可能运动,例如21dudu ,相图特点:(1)上半平面,021>=u u ,相轨线从左到右;(2)下半平面,021<=u u,相轨线从左到右;(3)横坐标,∞→⎪⎪⎭⎫⎝⎛=0122u du du ,轨线与横轴正交。
2.定理:若),;(00u t t u u= 是方程(2)的解,对任意常数0t ,),0;(00u t t u u -= 仍是其解。
证明:对任何时刻/t ,有()()///|)()(|)(|)(00/0t t t t t t t t t u f t t u f dtt du dt t t du =-==-=-==- (5)表明:上式在任意瞬时恒成立,故),0;(00u t t u u-= 是解。
说明:自治系统在相空间的轨线只与初始值有关,与初始时刻的选取无关。
因此,今后令00=t ,初始条件(3)成为2010)0()0(u u u u ==,(6)例1:对自治系统0=+u u,t u sin =是其解,)sin(0t t u -=还是其解。
若取t u cos -=,此时20π=t 。
推论:经过相空间中的每一点(奇点除外),自治系统有一条且仅有一条相轨线(只有唯一轨线通过)。
证明:设方程(2)有两条轨线),,(1010u t t u u =,),,(2020u t t u u =有公共点,即在时刻1T 和2T 有),,(),,(2020210101u t T u u t T u =(7)因),,(101021u t T T t u u -+=还是方程(2)的解,因此下式成立22|),,(|),,(2020101021T t T t u t t u u t T T t u ===-+(8)根据Cauchy 定理:若在),(00u t 的邻域f 对u 的偏导数存在并连续,对t 的单边偏导数存在并连续,则),(u t f u = 在相当小的区间],0[δ内存在唯一解(过同一初始值的解是唯一的)。
非线性动力学导论之四:分岔基本理论简介北京理工大学宇航学院力学系岳宝增第三章非线性动力学系统分岔基本理论一.一般系统平衡解的稳定性(1)二.平衡解的稳定流形与不稳定流形于平面摆的例子可以用来很清楚地解释全局稳定(不稳定)流形的概念;平面摆作为二阶动力学系统和谐振子极为相似。
其动力学方程为:l其中M代表质量,表示摆长,g为重力加速度,c为阻尼系数。
对时间进行尺度变换定义(或直接假设)及d可以得到系统的简化方程:d因为是从铅锤位置开始的角度位移,因此该变量具有周期2π;由此可知该系统的相空间为圆柱面。
我们也可以假设,从而从相图上可以观测到系统关于X的周期特性。
为了分析系统的动力学特性,首先确定系统的平衡点并研究其稳定性。
可求出系统的平衡点为:及求出系统的雅可比矩阵为:对应于平衡点有:其特征值为:如果d=0则得到特征值±i;对于较小的d值系统有共轭复根。
对应于平衡点(2kπ+π,0)系统的雅可比矩阵为:其特征值一对符号相反的实数:根据以上讨论可知:平衡点(2kπ+π,0)为鞍点,当d=0时,其对应的特征向量为:及对于较小的的d>0,平衡点(2kπ,0)为吸引子-螺旋旋线);d=0时该类平衡点所对应的是非双曲点。
由于此时系统不受摩擦(阻尼)影响,单摆将做周期运动。
因此,在平衡点附近,系统的动力学特性为:无阻尼d=0 阻尼d>0d=0时,所对应的一类周期运动是单摆做上下摆动;另一类周期运动是单摆由稳定及不稳定流形通过倒立位置位置的运动。
如果单摆几乎刚好处于倒立位置时(不稳定),它将倒回并再次回摆到几乎刚好倒立的位置。
这意味着稳定流形与不稳定流形将有如下图所示的联接:单摆沿逆时针方向穿越倒立位置。
单摆没有穿越倒立位置。
单摆沿顺时针方向穿越倒立位置。
在有阻尼的情形下,实际上所有的初始条件所确定的运动将趋于下垂平衡位置。
例外情形是稳定流形所对应的运动,由趋于倒立位置的所有点组成。
所有初始条件将终止于平衡点三.分岔的基本概念对于一个非线性方程,由于其中参量取值不同,解的形式可能完全不同,即参量取值在某一临界值两侧,解的性质发生本质变化(例如平衡状态或周期运动的数目和稳定性等发生突然变化)。