当前位置:文档之家› 物理学历史上的十个最著名的思想实验

物理学历史上的十个最著名的思想实验

物理学历史上的十个最著名的思想实验

物理学历史上的十个最著名的思想实验

10月3日,2017年诺贝尔物理学奖在瑞典揭晓,Rainer Weiss,Barry C. Barish 和Kip S. Thorne因引力波探测研究获奖。引力波探测仪LIGO价格高达6亿美元。

其实物理学实验有时候不需要化一分钱也可以改变世界的,在物理学中,有一类特殊的实验:它们不需要购置昂贵的仪器,不需要大量的人力物力,需要的只是有逻辑的大脑;而这种实验却可以挑战前人的结论,建立新的理论,甚至引发人们对世界认识的重新思考。这种实验就是传说中的思想实验。历史上的许多伟大物理学家,都曾设计过发人深思的思想实验,伽利略、牛顿、爱因斯坦便是其中的代表,这些思想实验不仅对物理学的发展有着不可磨灭的作用,更是颠覆了人们对世界对宇宙的认识。这篇文章将从易到难地介绍一下物理学历史上的几个著名思想实验。

1 惯性原理自从亚里士多德时代以来,人们一直以为力是运动的原因,没有力的作用物体的运动都会静止。直到伽利略提出了下面这一个家喻户晓的思想实验,人们才知道了惯性原理——一个不受任何外力(或者合外力为0)的物体将保持静止或匀速直线运动:设想一个一个竖直放置的V字形光滑导轨,一个小球可以在上面无摩擦的滚动。让小球从左端往下滚动,小球将滚到右边的同样高度。如果降低右侧导轨的斜率,小球仍然将滚动到同样高度,此时小球在水平方向上将滚得更远。斜率越小,则小球为了滚到相同高度就必须滚得越远。此时再设想右侧导轨斜率不断降低以至于降为水平,则根据前面的经验,如果无摩擦力阻碍,小球将会一直滚动下去,保持匀速直线运动。在任何实际的实验当中,因为摩擦力总是无法忽略,所以任何真实的实验都无法严格地证明惯性原理,这也正是古人没有得出惯性原理的原因。然而思想实验就可以做到,仅仅通过日常经验的延伸就可以让任何一个理性的人相信惯性原理的正确性,这一最简单的思想实验足以体现出思想实验的锋芒!

2 两个小球同时落地仍是受亚里士多德的影响,伽利略之前的人们以为越重的物体下落越快,而越轻的物体下落越慢。伽利略在比萨斜塔上的著名实验人尽皆知,可是很多人不知道的是,其实在这之前伽利略已经通过一个思想实验证明了两个小球必须同时落地:如果亚里士多德的论断是对的话,那么不妨设想把一个重球和一个轻球绑在一起下落。由

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

近代物理学史论文

关于经典力学体系的建立的思索 【摘要】:力学又称经典力学,是物理学发展的最早的分支学科。力学知识最早起源于人们对自然现象和生产劳动的经验。经典力学体系的建立和古代劳动人民日常物理经验和科学家的努力探索精神是分不开的。经典力学的研究对象是天体和地面上物体的机械运动。、现在主要就以下几个方面谈谈本人关于经典力学体系的建立的思索:古希腊对物理学的贡献、中国古代的力学成就、伽利略的运动理论、牛顿与经典力学的建立。 【关键词】:第谷与开普勒奠基人——伽利略牛顿力学 首先谈谈古希腊对物理学的贡献。古希腊人在文化领域取得光辉夺目成就的同时,也对科学做出巨大的贡献。亚里士多德(公元前384~前322年)和阿基米德(前287—前212)是古希腊的伟大学者,是古希腊力学知识的集大成者。 亚里士多德研究了在重力作用下物体的运动,论证了运动、时间和空间的关系,区分了物质方面的运动、量方面的运动和空间方面的运动。他的主要成就有时提出了以下五点:(1)物体的运动:物体永远在运动变化,变化就是运动;(2)将自然界的运动分为自然运动和非自然运动;(3)①力是产生物体运动的原因,②力是维持物体运动的原因;(4)对抛体运动的解释:自然界害怕虚空,填补空虚推动物体;(5)自由落体:物体越重,下落速度应该越大。 在我看来,亚里士多德对经典力学体系的建立,和他的以下几点精神十分不开的:(1)亚里士多德能够摆脱神的意志,并能形成一套自圆其说的体系,在当时是有非常重要意义的;(2)亚里士多德重视近身事物的观察,强调思辨的作用,并总结出结论解释现象,引起众多的讨论与研究。与亚里士多德从小对自然科学特别爱好,也很钻研、好学多问、才华横溢、成绩优异也是分不开的。在那个物理理论贫瘠的年代,亚里士多德的成就是璀璨的,虽然由于他自身的局限性,提出的一些错误的观点,阻碍了物理学的快速发展,但是他对物理的贡献仍然是不可否认的。 阿基米德是古希腊继亚里士多德之后又一科学巨匠,他从生产实践出发,运用数学的方法建立起静力学,被誉为“力学之父”,还有人认为他是近代型的物理学家。阿基米德在力学上的贡献主要是严格地证明了杠杆定律的浮力定律,后

高三物理专题复习(物理学史与物理方法)

专题复习:物理学史和物理方法 ●物理学史和物理方法是新课标选择题中常出的一种提醒。 ●物理学史包括物理学家发现物理规律的历史进程和物理实验。 ●物理方法:物理学家发现物理规律的思路和方法;物理学中一般研究方法,主要有观察、实验、抽象、理想化、比较、类比、假说、模型、数学方法等等:主要思维方法:类比法、等效法、理想模型法、图象法、合成与分解法、逆向思维法、假设法、微元法、极限法、对称法、外推法、数学(函数、几何、归纳、数列等)法。 【新课标高考试题回练】 1、(20XX年海南卷).自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。下列说法正确的是 A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系 B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系 C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系 D.焦耳发现了电流的热效应,定量得出了电能和热能之间的转换关系 2、(20XX年新课标)1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在布展中偶然接错了导线,把另一直流发电机发出的电接到了自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方中的一个瓶颐.此项发明是 A.新型直流发电机B.直流电动机 C.交流电动机D.交流发电机 3、(2012全国新课标).伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。早期物理学家关于惯性有下列说法,其中正确的是 A.物体抵抗运动状态变化的性质是惯性 B.没有力作用,物体只能处于静止状态 C.行星在圆周轨道上保持匀速率运动的性质是惯性 D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动 4、(20XX年新课标)在力学理论建立的过程中,有许多伟大的科学家做出了贡献。关于科学家和他们的贡献,下列说法正确的是 A. 伽利略发现了行星运动的规律 B. 卡文迪许通过实验测出了引力常量 C.牛顿最早指出力不是维持物体运动的原因 D.笛卡尔对牛顿第一定律的建立做出了贡献 5、(2011新课标理综第14题).为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的。在下列四个图中,正确表示安培假设中环形电流方向的是(B) 【复习巩固题】 1、(2013上海徐汇测试))伽利略为了研究自由落体的规律,将落体实验转化为著名的“斜面

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 最伟大的物理学家Top10 PhysicsWeb曾经搞过历史上最伟大的物理学家的投票,结果如下表: 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。

2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特

近代物理实验_思考题答案

一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因 答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。 2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么? 答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。总的来说到达极板的电子数减小,因此极板电流减小。 3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么? 答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。灯丝电压不能过高或过低。因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。 二、 塞曼效应 1、什么叫塞曼效应,磁场为何可使谱线分裂? 答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。后人称此现象为塞曼效应。原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离 2、叙述各光学器件在实验中各起什么作用? 答;略 3、如何判断F-P 标准具已调好? 答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。 4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 答;沿着磁场方向观测时,M ?=+1为右旋圆偏振光,M ?=-1时为左旋偏振光。在实验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光。同理可得-σ成分为左旋偏振光。 三、核磁共振 1、 什么叫核磁共振?

高中物理实验大全

高中物理实验大全——目录 中央电教馆推出的《高中物理实验大全》、《高中化学实验大全》、《高中生物实验大全》就是为了改变我国实验教学的现状而研发的一项科学研究成果。“大全”内容全面、科学、严谨,以满足高中教师对学生实验的要求。“大全”所展示的不是课本的简单再现,而是对实验重新“整合”、组合,适当“加深”和“拓宽”,并把实验能力与计算机技术相结合,从深层上揭示出实验的科学原理。 01.气垫导轨介绍 02.数字计时仪介绍 03用数字计时仪测气垫导轨上滑块的即时速度 04匀速直线运动及其速度 05测运变速直线运动的加速度 06电磁打点记时器 07用打点计时器演示匀速直线运动 08电火花打点计时器 09用打点计时器测匀加速直线运动的加速度 10初速度为零的匀加速直线运动的路程和时间的关系 11用牛顿管演示空气阻力很小时不同物体同事下落 12用悬挂法确定薄板的重心 13用大玻璃瓶演示玻璃微小形变 14用形变演示器演示形变产生弹力 15用激光镜面反射演示桌面微小形变 16静摩擦 17最大摩擦力 18验证滑动摩擦定律 19滑动摩擦 20滚动摩擦与滑动摩擦的比较 21力合成的平行四边形定则 22合力的大小于分力间夹角的关系 23力的分解 24三角衍架演示力的分解 25共点力的平衡条件 26力矩的平衡 27惯性(1) 28惯性(2) 29惯性(3) 30牛顿第一定律 31牛顿第二定律(1) 32牛顿第二定律(2) 33牛顿第三定律 34静摩擦力的相互性 35弹力的相互性 36作用力于反作用力的关系

37失重 38用测力计演示超重于失重 39用微小压强计演示超重于失重 40物体做曲线运动的条件 41曲线运动中速度的方向 42互成角度的两个直线运动的合成43平抛运动与自由落体运动的等时性44平抛运动与水平匀速运动的等时性45平抛运动的轨迹 46决定向心力大小的因素 47弹簧振子的振动 48简谐振动的图象 49阻尼振动的图象 50单摆的等时性 51单摆的振动周期与摆球的质量无关52单摆的周期与摆长有关 53用计时器研究单摆周期与摆长关系54受迫振动和共振(1) 55受迫振动和共振(2) 56用示波器观察发声物的振动 57物体的动能 58重力势能 59动能与重力势能的转化 60动能与弹性势能的转化 61动量守恒 62完全非弹性碰撞 63完全弹性碰撞(1) 64完全弹性碰撞(2) 65完全弹性碰撞(3) 66斜碰 67碰撞球(1) 68碰撞球(2) 69碰撞球(3) 70单摆小车 71反冲(1) 72反冲(2) 73反冲(3) 74气体的扩散 75液体的扩散速度与温度有关 76布朗运动 77布朗运动的成因 78分子间的相互作用力(1) 79分子间的相互作用力(2) 80压燃实验

高中必备物理学史人物成就大全

高中物理中出现的所有物理学史资料的总结 1、胡克:英国物理学家;发现了胡克定律(F 弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S 正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J= 焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

近代物理学史小论文

近代物理学史小论文 浅谈大学教育 关键词:大学教育知识问题 摘要:通过对现今大学教育的了解~加上自己所处学校的教育情况~提出一些小小的看法,同时对大学的教育方法与方式就自己的认为讲述一下自己的见解~并且对现今的大学教育中存在的问题结合自己的所见略微加以提出。 大学教育是每一个学子都渴望经历的一个过程,在中国,学生对大学特别是名牌大学更是趋之若鹜,都希望上一个好的大学,接受好的教育。这是无可厚非的。然而,就现今的大学教育,虽然是那么的让人向往,但是有些方面还是有必要去做深深地思考。 就我的看法而言,大学之所以区别于高中,主要在一个“大”字上,这里的“大”有几层含义,最表面也是最简单的那就是因为大学的校园之大,面积之广,建筑之多;其次,深一层次,是因为大学所涉及的知识面之广和全,所传授的知识是直接运用于各个领域的;最后,“大”字再某种层次还可以理解为“高”的意思,即大学里所学的知识不再像以前那样,以前学的基本都是一些表面的浅显的知识,重在的是了解而不是深究,然而在大学里,我们更注重的是有深入知识的内部层面,要知其然并知其所以然。举个例子,就我们理科生而言,在中学时代,像有些课程,比如物理,我们只是简单的套用课本上的一些物理公式用来解题,只要知其然已达要求,不必深究这么东西是从何而来,在大学就不一样了,对于物理专业的学生,也许一个简单的公式就需要大量的时间来推演与深究,每个细节都必不可少。还有,在中学数学课程上有些内容,例如微积分,只是提出,给些公式并一笔带过,很少就其具体的推导方法,在大学,却几乎要用一到两个学期都不能系统的

学完这门课。总之,我们在大学我们更注重的是对知识更深一层次的剖析,究其本质来说明问题。正因为如此,我们才说大学教育是一种高等教育。 大学教育不仅在教育的内容上有所不同,同时在教育的方法和手段上与中学更是大不相同。我们知道,在中学阶段,大都数学生都是在被动的学习,接受知识。是因为有强大的压制力和学校老师的监督管理,学生才不得不去学习,努不努力那就另当别论了。而在大学,我们倡导的是学习自主自觉,没有人再会太大的干预你的学习,一切都是自主,只不过最后通过学期末的考试来检查你的学习情况。也许有时候在某门课没通过,最大的“处罚”就是重修及取消一切评优资格,最后只要过了就达到了要求。至于你做的好不好,并不受限制,只要过了最低标准就行。所以,人们常说,大学是很轻松的。其实不然。 在大学里,虽然学校或者是学院对学生的学习的要求并不是那么的严格,但是在某些方面还是有一些强制性的规定。比如说,学校规定每个在校生必须按照要求完成大学四年内所需的学分,不仅仅在与自己的专业有关课程上,而且在公共选修课程上。这就需要学生规定的时间内尽可能学到更多的知识,即扩大知识面,这不仅仅局限于自己的专业方面。这也许就大学教育的一个较大的特点。 就我自己这个专业来讲,要求大体上和学校规定的一样,在前两个学年这个阶段,主要是学习一些通识课加上必要的专业基础课,并没有更加全面的接触专业课程,所以学习要求基本和全校其他各学院系同届的学生一样,所以我觉得大学更重要的时期是在接受专业课程教育的阶段,虽然只有一年,但在我认为,这应该是大学四年的核心内容。所以,在大学,最能凸显各个专业特点的时期就应在这宝贵的一年。同时,要想在大学里学有所得,重要的是把我专业课的这一年,这也是以后能够融入社会参加工作的保证。 国家对教育事业的关注应该是很重视的,因为一个国家要发展,必须要有技术人才,而高等院校正是国家所需各行各业的人才的来源地,教育事业得不到发展,

高中物理实验大全全-免费

考点预测 物理实验是高考的主要内容之一.《考试大纲》就高考物理实验共列出19个考点,其中力学8个、热学1个、电学8个、光学2个.要求会正确使用的仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、电火花计时器或电磁打点计时器、弹簧测力计、温度表、电流表、电压表、多用电表、滑动变阻器、电阻箱等,并且对实验误差问题提出了更明确的要求. 《考试大纲》中的实验与探究能力要求 二、实验题的主要特点 物理实验年年考,年年有变化.从近年的实验题来看,其显著特点体现在如下两个方面. (1)从简单的背诵实验转向分析、理解实验 实验原理是物理实验的灵魂.近年来,高考物理实验题既不是简单地回答“是什么”,也不是背诵“该怎样”,而是从物理实验情境中理解“为什么”,通过分析推理判断“确实是什么”,进而了解物理实验的每一个环节. (2)从既定的课本学生实验转向变化的创新实验 只有创新,试题才有魅力;也只有变化,才能永葆实验考核的活力.近年来,既定刻板的学生实验已经从高考物理实验题中淡出,取而代之的是学生尚未接触过的要通过解读物理原理的新颖实验(如应用性、设计性、专题性实验等).创新的实验题可以使能力考核真正落到实处. 要点归纳

1.等效法 等效法是科学研究中常用的一种思维方法.对一些复杂问题采用等效法,可将其变换成理想的、简单的、已知规律的过程来处理,常使问题的解决得以简化.因此,等效法也是物理实验中常用的方法.如在“验证力的平行四边形定则”的实验中,要求用一个弹簧秤单独拉橡皮条时,要与用两个互成角度的弹簧秤同时拉橡皮条时产生的效果相同——使结点到达同一位置O,即要在合力与两分力等效的条件下,才能找出它们之间合成与分解时所遵循的关系——平行四边形定则.又如在“验证动量守恒定律”的实验中,用小球的水平位移代替小球的水平速度;在“验证牛顿第二定律”的实验中,通过调节木板的倾斜度使重力的分力抵消摩擦力而等效于物体不受摩擦力作用.还有,电学实验中电流表的改装、用替换法测电阻等,都是等效法的应用. 2.转换法 将某些不易显示、不易直接测量的物理量转化为易于显示、易于测量的物理量的方法称为转换法(间接测量法).转换法是物理实验常用的方法.如:弹簧测力计是把力的大小转换为弹簧的伸长量;打点计时器是把流逝的时间转换成振针的周期性振动;电流表是利用电流 在磁场中受力,把电流转化为指针的偏转角;用单摆测定重力加速度g是通过公式T=2πL g

物理历史上的十大经典实验

物理历史上的十大经典实验 2002 年,美国两位学者在全美物理学家中做了一次调查,请他们提名有史以来最出色的十大物理实验,其中多数都是我们耳熟能详的经典之作。令人惊奇的是十大经典物理实验的核心是他们都抓住了物理学家眼中最美丽的科学之魂:由简单的仪器和设备,发现了最根本、最单纯的科学概念。十大经典物理实验犹如十座历史丰碑,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。从十大经典物理实验评选本身,我们也能清楚地看出2000 年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 排名第一:托马斯·杨的双缝演示应用于电子干涉实验 在20世纪初的一段时间中,人们逐渐发现了微观客体(光子、电子、质子、中子等)既有波动性,又有粒子性,即所谓的“波粒二象性”。“波动”和“粒子”都是经典物理学中从宏观世界里获得的概念,与我们的直观经验较为相符。然而,微观客体的行为与人们的日常经验毕竟相差很远。如何按照现代量子物理学的观点去准确认识、理解微观世界本身的规律,电子双缝干涉实验为一典型实例。 杨氏的双缝干涉实验是经典的波动光学实验,玻尔和爱因斯坦试图以电子束代替光束来做双缝干涉实验,以此来讨论量子物理学中的基本原理。可是,由于技术的原因,当时它只是一个思想实验。直到1961 年,约恩?孙制作出长为50mm、宽为0.3mm、缝间距为1mm 的双缝,并把一束电子加速到50keV,然后让它们通过双缝。当电子撞击荧光屏时显示了可见的图样,并可用照相机记录图样结果。电子双缝干涉实验的图样与光的双缝干涉实验结果的类似性给人们留下了深刻的印象,这是电子具有波动性的一个实证。更有甚者,实验中即使电子是一个个地发射,仍有相同的干涉图样。但是,当我们试图决定电子究竟是通

近代物理实验习题答案

《 近代物理实验》练习题参考答案一、填空 1、 核物理实验探测的主要对象是核衰变时所辐射的射线、射线和中子。因为这些粒子的尺度非常小,用最先进的电子显微镜也不能观察到,只能根据射线与物质相互作用产生的各种效应实现探测。 2、探测器的能量分辨率是指探测器对于能量很接近的辐射粒子加以区分的能力。用百分比表示的能量分辨率定义为: %峰位置的脉冲幅度宽度最大计数值一半处的全 1000V V R 。能量分辨率值越小,分辨能 力越强。 3、射线与物质相互作用时,其损失能量方式有两种,分别是电离和激发。其中激发的方式有三种,它们是光电效应、康普顿效应和电子对效应。 4、对于不同的原子,原子核的质量 不同而使得里德伯常量值发生变化。 5、汞的谱线的塞曼分裂是 反常塞曼效应。6、由于氢与氘的 能级有相同的规律性,故氢和氘的巴耳末公式的形式相同。 7、在塞曼效应实验中,观察纵向效应时放置 1/4波片的目的是将圆偏振光变为线偏振光 。8、射线探测器主要分“径迹型”和“信号型”两大类。径迹型探测器能给出粒子运动的轨迹,如核乳胶、固体径迹探测器、威尔逊云室、气

泡室、火花室等。这些探测器大多用于高能核物理实验。信号型探测器则当一个辐射粒子到达时给出一个信号。根据工作原理的不同又可以分成气体探测器、闪烁探测器和半导体探测器三种,这是我们在低能核物理实验中最常用的探测器。 9、测定氢、氘谱线波长时,是把氢、氘光谱与铁光谱拍摄到同一光谱底 片上,利用 线性插值法来进行测量。 10、在强磁场中,光谱的分裂是由于能级的分裂引起的。 11、原子光谱是线状光谱。 12、原子的不同能级的总角动量量子数J不同,分裂的子能级的数量也不同。 13、盖革-弥勒计数管按其所充猝灭气体的性质,可以分为①有机管和 ②卤素管两大类。坪特性是评价盖革-弥勒计数管的重要特性指标。包 括起始电压、坪长、坪斜等。一只好的计数管,其坪长不能过短,对于 ③有机管,其坪长不能低于150伏,对于④卤素管,其坪长不能低于50伏。坪斜应在⑤每伏___以下。计数管工作时工作点应选在坪区的⑥左 1/3-1/2__处。 14、由于光栅摄谱仪的色散接近线性,所以可以使用线性插值法测量光谱线波长。 15、必须把光源放在足够强磁场中,才能产生塞曼分裂。 二、简答题 1.如何区分盖革-弥勒计数管的正负极?

物理学史和物理方法

2016届呼和浩特市段考物理圈题 题组4 物理学史和物理方法 (一)考法解法 命题特点分析 段考选取物理学史上一些重要事件、典型思想和科学研究方法,这些学史中所包含的艰辛探索、研究方法、创造性思想及其对物理学发展的影响、对社会的推动等无不深深地影响着考生的情感态度价值观。 解题方法荟萃 物理学史和物理方法类选择题由于比较简单,通常直接课本上知识点,应加强识记。一、直接判断法:对于科学家的突出贡献、对重要实验的研究方法,只要加强识记,可以直接判断正误。 附:常考物理学史人物与事件 力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验--马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出"地心说",古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了"日心说",大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

中考物理实验题大全(精华版)

中考物理实验题大全(精华版) 1.在“验证凸透镜成像规律”的实验中,实验前应先观察并记下凸透镜的.实验时,当固定好凸透镜的位置并调整物距,使它大于透镜的二倍焦距后,要移动找像.当发现所成的像比较小时,为了获得较大的像,在不改变透镜位置的情况下,可以进行的操作是:. 2.如图所示为“探究凸透镜成像规律”的实验装置. (1)点燃蜡烛后,首先调节、凸透镜、光屏三者的中心在同一亮度. (2)如图所示,烛焰恰好在光屏上成倒立、等大、清晰的像,则该凸透镜的焦距是cm. (3)改变蜡烛的位置,使其位于5cm刻度线处,再移动光屏,使烛焰在光屏上成清晰的倒立、的实像(填“放大”、“等大”或“缩小”).照相机的镜头相当于一个.若在照毕业像时,要使照片上同学们的像再大一些,摄像师应将照相机的镜头向(填“靠近”或“远离”)同学们 的方向调节. 3.在利用光具座进行凸透镜成像的实验探究中: (1)如图甲所示,一束平行于凸透镜主光轴的光经过凸透镜后,在光屏上形成了一个最小、最亮的光斑.由图可知,凸透镜对光具有作用,该凸透镜的焦距是cm. (2)把烛焰放在距凸透镜25cm处时(如同乙),在凸透镜另一侧前后移动光屏,会在光屏上得到一个倒立、的实像(填写像的性质);(填投影仪放大镜、照相机)就是利用这一成像规律工作的.如果将蜡烛在乙图的基础上靠近透镜,仍要在光屏上得到清晰的像,光屏应向(选填“靠近”或“远离”)透镜的方向移动. 4.如图1是探究平面镜成像特点的实验装置图.小鹭将一块玻璃板竖直架在一把刻度尺的上面,并保持玻璃板与刻度尺垂直.再取两根完全相同的蜡烛A和B分别竖直放置在玻璃板两侧的刻度尺上,点燃蜡烛A,进行观察和调整. (1)选用两根完全相同的蜡烛是为了比较像与物的关系. (2)小鹭想探究平面镜所成的像是实像还是虚像,若蜡烛A与玻璃板的位置如图2所示,则光屏应

最新物理学史上的三次大综合知识讲解

物理学史上的三次大综合 Three large comprehensive history of physics [Abstract]Four major comprehensive history of physics, every time a comprehensive realization of all physical theories make a big step forward. [Keyword]Classical mechanics; electromagnetic wave;electromagnetic induction; quantum mechanics In promoting the development of production and scientific experiments, physics continue to accumulate, development and integration, through the germination period, a different period of classical physics and modern physics during the development stage. Since the 16th century, physics theory theoretically achieve four large integrated. Every time a comprehensive realization, have made a major step forward in physics theory. 1 第一次伟大的综合 17世纪,牛顿力学构成了完整的体系。可以说,这是物理学第一次伟大的综合。牛顿将天上行星的运动与地球上苹果下坠等现象概括到一个规律里面去了,建立了所谓的经典力。至于苹果下坠启发了牛顿的故事究竟有无历史根据,那是另一回事,但它说明了人们对于形象思维的偏爱。 他在哥自尼、伽利略、开普勒、惠更斯、笛卡尔等前人工作的基础上,对大量丰富的资料进行了系统的整理和理论的概括,得到了万有引力定律和牛顿运动三定律。这三条定律是我们认识一切力学现象的依据,是整个经典力学的基础。经典力学成熟的另一个标志是万有引力定律的建立。 牛顿运动三定律和万有引力定律的提出,使经典力学成为一个完整的理论体系,标志着经典力学已经成熟,实现了宇宙中宏观低速物体的运动规律的统一。 2 第二次伟大的综合 麦克斯韦是电磁理论的集大成者。他总结了奥斯特到法拉第的工作,以安培定律、法拉第电磁感应定律和他自己引入的位移电流概念为基础,进行抽象的概念,并用数学分析方法加以整理,建立了麦克斯韦方程组,提出电磁波的概念,并证明了光是一种电磁波,从而把电、磁、光等现象统一起来,实现了物理学上的第二次大综合。 1820年奥斯特通过大量实验发现了电流的磁效应,安培得到了安培定律和安培定则。1831年,法拉第又发现了变化的磁场可以产生感应电流,得到电磁感应定律,并提出“场”的概念和力线图象。但由于数学水平的限制,无法使他的定性理论上升为精确的定量理论,无法用数学的方法描述电场和磁场。 麦克斯韦继承和发展了法拉第思想,自1858年开始,他系统地考察了自库仑、奥斯特以来的电学成就,认为应该把电流的规律与电场和磁场的规律统一起来。为此,他引进了位移电流和涡旋场及电磁波的概念。为了定量的刻画电磁场的转化和电磁波的传播规律,麦克斯韦于1826年引进了偏微分方程,并采用拉格朗日和哈密顿创立的数学方法由方程直接导出了电场和磁场的波动方程,其波的传播速度正好等于光速,因此他预言光是一种电磁波。1888年德国物理学家赫兹用实验证明了电磁波的存在及其具有反射、折射和干涉等性质,证明了麦克斯韦的预言。 麦克斯韦的理论揭示了电、磁和光的统一性,实现了人类对自然界认识的又一次综合,

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

物理学史试题

经典物理学时期标志与现代物理学时期标志? 经典物理学时期: 经典物理学时期(17世纪初—19世纪末) 这时资本主义生产促进了技术与科学的发展,形成了比较完整的经典物理学体系。系统的观察实验和严密的数学推导相结合的方法,被引进物理学中,导致了17世纪主要在天文学和力学领域中的“科学革命”。 发展达到了它的顶峰。 现代物理学时期: 现代物理学时期(20世纪初至今) 十九世纪末叶物理学上一系列重大发现,使经典物理学理论体系本身遇到了不可克服的危机,从而引起了现代物理学革命。由于生产技术的发展,精密、大型仪器的创制以及物理学思想的变革,这一时期的物理学理论呈现出高速发展的状况。研究对象由低速到高速,由宏观到微观,深入到广垠的宇宙深处和物质结构的内部,对宏观世界的结构、运动规律和微观物质的运动规律的认识,产生了重大的变革。 举例说明近代物理学的研究方法、现代物理学的研究方法: 近代物理学时期:(又称经典物理学时期)这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。这一时期的物理学有如下特征:在研究方法上采用实验与数学相结合、分析与综合相结合和归纳与演绎相结合等方法;在知识水平上产生了比较系统和严密科学理论与实验;在内容上形成比较完整严密的经典物理学科学体系;在发展速度上十分迅速,社会功能明显,推动了资本主义生产与社会的迅速发展。这一时期的物理学又可细分为三个阶段。〖1〗草创阶段(16世纪至17世纪)。主要在天文学和力学领域中爆发了一场“科学革命”,牛顿力学诞生。〖2〗消化和渐进阶段(18世纪)。建立了分析力学,光学、热学和静电学也取得较大的发展。〖3〗鼎盛阶段(19世纪)。相继建立了波动光学、热力学与分子运动论、电磁学,使经典物理学体系臻于完善。 现代物理学时期:这一时期是从19世纪末至今,是现代物理学的诞生和取得革命性发展时期。物理学的研究领域得到巨大的拓展,实验手段与设备得到前所未有的增强,理论基础发生了质的飞跃。这一时期的物理学有如下特征:在研究方法上更加依赖大规模的实验、高度抽象的理性思维和国际化的合作与交流;在认识领域上拓展到微观(10-13)与宇观(200亿光年)和接近光速的高速运动新领域,变革了人类对物质、运动、时空、因果律的认识;在发展速度上非常迅猛,社会功能十分显著,推动了社会的飞速发展。这一时期的物理学又可大致地分为两个阶段。〖1〗革命与奠基阶段(1895年至1927年)。建立了相对论和量子力学,奠定了现代物理学的基础。〖2〗飞速发展阶段(1927年至今)产生了量子场论、原子核物理学、粒子物理学、半导体物理学、现代宇宙学、现代物理技术等分支学科。 学习物理学史的意义 (1)加深对概念和理论的理解,启迪科学新思想的萌发和产生。 (2)物理学史可以使我们认识到“科学是最高意义上的革命力量”。 (3)物理学史可以培养我们的科学思维,掌握科学研究的方法,加深对科学研究的认识,可以活跃思想,开阔眼界,使我们的知识立体化。 (4)可以使我们认识到思想观念转变的意义。 (5)物理学史可以培养同学们的爱国主义精神 (6)通过学习科学家的精神,培养同学们追求真理,献身科学的崇高思想境界。 热学发展史实际上就是热力学和统计物理学的发展史,可以划分为哪四个时期?

相关主题
文本预览
相关文档 最新文档