高考物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)
- 格式:doc
- 大小:418.50 KB
- 文档页数:21
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。
已知小物块质量m =1kg ,取g =10m/s 2。
求:(1)小物块与小车BC 部分间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度。
【答案】(1)0.5(2)1m/s 【解析】 【详解】解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5RLμ== (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :22121122mgR mv Mv =+ 联立解得: 21/ v m s =2.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2BB B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s =② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.3.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 【答案】(1)1m/s (2) (3) x =0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N2F +==故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
高考物理动量守恒定律及其解题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
物体P 置于P 1的最右端,质量为2m 且可以看作质点。
P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内)。
P 与P 2之间的动摩擦因数为μ,求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧最大压缩量x 和相应的弹性势能E p 。
【答案】(1) 201v v =,4302v v = (2)L g v x -=μ3220,1620p mv E = 【解析】(1) P 1、P 2碰撞过程,动量守恒,102mv mv =,解得21v v =。
对P 1、P 2、P 组成的系统,由动量守恒定律 ,204)2(mv v m m =+,解得4302v v =(2)当弹簧压缩最大时,P 1、P 2、P 三者具有共同速度v 2,对P 1、P 2、P 组成的系统,从P 1、P 2碰撞结束到P 压缩弹簧后被弹回并停在A 点,用能量守恒定律)(2)2()2(21221221222021x L mg u v m m m mv mv ++++=⨯+⨯ 解得L gv x -=μ3220 对P 1、P 2、P 系统从P 1、P 2碰撞结束到弹簧压缩量最大,用能量守恒定律p 222021))(2()2(21221221E x L mg u v m m m mv mv +++++=+ 最大弹性势能162P mv E =注意三个易错点:碰撞只是P 1、P 2参与;碰撞过程有热量产生;P 所受摩擦力,其正压力为2mg【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。
高考物理动量定理解题技巧及经典题型及练习题( 含答案 )一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为 g,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求:(1)整个过程中摩擦阻力所做的总功;(2)人给第一辆车水平冲量的大小。
【答案】 (1)-3kmgL; (2) m 10kgL。
【解析】【分析】【详解】(1)设运动过程中摩擦阻力做的总功为W,则W=-kmgL-2kmgL=-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL。
(2)设第一辆车的初速度为v0,第一次碰前速度为v1,碰后共同速度为v2,则由动量守恒得mv1=2mv2kmgL 1mv121mv02 22k (2 m)gL01(2 m)v22 2由以上各式得v010kgL所以人给第一辆车水平冲量的大小I mv0 m 10kgL2.一质量为 0.5kg 的小物块放在水平地面上的 A 点,距离 A 点 5m 的位置 B 处是一面墙,如图所示,物块以v0=9m/s 的初速度从 A 点沿 AB 方向运动,在与墙壁碰撞前瞬间的速度为 7m/s ,碰后以6m/s 的速度反向运动直至静止. g 取 10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32 (2)F=130N【解析】试题分析:( 1)对 A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△ t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值0 时,安全气囊爆开.某次试验中,质量1=1 600 kg的试验车F m以速度 v1= 36 km/h正面撞击固定试验台,经时间t 1= 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I的大小及 F 的大小;00(2)若试验车以速度v1 撞击正前方另一质量 2 =1 600 kg、速度v2=18 km/h同向行驶的m汽车,经时间 t 2=0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】( 1)I0 = 1.6 ×10 4 N·s , 1.6 ×10 5N;( 2)见解析【解析】【详解】(1) v1 = 36 km/h = 10 m/s ,取速度 v1的方向为正方向,由动量定理有-I0 = 0 -m1v1①将已知数据代入①式得I0 = 1.6×410N·s②由冲量定义有I0 = F0t1③将已知数据代入③式得F0 = 1.6×510N④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m v + m v = (m+ m )v⑤112212对试验车,由动量定理有-Ft2= m1v- m1v1⑥将已知数据代入⑤⑥式得F= 2.5×410N⑦可见 F< F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量为 m=245g 的木块(可视为质点)放在质量为M =0.5kg 的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为 m0= 5g 的子弹以速度 v0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取10m/s 2,求:(1)子弹进入木块后子弹和木块一起向右滑行的最大速度v1(2)木板向右滑行的最大速度 v2(3)木块在木板滑行的时间 t【答案】 (1) v 1= 6m/s (2) v 2=2m/s (3) t=1s【解析】【详解】(1)子弹打入木块过程,由动量守恒定律可得:m 0v 0=(m 0 +m)v 1解得:v 1= 6m/s(2)木块在木板上滑动过程,由动量守恒定律可得:(m 0+m)v 1=(m 0+m+M )v 2解得:v 2=2m/s(3)对子弹木块整体,由动量定理得:﹣ μ(m 0+m)gt=(m 0+m)(v 2 ﹣v 1 )解得:物块相对于木板滑行的时间v 2 v 11stg5. 如图所示 , 两个小球 A 和 B 质量分别是 m A = 2.0kg, m B = 1.6kg, 球 A 静止在光滑水平面上的 点 , 球 B 在水平面上从远处沿两球的中心连线向着球 A 运动 , 假设两球相距 ≤18m 时存ML在着恒定的斥力F , L > 18m 时无相互作用力 . 当两球相距最近时 , 它们间的距离为d = 2m,此时球 B 的速度是 4m/s. 求 :(1) 球 B 的初速度大小 ; (2) 两球之间的斥力大小 ;(3) 两球从开始相互作用到相距最近时所经历的时间.【答案】 (1) v B0 9ms ; (2) F 2.25N ; (3) t3.56s【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;( 2)在两球相距 L > 18m 时无相互作用力,B 球做匀速直线运动,两球相距L ≤18m 时存在着恒定斥力 F ,B 球做匀减速运动,由动能定理可得相互作用力( 3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.( 1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是 t 。
(物理)高考必备物理动量守恒定律的应用技巧全解及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律的应用1.如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=37°,A 、B 是两个质量均为m =1kg 的小滑块(可看作质点),C 为左端附有胶泥的薄板(可移动且质量不计),D 为两端分别连接B 和C 的轻质弹簧.当滑块A 置于斜面上且受到大小为F =4N 、方向垂直于斜面向下的恒力作用时,恰能沿斜面向下匀速运动.现撤去F ,让滑块A 从斜面上距斜面末端L =1m 处由静止下滑.(g 取10m/s 2,sin37°=0.6,cos37°=0.8)(1)求滑块A 到达斜面末端时的速度大小(2)滑块A 与C (原来C 、B 、D 处于静止状态)接触后粘连在一起,求此后两滑块和弹簧构成的系统在相互作用过程中弹簧的最大弹性势能是多少? 【答案】(1) v =2m/s (2) E P =1J 【解析】 【分析】 【详解】(1)滑块A 匀速下滑时,受重力mg 、恒力F 、斜面支持力N 和摩擦力f 作用 由平衡条件有: ()sin cos 0mg mg F αμα-+= 代入数据解得: μ=0.5撤去F 后,滑块A 匀加速下滑,由动能定理有: ()21sin cos 2mg mg L mv αμα-= 代入数据得: v =2m/s(2)两滑块和弹簧构成的系统在相互作用过程中动量守恒,当它们速度相等时,弹簧具有最大弹性势能,设共同速度为v 1, 由动量守恒: mv =2mv 1 由能量守恒定律有: 22111222P E mv mv =-⨯ 联立解得: E P =1J2.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.3.一个氘核(21H )和一个氚核(31H )聚变时产生一个中子(10n )和一个α粒子(42e H )。
【物理】高考必备物理动量守恒定律技巧全解及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)4282t s += 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+-解得:3/v s =物块从C 抛出后,在竖直方向的分速度为:3sin 53/y v v s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:25t s =3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
高中物理动量守恒定律解题技巧(超强)及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解2.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小. 【答案】v 0v 0【解析】设A 、B 球碰撞后速度分别为v 1和v 2 由动量守恒定律得2mv 0=2mv 1+mv 2 且由题意知=解得v 1=v 0,v 2=v 0视频3.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出α射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核22286Rn 发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋21884Po 此过程动量守恒,若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.3.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
高中物理动量守恒定律常见题型及做题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心, Oc与Ob的夹角0=37°;过£点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh, ef与Oc交于c点,ecf与水平向右的方向所成的夹角为3(53° & pwi47° ),矩形区域内有方向水平向里的匀强磁场.质量m2=3X10-3 kg、电荷量q=3Xl0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5X10-3 kg的不带电小物体P 从轨道右端a以V O=8 m/s的水平速度向左运动, P、Q碰撞时间极短,碰后P以1m/s的速度水平向右弹回. P与ab间的动摩擦因数^=0.5, A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力, sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s2.求:⑴碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当3=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B I;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的(3值.______ 2 127 0一0【答案】(1) F N 4.6 10 2N (2) B1 1.25T (3)t -------------------- s, 1 900和 2 1430360【解析】【详解】解:(1)设P碰撞前后的速度分别为v1和v1 , Q碰后的速度为v21 2 1 2从a到b,对P,由动能TE理得:-m1gl — m1V1 — m1V02 2解得:v1 7m/s碰撞过程中,对P , Q系统:由动量守恒定律:m1v1 m1V l m2V2取向左为正方向,由题意v1 1m/s,解得:v2 4m/s2 V2b 点:对Q ,由牛顿第二定律得:F N m2g m2——R解得:F N 4.6 10 2 N(2)设Q 在c 点的速度为v c ,在b 到c 点,由机械能守恒定律:12 m 2 gR(1 cos )m 2v c 2解得:v c 2m/sQ 刚好不从gh 边穿出磁场,由几何关系: R d 1.6m解得:B I 1.25Tm 2v c .(3)当所加磁场B 2 2T ,「2 -- 1mqB 2要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,那么 Q 在磁场中运动轨迹对应的圆心dcos(180 )—解得:此时对应的 角:1 90和2 1431 2m 2v 22进入磁场后:Q 所受电场力 F qE 3 10 2Nm 2g , Q 在磁场做匀速率圆周运动由牛顿第二定律得:qV cB2 m 2vcq127运动周期:T2 m 2 qB 2那么Q 在磁场中运动的最长时间:T 127 ?2 m 2 360360 qB 2 127 ------ s360角最大,那么当gh 边或ef 边与圆轨迹相切,轨迹如下图:设最大圆心角为 ,由几何关系得:2.如下图,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为&=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:A丽网(编①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离.【答案】(1) 3m/s (2) 0.1m【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得mv-Mv2=0E P - mv2 -Mv f 2 2代入数据解得:v i=3m/s v 2=1m/s(2)根据动量守恒和各自位移关系得m— M — x i+x2=Lt t代入数据联立解得:x2-=0.lm4考点:动量守恒定律;能量守恒定律.3.如图,质量分别为也、出E的两个小球A、B静止在地面上方,B球距地面的高度h=0.8m , A球在B球的正上方. 先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零. % = ,重力加速度大小为g=lCta"广,忽略空气阻力及碰撞中的动能损失.AOP零IY 0,3m(i) B球第一次到达地面时的速度;(ii) P点距离地面的高度.【答案】v B 4m/sh p 0.75m【解析】试题分析:(i) B球总地面上方静止释放后只有重力做功,根据动能定理有m B gh - m B V B22可得B 球第一次到达地面时的速度 v B J 颂 4m/s (11) A 球下落过程,根据自由落体运动可得 A 球的速度v A gt设B 球的速度为V B ',那么有碰撞过程动量守恒NI A V ANI B V B 'm B V B ''..................................... 1 c 1c 1c碰撞过程没有动能损失那么有 一m A v A— m B v B ' — m B v B '' 22 2解得 v B ' 1m / s , v B '' 2m/ s度是指碰撞前A 对B 的速度.假设上述过程是质量为 2m 的玻璃球A 以速度v o 碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后 A 、B 的速度大小.17 31【答案】V0——V04S 24【解析】设A 、B 球碰撞后速度分别为 V 1和v 2 由动量守恒定律得 2mv o= 2mv 1 + mv 25 .如图的水平轨道中, AC 段的中点B 的正上方有一探测器, C 处有一竖直挡板,物体 P 1沿轨道向右以速度 V 1与静止在A 点的物体P 2碰撞,并接合成复合体巳以此碰撞时刻为计 时零点,探测器只在 t 1=2 s H 12=4 s 内工作, P 1、P 2的质量都为 m=1 kg, P 与AC 间的 动摩擦因数为 四 二0.1, AB 段长L=4 m, g 取10 m/s 2, R 、P 2和P 均视为质点,P 与挡板的 碰撞为弹性碰撞.3m/ s小球B 与地面碰撞后根据没有动能损失所以 B 离开地面上抛时速度 v 0 v B 4m / s所以P 点的高度hp p 考点:动量守恒定律 2,2V0-^B- 0.75m 2g能量守恒4.牛顿的?自然哲学的数学原理?中记载, 它们碰撞前的接近速度之比总是约为15 : A 、B 两个玻璃球相碰, 16.别离速度是指碰撞后碰撞后的别离速度和B 对A 的速度,接近速且由题意知-^― 15解得 V I = -- V 0 ,4S31V 2=V 024⑴假设v i =6 m/s,求P 、P 2碰后瞬间的速度大小 v 和碰撞损失的动能 史;〔2〕假设P 与挡板碰后,能在探测器的工作时间内通过 B 点,求v i 的取值范围和 P 向左经过A 点时的最大动能E .【答案】〔1〕 9J 〔2〕 10m/s v vi v 14m/s 17J 【解析】试题分析:〔1〕由于P 1和P 2发生弹性碰撞,据动量守恒定律有: 附用=2网口 v 2 =碰撞过程中损失的动能为:v 1=14m/s 时,碰撞后的结合体 P 的最大速度为: 代入数据,可得通过 A 点时的最大动能为:Eg = 17j 考点:此题考查动量守恒定律、运动学关系和能量守恒定律6 .在光滑的水平面上,质量 m=1kg 的物体与另一质量为 m 物体相碰,碰撞前后它们的位 移随时间变解法一:根据牛顿第二定律,设P 1、P 2碰撞后的共同速度为P 做匀减速直线运动,加速度 V A,那么根据〔1〕问可得V A =V 1/2把P 与挡板碰撞前后过程当作整体过程处理经过时间t1, P 运动过的路程为S1,那么经过时间t2, P 运动过的路程为S2,那么 如果P 能在探测器工作时间内通过B 点,必须满足&W3LWs联立以上各式,解得 10m/s < V 1 < 14m/s V 1的最大值为 14m/s ,此时碰撞后的结合体P 有最大速度v A =7m/s1-口 4L = 2M 吗根据动能定理, 代入数据,解得E=17J解法二:从A 点滑动到C 点,再从C 点滑动到A 点的整个过程,P 做的是匀减速直线. 设加速度大小为 a,那么a=〔ig=1m/s 2设经过时间t, P 与挡板碰撞后经过 B 点,[学科网那么: vw-at,诬?口,乳 v=v 1/2假设t=2s 时经过B 点,可得 假设t=4s 时经过B 点,可得 v 1="14m/s"v 1=10m/s 那么v 1的取值范围为: 10m/s v v 1 v 14m/s必如== 7m/s化的情况如下图.求:(1)碰撞前m的速度v i和位的速度V2;(2)另一物体的质量m>o【答案】(1) v i 4m/s, V2 0; (2) m2 3kg.【解析】试题分析:(1)由s —t图象知:碰前,m的速度v1—16二0 4 m,. s , m处于静止t 4-0状态,速度v20(2)由s—t图象知:碰后两物体由共同速度,即发生完全非弹性碰撞—24 16 1m s碰后的共同速度vt 12 4根据动量守恒定律,有:m1V l(m( m2)v另一物体的质量m2m i v——v 3m l 3kgv考点:s—t图象,动量守恒定律7 .如下图,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.m A m, m B 2m, m C 3m ,求:(1)滑块A与滑块B碰撞结束瞬间的速度v;(2)被压缩弹簧的最大弹性势能 E Pmax;(3)滑块C 落地点与桌面边缘的水平距离【答案】(1) v 1V l -J2gh (2) mgh (3) 2JHh 3 3 6 3【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的 1 2速度为V i ,由机械能守恒定律有: m A gh 5 m A v 1解之得:v 1 2gh滑块A 与B 碰撞的过程, A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为 v,由动量守恒定律有:m A V im A m B v解之得:v 1V l 1J 2gh33 、(2)滑块A 、B 发生碰撞后与滑块 C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的 弹性势能最大时,滑块 A 、B 、C 速度相等,设为速度 v 2 由动量守恒定律有:m A v 1 m A m B m C v 21.22由机械能寸恒7E 律有: E pmax 2(m A m )B )vm A m B m e V21解得被压缩弹簧的最大弹性势能:E Pmax -mgh6(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块 A 、B 的速度为V3,滑块C 的速度为V4,分别由动量守恒定律和机械能守恒定律有:2—mAm B v 2解之得:V 30, V 4滑块C 从桌面边缘飞出后做平抛运动: s v 4tH 1gt 2 2解之得滑块C 落地点与桌面边缘的水平距离:s 2jHh38.如下图,光滑固定斜面的倾角 @=30: 一轻质弹簧一端固定,另一端与质量 M=3kg 的物体B 相连,初始时 B 静止.质量m=1kg 的A 物体在斜面上距 B 物体处s1=10cm 静止释 放,A 物体下滑过程中与 B 发生碰撞,碰撞时间极短,碰撞后与 B 粘在一起,碰后整 体经t=0.2s 下滑s2=5cm 至最低点.弹簧始终处于弹性限度内, A B 可视为质点,g 取10m/s 2.s.m A m B vm A m B V 3m C V 42 m A m B V3-m C V 4 2(1)从碰后到最低点的过程中,求弹簧最大的弹性势能;(2)碰后至返回到碰撞点的过程中,求弹簧对物体B的冲量大小.上【答案】(1) 1. 125J; (2) 10Ns【解析】【分析】(1)A物体下滑过程,A物体机械能守恒,求得A与B碰前的速度;A与B碰撞是完全非弹性碰撞,A、B组成系统动量守恒,求得碰后AB的共同速度;从碰后到最低点的过程中,A、B和弹簧组成的系统机械能守恒,可求得从碰后到最低点的过程中弹性势能的增加量.(2)从碰后至返回到碰撞点的过程中, A、B和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB的速度;对AB从碰后至返回到碰撞点的过程应用动量定理,可得此过程中弹簧对物体B 冲量的大小.【详解】0 1 2(1)A物体下滑过程,A物体机械能守恒,那么:mgS|Sin30 — mv02解得:v0J2gs i sin300 42 10 0.1 0.5 嗯1嗯A与B碰撞是完全非弹性碰撞,据动量守恒定律得:mv0 (m M )v1解得:v1 0.25mS从碰后到最低点的过程中, A、B和弹簧组成的系统机械能守恒,那么:一1 2 0E PT增—(m M )v1 (m M )gS2Sin30 2解得:E PT增1.125J(2)从碰后至返回到碰撞点的过程中, A、B和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB的速度大小v2 v1 0.25 ms以沿斜面向上为正,由动量定理可得:I T (m M )gsin300 2t (m M M (m M)%解得:I T 10N S9.如下图,用气垫导轨做“验证动量守恒〞实验中,完成如下操作步骤:A BA.调节天平,称出两个碰撞端分别贴有尼龙扣滑块的质量m i和m2.B.安装好A B光电门,使光电门之间的距离为50cm.导轨通气后,调节导轨水平,使滑块能够作运动.C.在碰撞前,将一个质量为m2滑块放在两光电门中间,使它静止,将另一个质量为m i滑块放在导轨的左端,向右轻推以下m i,记录挡光片通过A光电门的时间t i.D.两滑块相碰后,它们粘在一起向右运动,记录挡光片通过的时间t2.E.得到验证实3i的表达式 .m! m i m2【答案】匀速直线运动小车经过光电门的时间」———-t i t2【解析】【详解】为了让物块在水平方向上不受外力,因此当导轨通气后,调节导轨水平,使滑块能够作匀速直线运动;根据实验原理可知,题中通过光电门来测量速度,因此应测量小车经过光电门的时间l设光电门的宽度为l ,那么有:经过光电门的速度为V i - t il整体经过光电门的速度为:V2t2由动量守恒定律可知, miV i (m i+m2)v2代入解得:m i (m i m2) ----- .t i t2io.如下图,在水平面上有一弹簧,其左端与墙壁相连, O点为弹簧原长位置, .点左侧水平面光滑,水平段OP长L=im, P点右侧一与水平方向成分=的足够长的传送带与水平面在P点平滑连接,皮带轮逆时针转动速率为3m/s, 一质量为ikg可视为质点的物块A压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能跖=力,物块与OP段动摩擦因数串口2 =--“1 = 0」,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数3,传送带足够长,A与B的碰撞时间不计,碰后 A. B交换速度,重力加速度g=10巾/乒,现释放A,求:(2)从A. B 第一次碰撞后到第二次碰撞前, B 与传送带之间由于摩擦而产生的热量(3) A. B 能够碰撞的总次数【答案】(1)仔.=恤/可⑵12.25/⑶6次试题分析:(1)设物块质量为 m, A 与B 第一次碰前的速度为 H,那么:碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为VB—.三.gm 2此过程相对运动路程 ’此后B 反向加速,加速度仍为'打,与传送带共速后匀速运动直至与A 再次碰撞,加速时间为此过程相对运动路程 ‘ ’‘全过程生热,(3) B 与A 第二次碰撞,两者速度再次互换,此后 A 向左运动再返回与 B 碰撞,B 沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰 撞.那么对A.B 和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为 n=2.25,所以碰撞总次数为 N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】此题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规 律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度11 .如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 vo 滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹(2)设A.B 第一次碰撞后的速度分别为=VB =那么:5 皿干阳T 丽8加必 解得:ui = gsii\& + 为 gesG = lOm/52 运动的时间位移为-t 2 = 0.45m 2=2 " imgL性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 1 2 试题分析:小滑块以水平速度 v o 右滑时,有: fL =0- - mv 0 (2分)21 2 1 2小滑块以速度v 滑上木板到运动至碰墙时速度为 v i,那么有 fL = - mv i -- mv (2分)滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为v2, 那么有 m, =(m 4m)v 2(2 分)1 2 1 . 一 . 2由总能重寸恒可得: fL= —mv 1 — - (m 4m)v 2 (2分) 2 2… … v 3上述四式联立,解得 一一(1分)v o 2 考点:动能定理,动量定理,能量守恒定律.12 .如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①M所以v=- ---------- v 0方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 (1) M m v o M m (2) 2M m 2 v o 2 Mg一的值. 0v'那么由动量守恒定律得:【解Mv 0 mv0、,,.Mv0 — mv0="Mv' v --------------------- 方向向右考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.。
高考物理动量守恒定律的应用解题技巧及经典题型及练习题 (含答案)
一、高考物理精讲专题动量守恒定律的应用 1. 如图所示,在光滑的水平面上有一足够长的质量
质量m=1kg的小物块,长木板与小物块间的动擦因数 止.现用F=14N的水平恒力向石拉长木板,经时间
(1) 小物块在长木板上发生相对滑幼时,小物块加速度 (2) 刚撤去F时,小物块离长木板右端的距离 s; ⑶撒去F后,系统能损失的最大机械能 AE. 【答案】(1) 2m/s2 (2) 0.5m (3) 0.4J
【解析】 【分析】 (1 )对木块受力分析,根据牛顿第二定律求出木块的加速度; (2) 先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出 长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离; (3) 撤去F后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损 失的最大机械能AE. 【详解】 (1) 小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则: 解得a1=卩g=2m/s (2) 对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-卩mg=Ma, 解得:a2= 3m/s2. 1 1 小物块运动的位移: X1= a1t2= x 2支m=1m ,
2 2
11 长木板运动的位移: X2= a2t2= x 3 Xm=1.5m ,
2 2
则小物块相对于长木板的位移: △x=X2-x1=1.5m-1m=0.5m . (3) 撤去F后,小物块和木板的速度分别为: vm=a1t=2m/s v=a2t=3m/s 小物块和木板系统所受的合外力为 0,动量守恒:mvm Mv (M m)v
解得 v 2.8m/s 从撤去F到物体与木块保持相对静止,由能量守恒定律:
12 12 mv m Mv 2 2
解得?E=0.4J 【点睛】 该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认 真分析物体
M=4kg的长木板,在长木板右端有一 卩=0.2开始时长木板与小物块均静 t=1s撤去水平恒力 F, g=10m/s2.求
a的大小;
mg=ma
E丄(M 2 m)v 的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式. 2. 如图所示,一质量 M=4kg的小车静置于光滑水平地面上,左侧用固定在地面上的销钉 挡住.小车上表面由光滑圆弧轨道 BC和水平粗糙轨道 CD组成,BC与CD相切于C, BC 所对圆心角0= 37° CD长 —3m .质量m=1kg的小物块从某一高度处的 A点以v°= 4m/s 的速度水平抛出,恰好沿切线方向自 B点进入圆弧轨道,滑到 D点时刚好与小车达到共同
(3) 若在小物块抛出时拔掉销钉,求小车向左运动到最大位移年时滑块离小车左端的水平 距离. 【答案】(1) 1.2m (2) 1s (3) 3.73m 【解析】 【分析】 【详解】 (1 )由平抛运动的规律得: gt tan 0=— Vo
x= vot 得:x=1.2m
(2)物块在小车上 CD段滑动过程中,由动量守恒定律得: mw=(M+m) v 1 1 由功能关系得:fL= — mw2— ( M + m) v2 2 2
对物块,由动量定理得:一 ft0=m v— m V1
得:t0=1s 由几何关系得: H- 1gt2=R(1 - cose)
B、C间的水平距离:XBC=RsinB 1 2 1 2 mg= — mvi — — ( M + m) v
2 2
若拔掉销钉,小车向左运动达最大位移时,速度为 0,此时物块速度为 4m/s 由能量守恒: mgH= i mg &-XBC
)
得:Zx=3.73m
3. 如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 O 点,绳子刚好被拉直且偏离竖直方向的角度 0 =60.小明从A点由静止往下摆,达到 O点 正下方B点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m,浮漂圆心与 C点的水平距离x=2.7m、竖直高度y=1.8m,浮漂半径 R=0.3m、不计厚度,小明的质量 m=60kg,平板车的质量 m=20kg,人与平板车均可视为质
点,不计平板车与平台之间的摩擦.重力加速度 g=10m/s2,求: (2) 小明跳离平板车时的速度在什么范围 ?
(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ? 【答案】 (1) 1200N (2) 4m/sWv< 5m/s( 3) 480J 【解析】 【分析】 (1) 首先根据机械能守恒可以计算到达 B点的速度,再根据圆周运动知识计算拉力大
小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒 规律计算即可. 【详解】 解(I)从A到B.由功能关系可得 1 2 mgL(1 cos ) mv ①
2
代人数据求得v=4 m/s② 2 mv — 在最低点B处,T mg
(1)轻绳能承受最大拉力不得小于多少 ③ L
联立①②解得,轻绳能承受最大拉力不得小于 (2) 小明离开滑板后可认为做平抛运动
T=1200N 5 1 2 竖直位移y gt④ 2
离C点水平位移最小位移 x R Vmint⑤ 离C点水平位移最大为 x R vmint⑥ 联立④⑤⑥解得 小明跳离滑板时的速度 4 m/s (3)小明落上滑板时,动量守恒 mv (m m0)V| ⑦
代人数据求得Vi=3 m/s⑧ 离开滑板时,动量守恒 (m m0)v| mvC moV2 ⑨
将⑧代人⑨得 V2=-3 m/s 由功能关系可得 1 2 1 2 1 2 W ( — mvC m0v2) m m0 v1 ⑩.
2 2 2
解得W=480 J
4. 如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑 圆形轨道的最低端相切,并平滑连接. A, B两滑块(可视为质点)用轻细绳拴接在一起, 在它们中间夹住一个被压缩的微小轻质弹簧•两滑块从弧形轨道上的某一高度 P点处由静 止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块 弹开,其中前面的滑块 A沿圆形轨道运动恰能通过圆形轨道的最高点,后面的滑块 B恰能 返回P点•己知圆形轨道的半径 R 0.72m,滑块A的质量mA 0.4kg,滑块B的质量 mB 0.1kg,重力加速度g取10m /s2,空气阻力可忽略不计.求:
(1) 滑块A运动到圆形轨道最高点时速度的大小; (2) 两滑块开始下滑时距圆形轨道底端的高度 h ;
(3) 弹簧在将两滑块弹开的过程中释放的弹性势能. 5
【答案】 6
需
(1) m/s ; ( 2) 0.8 m ; ( 3) 4 【答案】(1)v 【解析】
【分析】 【详解】 (1)设滑块A恰能通过圆形轨道最高点时的速度大小为
根据牛顿第二定律有 mAg=mA-^
R
解得:V2= 6_5 m/s
5
(2)设滑块A在圆形轨道最低点被弹出时的速度大小为 点运动到最高点的过程,根据机械能守恒定律,有
解得:Ep=4J 5. 如图,是某科技小组制做的嫦娥四号模拟装置示意图,用来演示嫦娥四号空中悬停和着 陆后的分离过程,它由着陆器和巡视器两部分组成,其中着陆器内部有喷气发动机,底部 有喷气孔,在连接巡视器的一侧有弹射器。演示过程:先让发动机竖直向下喷气,使整个 装置竖直上升至某个位置处于悬停状态,然后让装置慢慢下落到水平面上,再启动弹射器 使着陆器和巡视器瞬间分离,向相反方向做减速直线运动。若两者均停止运动时相距为 L,着陆器(含弹射器)和巡视器的质量分别为 M和m,与地面间的动摩擦因数均为 卩,重力
加速度为g,发动机喷气体口截面积为 S,喷出气体的密度为 p;不计喷出气体对整体质量 (1 )装置悬停时喷出气体的速度;
(2 )弹射器给着陆器和巡视器提供的动能之和。
M mg M m —S- (2) MmgLMPH7
V2
,
Vi,对于滑块A从圆形轨道最低 1 2 1 2 — mAV1 =mAg?2R+§ mAV2 可得:V1=6m/s 设滑块A和B运动到圆形轨道最低点速度大小为 Vo, 1 对滑块A和B下滑到圆形轨道最低点
的过程,根据动能定理,有( mA+mB) gh= ( mA+mB) VO
2
2
同理滑块B在圆形轨道最低点被弹出时的速度大小也为 于A、B两滑块所组成的系统水平方向动量守恒,( 解得:h=0.8 m (3)设弹簧将两滑块弹开的过程中释放的弹性势能为 、 一 1 1 机械能守恒定律,有 (mA+mB)V02 + Ep= mAv12+ —mBW
2 2 2
V0,弹簧将两滑块弹开的过程,对 mA+mB) vo=mA V1 -m BVO
§,对于弹开两滑块的过程,根据 1