[推荐学习]度七年级数学上学期期末调研考试试题 新人教版
- 格式:doc
- 大小:48.63 KB
- 文档页数:8
新人教版七年级数学上册期末测试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个6.观察下列图形,是中心对称图形的是( )A .B .C .D .7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组34(2)521x x yx y-+=⎧⎨+=⎩2.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.3.如图,在单位正方形网格中,建立了平面直角坐标系,xOy试解答下列问题:(1)写出ABC三个顶点的坐标;(2)画出ABC向右平移6个单位,再向下平移2个单位后的图形111△;A B C (3)求ABC的面积.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、D5、B6、D7、C8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、55°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15、40°6、5三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=-⎩2、(1)m=-5 (2)373、(1)A(-1,8),B(-4,3),C(0,6);(2)答案略;(3)112.4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。
某某省资阳市简阳市2015-2016学年度七年级数学上学期期末考试试题一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有.①a>0;②a<0;③a=0.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.某某省资阳市简阳市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.的相反数是()A.2 B.﹣2 C.﹣D.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:的相反数是﹣.故选C.【点评】本题考查相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.属于基础题型,比较简单.2.用面值1元的纸币换成面值为1角或5角的硬币,则换法共有()A.4种B.3种C.2种D.1种【考点】二元一次方程的应用.【专题】应用题;压轴题.【分析】设1角的硬币为x个,5角的硬币为y个,根据面值是1元,即10角列二元一次方程,求其非负整数解即可.【解答】解:设1角的硬币为x个,5角的硬币为y个,则x+5y=10,即x=10﹣5y,∵x,y是非负整数,∴x=0,5,10,y=2,1,0.故换法共有3种.故选B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求其整数解.3.如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B【考点】两点间的距离.【分析】根据题图,要从A地到B地,一定要经过E点且必须经过线段EB,所以只要考虑A到E的路线最短即可,根据“两点之间线段最短“的结论即可解答.【解答】解:根据图形,从A地到B地,一定要经过E点且必须经过线段EB,所以只要找出从A到E的最短路线,根据“两点之间线段最短“的结论,从A到E的最短路线是线段AE,即A﹣F﹣E,所以从A地到B地最短路线是A﹣F﹣E﹣B.故选:D.【点评】此题主要考查了两点间的距离,关键时尽量缩短两地之间的里程.4.下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】有理数的除法;有理数的加法;有理数的减法;有理数的乘法.【分析】分别根据有理数的减法、加法、乘法、除法法则计算各式,然后判断.【解答】解:①0﹣(﹣5)=5,错误;②(﹣3)+(﹣9)=﹣12,正确;③,正确;④(﹣36)÷(﹣9)=4,错误.故选B.【点评】本题考查了有理数的加、减、乘、除运算法则.注意确定运算的符号.5.若M=4x2﹣5x+11,N=3x2﹣5x+10,则M和N的大小关系是()A.M>N B.M=N C.M<N D.无法确定【考点】整式的加减;非负数的性质:偶次方.【分析】利用作差法比较M与N的大小即可.【解答】解:∵M=4x2﹣5x+11,N=3x2﹣5x+10,∴M﹣N=(4x2﹣5x+11)﹣(3x2﹣5x+10)=4x2﹣5x+11﹣3x2+5x﹣10=x2+1>0,∴M>N.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.6.下列说法中,正确的是()A.3是单项式B.﹣的系数是﹣3,次数是3C.不是整式D.多项式2x2y﹣xy是五次二项式【考点】单项式;多项式.【分析】根据单项式和多项式的概念求解.【解答】解:A、3是单项式,故本选项正确;B、﹣的系数是﹣,次数是3,故本选项错误;C、是整式,故本选项错误;D、多项式2x2y﹣xy是三次二项式,故本选项错误.故选A.【点评】本题考查了单项式的知识:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.7.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90° B.105°C.120°D.135°【考点】钟面角.【分析】钟表12个数字,每相邻两个数字之间的夹角为30度.【解答】解:∵1个小时在时钟上的角度为180°÷6=30°,∴3.5个小时的角度为30°×3.5=105°.故选B.【点评】本题主要考查角度的基本概念.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.8.如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C等于()A.35° B.75° C.70° D.80°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】利用平行线的性质和三角形内角和的定理即可求得.【解答】解:∵∠A=35°,∠AOB=75°,根据三角形的内角和是180°,∴∠B=70°.∵AB∥CD,根据两条直线平行,内错角相等,∴∠C=∠B=70°.故选C.【点评】考查了平行线的性质:两条直线平行,内错角相等.以及三角形的内角和定理:三角形的内角和是180°.9.观察下列图形,其中不是正方体的展开图的为()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体,而D选项,上底面不可能有两个,故不是正方体的展开图.故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.10.日常生活中我们使用的数是十进制数.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0,1,如二进制数1101记为11012,11012通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数111012转换为十进制数是()A.4 B.25 C.29 D.33【考点】有理数的混合运算.【专题】新定义.【分析】由题意知,111012可表示为1×24+1×23+1×22+0×2+1,然后通过计算,所得结果即为十进制的数.【解答】解:∵11012通过式子1×23+1×22+0×2+1转换为十进制数13,∴111012=1×24+1×23+1×22+0×2+1=29.故选C.【点评】本题考查二进制和十进制之间的转换.需注意观察所给例题及二进制数的特点.二、填空题:每小题3分,共18分11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c= 2或0 .【考点】有理数的加减混合运算;绝对值.【专题】计算题.【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.12.多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是﹣a3b﹣3a2b+ab3﹣3 .【考点】多项式.【专题】计算题.【分析】根据多项式次数的定义求解.【解答】解:多项式ab3﹣3a2b﹣a3b﹣3按字母a降幂排列是:﹣a3b﹣3a2b+ab3﹣3.故答案为:﹣a3b﹣3a2b+ab3﹣3.【点评】本题考查了多项式的定义,解题的关键是熟练掌握定义,并能灵活运用.13.矩形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成,则能射进阳光部分的面积是.【考点】列代数式.【专题】压轴题.【分析】能射进阳光部分的面积=长方形的面积﹣直径为2b的半圆的面积.【解答】解:能射进阳光部分的面积=2ab﹣πb2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.阴影部分的面积一般应整理为一个规则图形的面积.14.如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是内错角相等,两直线平行.【考点】平行线的判定.【专题】应用题.【分析】根据图形知道已知∠PAB=∠ACD,利用内错角相等,判断两直线平行.【解答】解:∵∠PAB=∠ACD,∴CD∥AP(内错角相等,两直线平行).【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.15.如果实数a满足a﹣|a|=2a,那么下面三个结论中正确的有②③.①a>0;②a<0;③a=0.【考点】绝对值.【分析】根据a≤0时,|a|=﹣a,即可得出结论.【解答】解:∵实数a满足a﹣|a|=2a,∴|a|=﹣a,即a<0,∴②正确,∵当a=0时,实数a满足a﹣|a|=2a=0,∴③正确,故答案为:②③.【点评】本题主要考查了绝对值的定义,解答本题的关键是熟练掌握:如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.16.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 4 .【考点】代数式求值.【专题】图表型.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.【点评】解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三、解答题:共52分17.计算:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算法则首先计算乘方,然后计算乘除,最后计算加减,同级别运算从左向右进行计算,即可得出结果.【解答】解:[(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2|=[﹣1++1﹣18]÷|﹣2×|=﹣÷=﹣【点评】题目考查了有理数的混合运算,解决此类问题的关键是掌握有理数混合运算法则,题目整体难易程度适中,适合课后训练.18.如图,在△ABC中,∠C=90°,若BD∥AE,∠DBC=20°,求∠CAE的度数.【考点】平行线的性质.【分析】过点C作CF∥BD,根据两直线平行,内错角相等即可求解.【解答】解:过点C作CF∥BD,则CF∥BD∥AE,∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90°﹣20°=70°,∵CF∥AE,∴∠CAE=∠FCA=70°.答:∠CAE的度数为70°.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等.正确作出辅助线是解题的关键.19.如图所示,∠ABC=80°,∠CBD=30°,BE平分∠ABD.求∠CBE的度数.【考点】角的计算;角平分线的定义.【分析】首先求得∠ABD的度数,然后根据角平分线的定义求得∠EBD的度数,然后根据∠CBE=∠EBD ﹣∠CBD求解.【解答】解:∠ABD=∠ABC+∠CBD=80°+30°=110°;∵BE是∠ABD的平分线,∴∠EBD=∠ABD=55°,∴∠CBE=∠EBD﹣∠CBD=55°﹣30°=25°.【点评】本题考查了角度的计算,正确理解题目中的角的关系是关键.20.一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票价,女儿按半价优惠”,乙方旅行社告知:“家庭旅游可按团体票计价,即每人均按全票价的收费”,如果这两家旅行社每人的全票价都为600元,那么哪家旅行社的费用更优惠?【考点】有理数的混合运算;有理数大小比较.【专题】应用题.【分析】按照旅行社的计算费用要求代入数据进行计算,进一步比较得出答案即可.【解答】解:甲旅行社的费用:600+600×=1500(元)乙旅行社的费用:600××3=1440(元)因为1440<1500,所以乙旅行社的费用更优惠.【点评】此题考查有理数的混合运算的实际运用,理解题意,掌握两种计算方法是解决问题的关键.21.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?【考点】角的计算;角平分线的定义.【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC=α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC=β+15°,∠CON=β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.【解答】解:(1)∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°;(2)∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC=∠AOC=α+15°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=α+15°﹣15°=α.(3)∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC=∠AOC=β+45°,∠CON=∠BOC=β.∵∠MON=∠MOC﹣∠CON,∴∠MON=β+45°﹣β=45°.(4)根据(1)、(2)、(3)可知∠MON=∠BOC,与∠BOC的大小无关.【点评】本题主要考查的是角的计算、角平分线的定义,求得∠MOC和∠CON的大小,然后再依据∠MON=∠MOC﹣∠CON求解是解题的关键.22.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE= 6 cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变.【考点】两点间的距离.【分析】(1)由点D、E分别是AC和BC的中点,C点为AB的中点,求出AC,BC,CD,CE的长度,运用DE=CD+CE即可得出答案.(2)先求出BC,再利用中点关系求出CD,CE即可得出DE的长.(3)设AC=acm,由点D、E分别是AC和BC的中点,可得DE=CD+CE=(AC+BC)=AB=6cm,即可得出不论AC取何值(不超过12cm),DE的长不变,【解答】解:(1)∵AB=12cm,点D、E分别是AC和BC的中点,C点为AB的中点,∴AC=BC=6cm,∴CD=CE=3cm,∴DE=CD+CE=6cm,故答案为:6.(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm,(3)设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=(AC+BC)=AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变,【点评】本题主要考查线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
人教版七年级上册数学期末考试试题一、单选题1.﹣2021的绝对值是()A .2021B .12021C .12021-D .﹣20212.数据380000用科学记数法表示为()A .338010⨯B .53.8010⨯C .438.010⨯D .60.38010⨯3.下列说法正确的是()A .23x -的系数是3B .25xy π的系数是5C .23x y 的次数是5D .12xy π的次数是34.若23n x y -与35m x y 是同类项,则m-n 的值是()A .0B .1C .1-D .55.下图是正方体展开图的一种,那么原正方体中,与“建”字所在面对面上的汉字是()A .礼B .年C .百D .赞6.下列方程的变形,正确的是()A .由35x +=,得53x =+B .由74x =-,得74x =-C .由102y =,得2y =D .由32x +=-,得23x =--7.下列叙述正确的是()A .画直线10AB =厘米B .若两数的和为负数,则这两个数一定负数C .河道改直可以缩短航程是因为“经过两点有一条直线并且只有一条直线”D .由四舍五入得到的近似数36.810⨯,精确到百位8.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则∠BAC 的度数是()A.60°B.100°C.120°D.140°9.已知有理数a,b,c在数轴上的位置如图所示,则下列结论不正确的是()A.c<a<b B.abc>0C.a+b>0D.|c﹣b|>|a﹣b|10.某书中有一方程213x+=-■,其中一个数字被污渍盖住了,书后该方程的答案为1x=-,那么■处的数字应是()A.5B.-5C.12D.12-二、填空题11.冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,则冷藏室比冷冻室的温度高_________℃.12.比较大小:-3_________-π.13.若α∠的余角是23°20',则α∠=_________.14.已知3x-8与2互为相反数,则x=________.15.长方形的长是3a,宽是2a-b,则长方形的周长是___________.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为_________.17.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为___.18.按照如图所示的操作步骤,若输入的值为4,则输出的值为______.三、解答题19.计算:(1)5﹣4×(﹣14)﹣|﹣3|(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]20.解方程:(1)10x ﹣12=5x+15(2)1121(1)]()3232x x x --=-21.先化简,再求值:()22(69)63m mn n mn ---,其中1m =,3n =-.22.如图,已知C ,D 是线段AB 上的两点,C 是AD 的中点,3CD BD =.(1)图中以点A ,B ,C ,D 中任意两点为端点的线段共有多少条;(2)设2cm BD =,求AB 的长.23.某车间32名工人生产桌子和椅子,每人每天平均生产桌子15张或椅子50把,一张桌子要配两把椅子,已知车间每天安排x 名工人生产桌子.(1)求车间每天生产桌子和椅子各多少张?(用含x 的式子表示)(2)如果每天生产的桌子和椅子刚好配套,求x 的值.24.如图,将直角三角尺OCD 的直角顶点O 放在直线AB 上,并且∠AOC 的度数是∠BOD 的度数的2倍.(1)∠BOD 的余角是_________,∠BOD 的补角是____________;(2)求∠BOD 的度数;(3)若OE ,OF 分别平分∠BOD ,∠BOC ,求∠EOF 的度数.25.玲玲用3天时间看完一本课外读物,第一天看了a 页,第二天看的页数比第一天多50页,第三天看的页数比第一天少20页.(1)用含a 的代数式表示这本书的页数;(2)当a =50时,这本书的页数是多少?(3)如果这本书有270页,玲玲第一天看了多少页?26.如图,在数轴上点A 表示数a ,点B 表示数b ,a 、b 满足()2530a b -++=,点O 是数轴原点.(1)计算点A 表示的数、点B 表示的数;(2)若将数轴折叠,使得点A 与点B 重合,则点O 与数_________表示的点重合;(3)点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在线段AB 上找一点C ,使2AC BC =,写出点C 在数轴上表示的数;(4)若点A 以0.5cm/s 的速度向左移动,2秒后,点B 以1cm/s 的速度向右移动,则B 出发几秒后,A 、B 两点相距1个单位长度?参考答案1.A 【分析】根据绝对值的意义即可作答.【详解】﹣2021的绝对值即为:20212021-=.故选:A .【点睛】本题考查了求解一个数的绝对值的知识,负数的绝对值是它的相反数,非负数的绝对值是其本身.2.B 【分析】根据科学记数法的定义,即可得到答案.【详解】380000=53.8010⨯,故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法的形式:a×10n (1≤|a|<10,n 为整数),是解题的关键.3.C 【分析】根据单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数,逐项判断,选择即可.【详解】23x -的系数是-3,故A 选项错误,不符合题意;25xy π的系数是5π,故B 选项错误,不符合题意;23x y 的次数是5,故C 选项正确,符合题意;12xy π的次数是2,故D 选项错误,不符合题意;故选C .【点睛】本题考查单项式的系数和次数.掌握单项式的系数和次数的定义是解答本题的关键.4.C 【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】由题意得:m=2,n=3,∴231m n -=-=-.故选:C .【点睛】本题考查了同类项.解题的关键是熟练掌握同类项的定义.5.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“礼”与“赞”是相对面,“建”与“百”是相对面,“党”与“年”是相对面;故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手.6.D 【分析】直接根据等式的性质求解.【详解】3+x=5,两边同时减去3,得x=5-3,A 错误;74x =-,两边同时除以7,得47x =-,B 错误;102y =,两边同时乘以2,得0y =,C 错误;32x +=-,两边同时减去3,得23x =--,D 正确;故答案为:D .【点睛】本题主要考查了等式的性质应用,准确计算是解题的关键.7.D 【分析】根据两点间的距离的含义和求法,近似数,以及直线的性质和应用,逐一判断即可.【详解】∵直线向两边无限延伸,∴直线没有具体的长度,∴选项A 不正确;∵若两数的和为负数,则这两个数可因为一正一负,∴选项B 不正确;∵河道改直可以缩短航程,是因为两点间线段的长度最短,∴选项C 不正确;∵由四舍五入得到的近似数36.810⨯,精确到百位,∴选项D 正确.故选D .【点睛】此题考查近似数,两点间的距离的含义和求法,以及直线的性质和应用,解题关键在于熟练掌握其定义.8.D 【分析】∠BAC 等于三个角的和,求出各角的度数,相加即可.【详解】解:如图,∵∠BAE=60°,∴∠BAD=30°,∴∠BAC=30°+90°+20°=140°,故选:D .【点睛】本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.9.C 【分析】由a 、b 、c 在数轴上的位置可判断选项A ;由a 、b 、c 的符号可判断选项B ;由有理数的加法法则可判断选项C ;由两点之间的距离可判断选项D .【详解】解:∵a 、b 、c 在数轴上的位置从左到右排列为:c 、a 、b ,∴c <a <b ,故选项A 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,c <0,∴abc >0,故选项B 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,且|a|>|b|,∴a+b <0,故选项C 错误;由a 、b 、c 在数轴上的位置可知:表示数a 的点到表示数b 的点的距离小于表示数c 的点到表示数b 的点的距离,∴|c ﹣b|>|a ﹣b|,故选项D 正确;故选C .【点睛】本题主要考查了有理数与数轴,解题的关键在于能够通过数轴准确判断a 、b 、c 的符号和绝对值的大小.10.A 【分析】将x=-1代入方程23x +■=−1即可求解.【详解】解:∵x=-1是方程23x +■=−1的解,∴2(1)3+⨯-■=−1,∴■=5,故选:A .【点睛】本题考查了一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.11.12【分析】结合题意,根据正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,∴冷藏室比冷冻室的温度高:()5712--=℃故答案为:12.【点睛】本题考查了正负数、有理数加减运算的知识;解题的关键是熟练掌握有理数加减运算的性质,从而完成求解.12.>【分析】先比较3和π的大小,再根据负数绝对值大的反而小即可比较-3和-π的大小.【详解】解:因为3-<π-,所以-3>-π.故答案为:>.【点睛】本题主要考查了实数的大小的比较,两个负数比较大小,绝对值大的反而小.本题中要注意的是π是无理数即无限不循环小数.13.6640'︒【分析】根据余角的定义“如果两个角的和是直角,那么称这两个角互为余角”,计算即可.【详解】902320896023206640α''''∠=︒-︒=︒-︒=︒,故答案为:6640'︒.14.2【详解】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x 的一元一次方程,解方程即可得答案.15.10a -2b 【分析】根据长方形的周长公式,结合整式加减运算法则进行计算即可.【详解】由题意得:2(3a+2a-b )=2(5a-b )=10a-2b ,故答案为10a-2b.【点睛】此题考查了整式加减的应用及长方形周长的计算,熟练掌握整式加减法则是解题的关键.16.2cm 或4cm 【分析】由点在线段的位置关系,线段的和差计算AC 的长为2cm 或4ccm .【详解】AC 的长度有两种情况:①点C 在线段AB 的延长线时,如图1所示:∵AC=AB+BC ,AB=1cm ,BC=3cm ,∴AC=1+3=4cm ;②点C 在线段AB 的反向延长线时,如图2所示:∵AC=BC-AB,AB=1cm,BC=3cm,∴AC=3-1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.【点睛】本题综合考查了线段的延长线,线段的反向延长线,线段的和差计算等知识点,重点掌握两点间距离计算方法,易错点点在线段的反向延长线上时,计算线段的大小.17.2【分析】根据题意,可得:2x+2﹣x=2x+x﹣2,据此求出x的值为多少即可.【详解】解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.【点评】此题主要考查了新定义下的运算,以及解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.28【分析】根据图中的操作步骤一步步计算即可.【详解】根据题意:输入4,得到2416,∵10<16,∴(16-9)×4=28.故答案为28.【点睛】本题是程序类题目,主要考察有理数运算和理解能力,判断大小选择正确的路径计算是关键.19.(1)3(2)-21【分析】(1)根据有理数的混合运算的法则,先计算乘法及绝对值运算,再计算加减运算即可求出值;(2)根据有理数的混合运算的法则,先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)5﹣4×(﹣14)﹣|﹣3|=5+1﹣3=3;(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]=﹣1﹣4×5=﹣21.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(1)x=5.4;(2)x=1.【分析】(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.【详解】(1)移项,得10x ﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=5.4;(2)去括号,得16x +=213x -,方程的两边同时乘以6,得x+1=4x ﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.21.24m n -,5-.【分析】先去括号,再合并同类项,最后代入1m =,3n =-计算解题,注意添括号的作用【详解】()22(69)63m mn n mn ---2=466m mn n mn--+24m n =-当1m =,3n =-时原式24m n =-241(3)=⨯--49=-5=-【点睛】本题考查整式的化简求值,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)共6条;(2)14cm 【分析】(1)结合题意,根据线段的性质分析,即可得到答案;(2)结合题意,根据线段性质,得6cm CD =;再结合线段中点的性质,推导得2AD CD =,通过线段和差计算,即可得到答案.【详解】(1)根据题意,图中以点A ,B ,C ,D 中任意两点为端点的线段有:AB 、AC 、AD 、CD 、CB 、DB ,共6条;(2)∵2cm BD =,3CD BD=∴6cmCD =∵C 是AD 的中点∴212cmAD CD ==∴14cm AB AD BD =+=.【点睛】本题考查了线段的知识;解题的关键是熟练掌握线段中点、线段和差运算的性质,从而完成求解.23.(1)车间每天生产桌子:15x 张;车间每天生产椅子:501600x -+张;(2)20x =【分析】(1)根据题意,得车间每天安排()32x -名工人生产椅子;结合代数式的性质分析,即可得到答案;(2)结合题意,根据一元一次方程的性质列方程并求解,即可得到答案.【详解】(1)∵车间每天安排x 名工人生产桌子,车间32名工人生产桌子和椅子∴车间每天安排()32x -名工人生产椅子∵一张桌子要配两把椅子∴车间每天生产桌子:15x 张;车间每天生产椅子:()5032501600x x ⨯-=-+张;(2)∵每天生产的桌子和椅子刚好配套∴152501600x x ⨯=-+∴30501600x x +=∴20x =.【点睛】本题考查了代数式、一元一次方程的知识;解题的关键是熟练掌握代数式、一元一次方程的性质,从而完成求解.24.(1)∠AOC ;∠AOD(2)∠BOD=30°;(3)∠EOF=45°.【分析】(1)根据余角和补角的定义可直接得出结论;(2)根据补角的定义得到∠AOC+∠BOD=90°,根据题意列式计算求出∠BOD ;(3)根据角平分线的定义分别求出∠BOF、∠BOE,结合图形计算,得到答案.(1)解:由题意可得∠COD=90°,∴∠AOC+∠BOD=90°,∠AOD+∠BOD=180°,∴∠BOD的余角是∠AOC,补角是∠AOD,故答案为:∠AOC;∠AOD;(2)解:∵∠COD=90°,∠AOC+∠COD+∠BOD=180°,∴∠AOC+∠BOD=90°,∵∠AOC的度数是∠BOD的度数的2倍,∴∠AOC=2∠BOD,∴2∠BOD+∠BOD=90°,∴∠BOD=30°;(3)解:由题意得,∠BOC=∠BOD+∠COD=30°+90°=120°,∵OE,OF分别平分∠BOD,∠BOC,∴∠BOF=12∠BOC=60°,∠BOE=12∠BOD=15°,∴∠EOF=∠BOF-∠BOE=45°.【点睛】本题考查的是角平分线的定义、余角和补角的概念,掌握相关的概念和定义是解题的关键.25.(1)3a+30(2)180(3)80【分析】(1)先用含a的代数式表示出第二天、第三天的读书页码,再表示出这本书的页码;(2)把a=50代入,求出书的页数;(3)利用(1)中关系式把270代入求出答案.【详解】(1)这本书的页数为:a+(a+50)+(a-20)=a+a+50+a﹣20,=3a+30;(2)当a =50时,3a+30,=3×50+30,=180,答:当a =50时,这本书的页数是180页;(3)由题意可得:3a+30=270,解得:a =80,答:玲玲第一天看了80页.【点睛】本题考查了列代数式、求代数式的值.解决本题的关键是弄清关键词,理清题意.26.(1)点A 表示的数为5、点B 表示的数3-;(2)2;(3)13-;(4)B 出发4或163t =秒后,A 、B 两点相距1个单位长度【分析】(1)根据绝对值、乘方的性质,得50a -=,()230b +=,从而得50a -=,30b +=,通过求解一元一次方程,即可得到答案;(2)点G 为线段AB 的中点,根据数轴和线段中点的性质,得点G 表示的数;结合题意,再根据数轴的性质计算,即可得到答案;(3)根据题意,计算得8AB =,结合线段的和差性质,列一元一次方程并求解,得83BC =,再根据坐标的性质计算,即可得到答案;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度,根据题意列一元一次方程并求解,即可得到答案.【详解】(1)∵()2530a b -++=∴50a -=,()230b +=∴50a -=,30b +=∴5a =,3b =-∴点A 表示的数为5、点B 表示的数3-;(2)如图,点G 为线段AB 的中点∵点A 表示的数为5、点B 表示的数3-;∴点G 表示的数为:()5312+-=∴101OG =-=∵将数轴折叠,使得点A 与点B 重合∴将数轴沿点G 折叠∴与点O 重合的点为:112+=,即点O 与数2表示的点重合故答案为:2;(3)∵点A 表示的数为5、点B 表示的数3-;∴()538AB =--=∵点C 在线段AB 上,且2AC BC =,又∵AC BC AB+=∴38BC BC AB +==∴83BC =∵点B 表示的数为3-∴点C 表示的数为:81333-+=-;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度根据题意,得:()0.5281t t ++=-,或()0.528+1t t ++=去括号,得:0.5181t t ++=-,或0.518+1t t ++=移项并合并同类项,得:4t =,或163t =∴B 出发4或163t =秒后,A 、B 两点相距1个单位长度.。
2024-2025学年上学期初中数学人教版七年级期末必刷常考题之有理数一.选择题(共5小题)1.(2024秋•长寿区期中)下列各数中为负数的是()A.1B.﹣2020C.0.2D.122.(2024秋•五华区期中)下列各组有理数大小比较,正确的是()A.1<﹣1B.−(−0.3)<|−13|C.−821<−37D.﹣(﹣5)<03.(2023秋•商南县校级期末)在我校举办的“喜迎建党100周年”党史知识抢答赛中,如果+10分表示加10分,那么扣20分表示为()A.﹣20分B.20分C.±20分D.10分4.(2024秋•新城区校级期中)有理数a,b在数轴上对应点的位置如图所示,结合数轴化简|a+1|﹣|1﹣b|+|b ﹣a|的结果是()A.2b B.3a﹣2b﹣2C.2b﹣2a﹣2D.﹣2a﹣25.(2024秋•蜀山区校级期中)下列结论:①若|2﹣x|=x﹣2,则x>2;②若a>b,则|a|>|b|;③三个实数a,b,c满足a+b+c=0,|a|>|b|>|c|,则一定有a>0,b<0,c<0;④若ab>0,则|U+|U+B|B|的值为3.其中错误的有()A.1个B.2个C.3个D.4个二.填空题(共5小题)6.(2024秋•南昌期中)若A,B,M是数轴上不同的三点,且点A表示的数为﹣3,点B表示的数为1,点M表示的数为m,当其中一点到另外两点的距离相等时,m的值可以是.7.(2024秋•大兴区期中)图片旋转是人们处理图象的日常操作之一.如果将图片顺时针方向旋转30°记为+30°,那么将图片逆时针方向旋转45°,记为°.8.(2024秋•福田区校级期中)如表是莲花中学趣味足球比赛得分记录表:班级名称1班2班3班4班5班6班7班得分(分)7﹣402﹣1﹣3﹣6根据以上数据,得分最低的班级是班.9.(2024秋•沙坪坝区校级期中)若非零实数a,b满足|3a﹣6|+|b+1|=0,则b a=.10.(2024秋•龙岗区期中)有理数a,b在数轴上表示如图:则下列结论正确的有(填序号).①a+b>0,②a﹣b>0,③|a|<b,④﹣b>a,⑤−r B<0,⑥a+b=﹣(|a|﹣|b|).三.解答题(共5小题)11.(2023秋•赣州期末)某中学为提高中学生身体素质,积极倡导“阳光体育”运动,其中一个运动项目为“一分钟跳绳”.七年级某班10名参赛代表成绩以160次为标准,超出的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):+18,﹣1,+22,﹣2,﹣5,+12,﹣8,+1,+8,+15.(1)求该班参赛代表最好的成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?12.(2024秋•闵行区校级期中)(1)填空:写出数轴上的点A、点B所表示的数.点A表示的数是,点B表示的数是.(2)已知点C表示的数是73,点D表示的数是334,请在下面的数轴上分别画出点C、点D,并标明相应字母.(3)将点A、B、C、D所表示的数用“<”连接.13.(2024秋•七里河区校级期中)某快递小哥骑车从快递公司出发,先向西行驶2km到达A小区,继续向西行驶1km到达B小区,然后向东行驶3km到达C小区,继续向东行驶4km到达D小区,最后回到快递公司.(1)以快递公司为原点,向东方向为正方向,用1cm表示1km,画出数轴.并在该数轴上表示A,B,C,D四个小区的位置;(2)D小区离A小区有多远?(3)快递小哥一共骑行了多少千米?14.(2024秋•河西区校级期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.15.(2024秋•滦南县期中)补全下面数轴,在数轴上将−43,0,﹣|﹣3|,1.5,﹣(﹣2)表示出来.并用“>”将它们连接起来.参考答案与试题解析一.选择题(共5小题)1.B.2.B.3.A4.C5.D二.填空题(共5小题)6.﹣1或﹣7或5.7.﹣45.8.7.9.1.10.④⑤⑥.三.解答题(共5小题)11.【解答】解:(1)22﹣(﹣8)=22+8=30(次),即最好成绩与最差成绩相差30次;(2)160+(18﹣1+22﹣2﹣5+12﹣8+1+8+15)÷10=160+60÷10=160+6=166(次),即该班参赛代表一分钟平均每人跳绳166次.12.(1)34,213;(2)如图:(3)34<73=213<334.13.【解答】解:(1)由题意,画出数轴,并在该数轴上表示A,B,C,D四个小区的位置如下:.(2)由数轴可知,D小区对应的数字是4,A小区对应的数字是﹣2,则4﹣(﹣2)=4+2=6(km),答:D小区离A小区6km.(3)∵D小区对应的数字是4,∴最后快递小哥回到快递公司的路程是4km,∴2+1+3+4+4=14(km),答:快递小哥一共骑行了14千米.14.(1)1,3;(2)1或﹣3;(3)12,2;(4)8.15.数轴见解答,﹣(﹣2)>1.5>0>−43>−|﹣3|.。
人教版数学七年级上学期期末测试题一、单项选择题(每小题3分,共18分)1.如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃B.﹣2℃C.+3℃D.+2℃2.港珠澳大桥全长约为55000米,将数据55000科学记数法表示为()A.0.55×105B.5.5×104C.55×103D.550×1023.如图所示的几何体从上面看得到的图形是()A.B.C.D.4.若x﹣3=2y,则x﹣2y的值是()A.2B.﹣2C.3D.﹣35.下列计算中,正确的是()A.x+x2=x3B.2x2﹣x2=1C.x2y﹣xy2=0D.x2﹣2x2=﹣x26.商店对某种手机的售价作了调整,按原售价的8折出售,此时的利润率为14%,若此种手机的进价为1200元,设该手机的原售价为x元,则下列方程正确的是()A.0.8x﹣1200=1200×14%B.0.8x﹣1200=14%xC.x﹣0.8x=1200×14%D.0.8x﹣1200=14%×0.8x二、填空题(每小题3分,共30分)7.0的相反数是.8.已知|a+1|+(b﹣3)2=0,则a b=.9.种树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,其中的数学道理是:.10.若﹣4x a y+x2y b=﹣3x2y,则a+b=.11.如图,图中阴影部分的面积是.12.将一副三角尺的直角顶点重合并按如图所示摆放,当AD平分∠BAC时,∠CAE=.13.若当x=﹣2018时,式子ax3﹣bx﹣3的值为5,则当x=2018时,式子ax3﹣bx﹣3的值为.14.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB的度数为°.15.如图,点C在线段AB上,点E、F分别是AB、AC的中点,若BC=4,则EF=.16.某糕点厂中秋节前要制作一批盒装月饼,每盒中2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,制作1块小月饼要用0.02kg面粉,若现共有面粉540kg,设可以生产x盒盒装月饼,则可列方程为.三、解答题(每小题5分,共15分)17.12﹣(﹣18)+(﹣7)﹣15.18.计算:.19.计算(﹣10)3+[(﹣4)2﹣(1﹣32)×2].四、解谷答题〔每小题7分,共21分)20.解下列方程:8x﹣3(3x+2)=6.21.22.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=﹣.五、解答题(每小题8分,共16分)23.在某年全军足球甲级A组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?24.新定义:若∠α的度数是∠β的度数的n倍,则∠α叫做∠β的n倍角.(1)若∠M=10°21′,请直接写出∠M的3倍角的度数;(2)如图1,若∠AOB=∠BOC=∠COD,请直接写出图中∠AOB的所有2倍角;(3)如图2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度数.六、解答题(每小题10分共20分)25.某玩具厂要生产500个芭比娃娃,此生产任务由甲、乙、丙三台机器承担,甲机器每小时生产12个,乙、丙两台机器的每小时生产个数之比为4:5.若甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.(1)求乙、丙两台机器每小时各生产多少个?(2)由于某种原因,三台机器只能按一定次序循环交替生产,且每台机器在每个循环中只能生产1小时,即每个循环需要3小时.①若生产次序为甲、乙、丙,则最后一个芭比娃娃由机器生产完成,整个生产过程共需小时;②若想使完成生产任务的时间最少,直接写出三台机器的生产次序及完成生产任务的最少时间.26.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.2018-2019学年吉林省吉林市七年级(上)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共18分)1.【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作﹣3℃,故选:A.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个矩形,中间为圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,注意从上边看得到的图形是俯视图.4.【分析】将x﹣3=2y移项即可得.【解答】解:∵x﹣3=2y,∴x﹣2y=3,故选:C.【点评】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.【分析】根据同类项的定义和合并同类项的法则进行解答.【解答】解:A、x与x2不是同类项,不能合并,故本选项错误;B、原式=x2,故本选项错误;C、x2y与xy2不是同类项,不能合并,故本选项错误;D、x2﹣2x2=﹣x2,故本选项正确.故选:D.【点评】考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.【分析】题目已经设出该手机的原售价为x元,则按原价的8折出售为0.8x,根据“此时的利润率为14%,若此种手机的进价为1200元”,结合进价×利润率=出售价﹣进价,列出方程即可.【解答】解:设该手机的原售价为x元,根据题意得:0.8x﹣1200=1200×14%,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.二、填空题(每小题3分,共30分)7.【分析】互为相反数的和为0,那么0的相反数是0.【解答】解:0的相反数是0.故答案为:0.【点评】考查的知识点为:0的相反数是它本身.8.【分析】根据非负数的性质求出a、b的值,再将它们代入a b中求值即可.【解答】解:∵|a+1|+(b﹣3)2=0,∴a+1=0,b﹣3=0,∴b=3,a=﹣1,则a b=(﹣1)3=﹣1.故答案为:﹣1【点评】本题主要考查了非负数的性质,解题的关键是掌握:几个非负数的和等于0,则每一个算式都等于0.9.【分析】根据公理“两点确定一条直线”,来解答即可【解答】解:∵只要定出两个树坑的位置,这条就确定了,∴能使同一行树坑在同一条直线上.故答案为:两点确定一条直线.【点评】本题考查的是“两点确定一条直线”在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.10.【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【解答】解:由同类项的定义可知a=2,b=1,∴a+b=3.【点评】本题考查的知识点为:同类项中相同字母的指数是相同的.11.【分析】根据题意和图形,可以用代数式表示出图中阴影部分的面积,本题得以解决.【解答】解:由题意可得,图中阴影部分的面积是:(x+3)(x+2)﹣2x=x2+5x+6﹣2x=x2+3x+6,故答案为:x2+3x+6.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.12.【分析】依据同角的余角相等,即可得到∠CAE=∠BAD,再根据AD平分∠BAC,即可得出∠CAE=∠BAD=45°.【解答】解:∵∠EAD=∠CAB=90°,∴∠CAE=∠BAD,∵AD平分∠BAC,∴∠BAD=45°,∴∠CAE=45°,故答案为:45°.【点评】此题主要考查了角平分线的定义以及互余两角的定义,正确掌握互余两角的定义是解题关键.13.【分析】把x=﹣2018代入代数式得到﹣20183a+2018b=8,根据添括号法则代入计算即可.【解答】解:当x=﹣2018时,式子ax3﹣bx﹣3的值为5,∴﹣20183a+2018b﹣3=5,∴﹣20183a+2018b=8,当x=2018时,ax3﹣bx﹣3=20183a﹣2018b﹣3=﹣(﹣20183a+2018b)﹣3=﹣8﹣3=﹣11,故答案为:﹣11.【点评】本题考查的是代数式求值,掌握乘方法则,添括号法则是解题的关键.14.【分析】根据方向角的定义以及角的和差,可得∠AOB的度数.【解答】解:∵点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,∴∠AOB=180°﹣60°﹣40°=80°,故答案为:80.【点评】本题考查了方向角的定义,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.15.【分析】设CE=x,则BE=x+4,根据线段中点的定义得到AE=BE=x+4,求得AC=AE+CE =2x+4,根据线段中点的定义得到CF=AC=x+2,根据线段的和差即可得到结论.【解答】解:设CE=x,则BE=x+4,∵点E是AB的中点,∴AE=BE=x+4,∴AC=AE+CE=2x+4,∵点F是AC的中点,∴CF=AC=x+2,∴EF=CF﹣CE=x+2﹣x=2,故答案为:2.【点评】本题考查了两点间的距离,利用了线段中点的性质得出CM、CN的长,线段的和差得出答案.16.【分析】题目已经设出可以生产x盒盒装月饼,则每盒中2块大月饼的质量为0.05×2x,每盒中4块小月饼的质量为0.02×4x,根据“现共有面粉540kg”,找出等量关系,就可以列出方程.【解答】解:设可以生产x盒盒装月饼,根据题意得:0.05×2x+0.02×4x=540,故答案为:0.05×2x+0.02×4x=540.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.三、解答题(每小题5分,共15分)17.【分析】将减法转化为加法,计算加法即可得.【解答】解:原式=12+18﹣7﹣15=30﹣22=8.【点评】本题主要考查有理数的加减混合运算,解题的关键是熟练掌握加减运算法则.18.【分析】本题需先根据有理数的混合运算顺序和法则,分别进行计算,再把所得结果合并即可.【解答】解:原式=,=﹣8.【点评】本题主要考查了有理数的混合运算,在解题时要注意运算顺序和符号是本题的关键.19.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:原式=﹣1000+[16﹣(﹣8)×2]=﹣1000+32=﹣968.【点评】本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.四、解谷答题〔每小题7分,共21分)20.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:8x﹣9x﹣6=6,移项合并得:﹣x=12,解得:x=﹣12.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:4(5x+4)+3(x﹣1)=24﹣(5x﹣5)去括号得:20x+16+3x﹣3=24﹣5x+5移项合并得:28x=16系数化为1得:.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.22.【分析】先根据整式的运算法则化简,然后将a与b的值代入原式即可求出答案.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××()﹣6××=﹣1=【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.五、解答题(每小题8分,共16分)23.【分析】可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11﹣x,由题意可得出:3x+(11﹣x)=23,解方程求解.【解答】解:设设该队共胜了x场,根据题意得:3x+(11﹣x)=23,解得x=6.故该队共胜了6场.【点评】此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.24.【分析】(1)根据题意列式计算即可;(2)根据题意列式计算即可;(3)设∠AOB=α,则∠AOC=3α,∠COD=4α,得到∠BOD=6α,根据∠BOD=90°,求得α=15°,于是得到∠BOC=90°﹣4×15°=30°.【解答】解:(1)∵∠M=10°21′,∴3∠M=3×10°21′=31°3′;(2)∵∠AOB=∠BOC=∠COD,∴∠AOC=2∠AOB,∠BOD=2∠AOB;(3)∵∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,∴设∠AOB=α,则∠AOC=3α,∠COD=4α,∴∠AOD=7α,∴∠BOD=6α,∵∠BOD=90°,∴α=15°,∴∠BOC=90°﹣4×15°=30°.【点评】此题主要考查了角的计算以及余角定义,关键是理清图中角之间的关系,掌握两角和为90°为互余.六、解答题(每小题10分共20分)25.【分析】(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,依据甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.列一元一次方程即可解答;(2)每次循环交替生产48个零件,那么最后一次循环是500除以48的余数,然后按顺序计算即可;(3)速度快的先做即可.【解答】解:(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,10小时25分钟=小时.依题意得:(12+4x+5x)=500解得:x=4,乙机器每小时生产4x=16个,丙机器每小时生产5x=20个,答:乙机器每小时生产16个,丙机器每小时生产20个,(2)500÷(12+16+20)=10……20,按甲、乙、丙次序交替生产循环10次,共10×3=30小时,最后20个先由甲生产1小时12个,余下8个由乙生产8÷16=0.5小时,∴整个生产过程共需30+1+0.5=31.5小时,故答案为:乙;31.5(3)使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环,生产循环10次,共10×3=30小时,最后20个由丙生产1小时即可,共需30+1=31小时.答:使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环共需31小时.【点评】本题考查了一元一次方程应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,设未知数,得到方程即可解答.26.【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.【解答】解:(1)当t=1时,AP=1,BQ=2,∵AB=4﹣(﹣2)=6,∴PQ=AB﹣AP﹣BQ=3,即d=3.故答案为3;(2)线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1×=,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或;(3)当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4;(4)当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【点评】本题考查了一元一次方程的应用,数轴,两点间的距离,理解题意,分清动点P与动点Q的运动方向、运动速度与运动时间,从而正确进行分类讨论是解题的关键.。
[k12] 最新K12 评卷人得 分
湖北省利川市2014-2015学年度七年级数学上学期期末调研考试试题 限时:120分钟 满分:120分 题号 一 二 三 总分 总分人
得分 17 18 19 20 21 22 23 24 一、选择题(下列各题都给出了四个选项,其中只有一个选项是符合题目要求的,请将符合要求的选项前面的字母代号填写在下面的答题栏内. 本大题共12个小题,每小题3分,共36分)。 1、3的相反数是
A、3 B、-3 C、31 D、31 2、用科学记数法表示-9600000正确的是 A、6106.9 B、71096.0 C、51096 D、6106.9 3、若a是有理数,则计算正确的是 A、3a-a=3 B、a-(-a)=0 C、a+(-a)=2a D、-a-a=-2a 4、图1是一个由7个相同正方体组成的立体图形,从左向右观察得到的平面图形是
5、某校原来有学生x人。本学期开学时,转入..学生n人,转出..学生(n-3)人,则该校现有学生人数是(单位:人) A、x+3 B、x-3 C、x+2n-3 D、2n-3
6、已知单项式3a32b,则下列说法中正确的是 A、其系数是1 B、其系数是31 C、其次数是3 D、其次数是6 7、若有理数a是非负数,则计算aa21的结果等于 A、a21 B、21 C、a23 D、a21 8、已知A、B、C,D依次是直线AD上的4个不同点,则下列说法正确的是 A、线段AD与线段BC是两条相同线段 B、直线AD与直线BC是两条不同直线 C、射线AD与射线BD是两条相同射线 D、射线BC与射线BD是两条不同射线 9、如图,是一个正方体纸盒的展开图,每个面用相应的数字或字母表示,把它折成正方体后,a与它对面的数的积等于1,b与它对面的数的和等于0,c的绝对值与它对面的数的绝
题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案 [k12]
最新K12 评卷人得 分
评卷人得 分
对值相等,则(a+b)c的值等于 A、0 B、6 C、-6 D、6或-6 10、若∠A的余角是它的7倍,则∠A的度数等于 A、11°2′5″ B、11°15′ C、11°25′ D、11°12′30″ 11、如图,数轴上的两点A、B分别表示a和b,那么A、B两点间的距离是 A、a+b B、a-b C、b-a D、-b-a 12、长江上有A、B两个港口,一艘轮船以最大航行速度从A到B顺水航行要用时2h, 从B到A(航线相同)逆水航行要用时3.5h,已知水流的速度为15km/h,求轮船在静水中的最大航行速度是多少?若设轮船在静水中的最大航行速度为xkm/h,则可列方程 A、2155.315)()(xx B、2155.315)()(xx
C、2155.315xx D、2155.315xx 二、填空题(请将答案填写在题中的横线上.本大题共4个小题,每小题3分,共12分)。 13、若一个两位数的个位数字是x,十位数字比个位数字少1,则这个两位数是 。(用含x的代数式表示) 14、一个角是68°29′,则它的补角等于_____。 15、已知,在数轴上, A点到原点O的距离等于4,B点到A点的距离等于2,则点B表示的数是______。
16、如图,线段AB的长为1。C1为AB的中点;C2为C1B的中点;…Cn为Cn-1B的中点(n是正整数)。观察思考:AC1=21,换个角度有AC1=AB-C1B=121;AC2=4121,换个角度有
AC2=AB-C2B=141;…ACn=n214121,换个角度有AC=AB-CnB=____。(用含n的代数式表示)由此我们得到n214121的计算方法。 三、解答题 (本大题共8个小题,满分72分。解答应写出文字说明、证明过程或演算步骤) 。
17、计算。(每题5分,满分10分) (1)(-9)÷(-3)-6×(-2);
(2))61132()6(31)2131(32)(。 [k12]
最新K12 评卷人得 分
评卷人得 分
评卷人得 分
18、化简与求值。(满分8分) 先化简,再求值:)1(2)1(5)5(x-4x2xxx,其中23-x。
19、解方程。(每题5分,满分10分) (1)152-xx;
(2)12)2(5121314xxx。
20、数学应用。(满分8分) 时间 1月 2月 3月 4月 5月 6月 [k12] 最新K12 评卷人得 分
评卷人得 分
萌萌帮家庭记录6个月的生活收支账目如下表(用正数表示收入,用负数表示支出,单位:万元)。
(1)萌萌家月支出最大的是哪个月? (2)萌萌家6个月的总收入和总支出各是多少万元? (3)萌萌家平均每月的支出是多少万元?
21、几何计算。(满分8分) 如图,已知∠AOB=160°,OD是∠AOB内任意一条射线,OE平分∠AOD,OC平分∠BOD。 (1)求∠EOC的度数; (2)若∠BOC=19°,求∠EOD的度数。
22、列方程解应用题。(满分8分) 某商品按进价增加40%标价销售,每件商品能赢利80元。 (1)求每件商品的进价是多少元? (2)若按标价的6折销售该商品,是亏损还是盈利?为什么?
收入 0.51 0.30 0.38 0.45 0.33 0.25 支出 -0.55 -0.35 -0.26 -0.32 -0.24 -0.28 [k12]
最新K12 评卷人得 分
评卷人得 分
23、解决问题。(满分8分) 打扫本班清洁区域卫生,1个人打扫需要45min完成。生活委员计划由一部分人先打扫5min,然后再增加2人与他们一起打扫3min,完成打扫任务。假设同学们打扫清洁区域卫生的劳动效率相同,那么生活委员应先安排多少人打扫?
24、拓广与探索。(满分12分) 甲车和乙车从A、B两地同时出发,沿同一线路相向匀速行驶,出发后1.5h两车相遇,相遇时甲车比乙车少走30km,相遇后1.2h乙车到达A地。 (1)两车的行驶速度分别是多少? (2)相遇后,若乙车速度不变,甲车想和乙车同时到达目的地,那么甲车要比原来的行驶速度增加多少km/h? (3)相遇后,甲车到B地间的部分路段限速120km/h,部分路段限速140km/h,(2)中甲车在相应路段,既不超速又不低于限速行驶,刚好能和乙车同时到达目的地,试求限速120km/h[k12] 最新K12 和限速140km/h的路段各多少km?
利川市2014-2015学年度第一学期期末调研考试七年级 数学试题参考答案及评分说明 一、选择题(每小题3分,共36分)。 BADDA BDCAB BB 二、填空题(每小题3分,共12分)。
13、1011x.14、111°11′.15、-6或-2或2或6.16、n211。 三、解答题 (共8个小题,满分72分) 。 17、计算。(每题5分,共10分) (1)解原式=3-(-12)(3分) =3+12(1分) =15;(1分)
(2)解原式=]676326[271361)()()()((2分)
=)(7427361(1分) [k12] 最新K12 =343(1分) =)49(412或。(1分) (注意算理,能简便运算的一定要简便运算) 18、化简与求值。(满分8分)
先化简,再求值:)1(2)1(5)5(x-4x2xxx,其中23-x。
解原式=xxxxx2225554(3分) =xx1032,(1分) 当23-x时,原式=)()(231023-3-2(1分) =15493-(2分) =)(或4321487-(1分)。 19、解方程。(每题5分,共10分) (1)解略。2x;
(2)解略。174x。 20、数学应用。(共8分) (1)解:因为-0.55<-0.35<-0.26<-0.24<-0.22<-0.18,所以萌萌家月支出最大的是1月。(3分) (2)解略。总收入是2.2万元,总支出是1.8万元。(3分,结果1分,过程2分) (3)解略。萌萌家平均每月的支出是0.3万元。(2分,结果1分,过程1分) 21、几何计算。(共8分) (1)解略。∠EOC=80°;(4分,结果1分,过程3分) (2)解略。∠EOD=61°。(4分,结果1分,过程3分) 22、列方程解应用题。(共8分) (1) 解略。每件商品的进价是200元;(4分,结果1分,过程3分) (2) 解略。该商品在促销活动中打了75折。(4分,结果1分,过程3分) (注:不用方程解的只给结果分1分) 23、解决问题。(共8分) 解略。应先安排3人打扫。(8分,结果1分,过程7分) (注:不用方程解的,解答正确给4分。思考方程教学的得失!) 24、拓广与探索。(共12分) (1)解:设乙车速度为vkm/h,依题意有 1.2v=1.5v-30,解得v=100,
则甲车的速度为5.1305.1v
即805.1301005.1。