材料成形数值模拟概念
- 格式:doc
- 大小:31.00 KB
- 文档页数:1
复合材料成型数值模拟及其应用复合材料在现代工业中应用广泛,具有轻质、高强度、高刚度和优异的耐久性等特点。
然而,复合材料的成型过程可谓是一门艺术和技术的结合,需要大量的工程经验,试错和大量的实验验证。
随着计算机技术的不断进步,数值模拟成为一种有效的预测和分析复合材料成型过程的方法。
本文将从数值模拟的角度出发,探讨复合材料在制造过程中的应用。
一、复合材料成型的基本过程复合材料的成型过程一般分为模具设计、预浸料制备、预浸料浸渍、层叠和压缩这几个步骤。
1. 模具设计模具是决定复合材料成型特性的关键因素之一。
合理的模具设计可以提高复合材料的成型质量和生产效率。
目前,常用的模具包括手工模具、金属模具和树脂模具等。
2. 预浸料制备复合材料一般采用热固性环氧树脂作为基体材料,预浸料是将纤维预先浸润在树脂中的半成品材料。
预浸料的制备是浸渍复合材料的基础,质量的高低直接影响到成品的质量。
3. 预浸料浸渍浸渍是将预浸料浸润在纤维上的过程,纤维的含量、树脂的流动性和浸渍过程的参数都是影响浸渍质量的重要因素。
4. 层叠和压缩将浸渍好的纤维层叠起来并进行压缩,以使树脂浸润在纤维之间,形成复合材料。
二、复合材料成型数值模拟的概述数值模拟是一种通过计算机模拟实际过程的方法,可以在虚拟环境中预测实际过程的结果。
数值模拟可以显著缩短调试时间和成本,减少实验次数和避免安全事故的发生。
复合材料成型数值模拟的基础是复合材料的力学行为和传热学理论。
主要包括有限元分析、流体力学分析、热传分析和材料模拟等方法。
可采用数值模拟技术模拟复合材料的成型过程及其过程参数和材料物性对成型过程的影响。
数值模拟可以分为几个步骤:模型的建立、边界条件的确定、求解方案的选择、数值计算和结果的分析等。
模型的建立是数值模拟的基础,复合材料成型过程的模型建立对数值模拟的精度有很大的影响。
应该综合考虑成型过程的物理和化学特性,设计实用、精确、高效、可靠的数值模拟模型。
第一部分:铸造过程的数值模拟1.1概述铸造工艺历史悠久,但长期以来只是一种手工艺经验积累,近代逐渐成为一门工程技术,但仍缺乏完整的科学体系[1-3]。
铸件凝固及其相应的铸型充填是铸造工艺的基本技术问题,大部分铸造缺陷产生于这一过程或与之密切相关,但由于该项研究问题复杂、难度较大,在实际生产中不得不更多地依赖于经验。
液体金属进入型腔之后,流态和温度是如何变化的,凝固是如何进行的,缺陷是如何生成的,这些对铸造工作者来说还带有相当的盲目性。
如何把它们计算和描绘出来,优化出最佳方案并形成工艺文件,尽可能以较少人力、物力生产出优质铸件,这就是铸件凝固数值模拟的主要任务[2]。
该学科是材料发展的前沿领域, 是改造传统铸造产业的必由之路。
经历了数十年的努力, 铸件充型凝固过程计算机模拟仿真发展已进入工程实用化阶段, 铸造生产正在由凭经验走向科学理论指导。
铸造充型凝固过程的数值模拟, 可以帮助工作人员在实际铸造前对铸件可能出现的各种缺陷及其大小、部位和发生的时间予以有效的预测,在浇注前采取对策以确保铸件的质量, 缩短试制周期, 降低生产成本。
1962年丹麦的Forsund把有限差分法用于铸件凝固过程的传热计算,从此铸造工艺揭开了计算机优化的序幕。
电子计算机在铸造生产中得以应用,目前主要在生产管理和数据处理、生产过程自动化控制以及铸造工艺辅助设计等领域,而用计算机模拟仿真逐步代替传统的经验性研究方法,已成为21世纪铸件成形技术的发展趋势之一[3]。
数值模拟技术经过数十年的发展,已经步入工程实用化阶段。
1989年, 世界上第一个铸造CAE商品化软件在德国第7届国际铸造博览会上展出, 它以温度场分析为核心内容, 在计算机工作站上运行, 是由德国Aachen大学Sahm教授主持开发的, 被称之为MAG2MA软件。
同时展出的还有英国FOSECO公司开发的Solstar软件, 它可在微机上运行, 但对有限元分析作了极大的简化。
材料成型中的热力学模型与数值模拟材料成型是现代工业中不可或缺的一环,它涉及到各种材料的加工和成型过程。
在材料成型过程中,热力学模型和数值模拟成为了重要的工具,用于预测和优化材料的成型过程。
本文将探讨材料成型中的热力学模型与数值模拟的应用。
热力学模型是研究物质在不同温度、压力和组分下的行为的数学模型。
在材料成型中,热力学模型可以用来描述材料的相变、相平衡和热力学性质等。
例如,在金属铸造过程中,热力学模型可以用来预测金属的凝固行为和相变过程。
这样的模型可以帮助工程师确定合适的工艺参数,以获得所需的材料性能。
数值模拟是通过计算机模拟材料成型过程的方法。
它基于热力学模型和数值方法,通过离散化和求解方程组来模拟材料的行为。
数值模拟可以用来预测材料的形变、应力分布和温度分布等。
例如,在注塑成型过程中,数值模拟可以用来优化模具设计和注塑工艺参数,以减少缺陷和提高产品质量。
在材料成型中,热力学模型和数值模拟相互关联,相互促进。
热力学模型提供了数值模拟所需的物理参数和边界条件,而数值模拟可以验证和优化热力学模型。
通过这种相互作用,工程师可以更好地理解和控制材料成型过程。
然而,热力学模型和数值模拟也面临着一些挑战和限制。
首先,热力学模型的准确性和适用性是一个关键问题。
不同材料的行为可能存在差异,需要根据具体情况选择合适的模型。
其次,数值模拟的计算精度和计算效率也是一个挑战。
材料成型过程通常涉及复杂的物理和几何变化,需要精细的离散化和求解算法。
此外,数值模拟还需要大量的计算资源和时间。
为了解决这些问题,研究人员不断改进和发展热力学模型和数值模拟方法。
他们通过实验数据的验证和改进,提高模型的准确性和适用性。
同时,他们还开发了高效的数值算法和计算技术,以提高计算精度和计算效率。
这些努力为材料成型的研究和应用提供了更可靠和有效的工具。
总之,材料成型中的热力学模型和数值模拟在工业生产和科学研究中起着重要的作用。
它们帮助工程师预测和优化材料的成型过程,提高产品质量和生产效率。
一、塑性成型数值模拟概述:塑性加工过程的有限元数值模拟,可以获得金属变形的详细规律,如网格变形、速度场、应力和应变场得分布规律,以及载荷-行程曲线。
通过对模拟结果的可视化分析,可以在现有模具设计上预测金属的流动规律,包括缺陷的产生。
利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少对模具重新设置的次数。
复杂横截面铝型材挤压模具的设计与数值模拟分析1.铝合金型材应用背景铝合金型材广泛用于建筑建材、交通运输、航空、航天、电子电器等领域。
铝合金型材产品成形的质量取决于对模具结构的合理设计及各种尺寸因素是否得当。
而目前, 国内行业存在的普遍现状仍是通过经验类比的方法设计模具, 模具的一次试模成功率大概只有50% ~ 6 0% 。
采用数值模拟的手段对设计进行验证和反馈, 提高设计的成功率, 有着很大的发展前景。
2.设计分析方案本文选取一个特定的复杂横截面型材, 分析其模具的设计方案; 建立了挤压过程的有限元模型, 利用基于任意拉格朗日欧拉法( A L E) 的Hyperxtrude 专用模块,对铝合金型材的挤压过程进行模拟分析。
通过对模具设计方案的数值模拟, 重点对坯料在模具中不同位置的速度分布结果进行分析, 并对比实际试模情况, 对模具的设计方案进行了修正, 探讨了在挤压工艺中通过模具结构的调整, 实现对金属流动进行控制, 以改善模腔内的材料流动, 获得合格的型材产品。
3.针对问题图2 为某型材厂生产的具有复杂横截面尺寸的产品。
由于型材断面的外接圆直径达到Φ236.3mm,比挤压棒料的直径尺寸大了约20 % , 因此需要对材料进行比较大的宽展成形。
为减轻模具上模分流桥部位的压力, 以及尽量减少上模的宽展角度, 需要做一块导流板以保护上模和引导金属向两边流动如图3所示a、导流板b、上模c、下模图 4 所示为导流板端面向下50mm 处截取平面的金属流动速度分布图, 由图可见, 导流板上由于中间位置的分流孔往右边倾斜向下供料,导致金属较多的被拖向右边的分流孔, 导致金属在右边的分流孔中流动比左边的分流孔流动快。
1.数值模拟是指利用一组控制方程来描述一个的基本参数变化关系,采用数值计算的方法求解,以获得该过程的定量认识及对过程进行动态模拟分析,在此基础上判断工艺或方案的优劣,预测缺陷,优化工艺等。
2.材料成型过程数值模拟技术在先进制造技术中的地位及作用:金属材料成型过程是十分复杂的高温、动态、瞬时过程,过程开放性差,材料经过液态流动充型,凝固结晶,固态变形,相变,再结晶和重结晶等多种微观组织变化及缺陷的产生与消失等一系列复杂的物理,化学,冶金变化而最后成为毛坯或构件。
3.数值模拟技术在材料成型过程中起到如下作用:1.优化工艺设计,使工艺参数达到最佳,提高产品质量;2.可在较短时间内,对多种工艺方案进行检测,缩短产品开发周期;3.在计算机上进行工艺模拟实验,降低产品开发费用和对资源的消耗,数值模拟技术是材料成型领域cad的重要内容,也是先进制造技术——虚拟化,敏捷化,绿色化生产,并行工程的重要基础。
4.材料成型过程数值模拟的研究的发展趋势:满足高质量、低成本、短周期材料成型技术的实现。
研究发展高质量的数值模拟系统依赖于对成型机理的深入探讨,建立高质量的数学物理模型。
为了提高数值模拟系统的效率,除依靠计算机硬件技术的发展之外,人们在研究提高计算速度的方法,开发了大规模计算问题的并行计算方法。
提高硬件和好的计算方法可以提高效率,高度集成的数值模拟软件系统是此项技术发展的必然趋势。
高质量高效率的高集成数值模拟式并行工程的可靠而有效的保证,也是发展虚拟技术的关键之一,它将会促进21世纪的材料加工技术得到更大的发展。
第一章数值模拟技术1.材料成型过程的数值模拟技术主要包括前处理、模拟分析计算和后处理三部分。
1.前处理的任务是为数值模拟准备一个初始的环境对象。
前处理模块是对材料成型过程进行准确模拟,分析的前提和基础,其性能的好坏直接影响到整个系统的实用性及计算的准确性。
2.前处理模块主要包括两部分内容:实体造型和网格剖分。
焊接材料成型加工过程数值模拟与仿真分析方法研究焊接材料成型加工过程数值模拟与仿真分析方法研究1.引言焊接是一种常用的金属连接方法,在工业生产中应用广泛。
焊接材料的成型加工过程决定了焊接接头的质量和性能。
为了提高焊接接头的质量和效率,需要进行数值模拟和仿真分析,以预测焊接过程中的温度场、应力场、相变和变形等物理现象,并优化焊接参数和工艺。
本文将重点介绍焊接材料成型加工过程数值模拟与仿真分析的研究方法及其应用。
2.数值模拟方法2.1 有限元方法有限元方法是一种常用的数值模拟方法,它将连续的物理领域离散化为有限数量的小单元,通过求解这些小单元上的方程组,得到整个物理领域的解。
在焊接材料成型加工过程中,可以将焊接区域划分为多个小单元,根据材料的热传导、应力-应变关系和相变规律,建立有限元模型,并求解温度场、应力场和相变变化等。
有限元方法可以对焊接过程中的多个物理现象进行耦合分析,提供详细的信息,对焊接过程进行准确的数值模拟。
2.2 计算流体力学方法计算流体力学方法是一种求解流体动力学方程的数值方法,可以用于模拟焊接过程中的流动和换热现象。
在焊接过程中,熔化金属的流动对焊接接头的形成和质量有重要影响。
计算流体力学方法可以建立焊接过程中的流动模型,模拟熔融金属的流动和焊接池的形成过程,从而预测焊接接头的形态和性能。
计算流体力学方法在焊接过程中的应用主要包括熔化金属的流动和焊接池的形成、焊接接头的形态和质量预测等方面。
2.3 相场模型相场模型是一种描述各相界面和相变过程的数学模型,适用于焊接材料成型过程中的相变和相界面追踪。
相场模型通过引入一个连续的相场函数,描述了相变系统中每种物质的存在程度,并与守恒方程和变分原理相结合,建立了相变系统的方程组。
在焊接材料成型加工过程中,相场模型可以用于预测焊接材料的熔化、凝固和晶体生长等相变过程,研究焊接接头的形态和组织演变。
3.仿真分析方法3.1 温度场分析温度场是焊接过程中的重要参数,直接影响焊接接头的组织和性能。
数值模拟在材料加工中的应用研究一、引言随着科技的飞速发展,数值模拟成为材料加工领域中不可或缺的一部分,成为实现产品质量提升、生产工艺优化、成本控制等目标的重要手段。
本文将从数值模拟的基本概念、材料加工中数值模拟的应用、以及数值模拟在材料加工中的未来发展等方面对数值模拟在材料加工中的应用进行探讨。
二、数值模拟的基本概念数值模拟是以计算机为基础,利用数学方法和计算机技术对现实世界中复杂的物理现象进行模拟,以求得定量的近似解或最优解的方法。
数值模拟在早期应用于设计计算机芯片、航空飞行模拟、电力系统仿真等领域,而在近年来的材料加工领域得到了广泛应用。
三、材料加工中数值模拟的应用1.成型工艺模拟成型工艺是材料加工的关键环节,对于确保产品的质量、损耗率和生产时间等方面具有重要影响。
数值模拟可以通过有限元法、CFD等手段对成型工艺进行模拟,预测整个成型过程中的温度分布、应力分布等参数,为优化成型过程提供依据。
2.热处理过程模拟热处理是材料加工中的一个重要流程,能够改变材料的组织结构和性能。
数值模拟可以通过计算材料的本构模型和热力学模型,模拟热处理过程中的温度场、应力场等参数,可以量化分析材料的变形情况和热处理效果,并为制定合理的热处理方案提供数据支持。
3.激光加工、电火花加工等非传统加工工艺模拟传统的加工技术在一些材料上存在很大的局限性,而非传统加工技术(激光加工、电子束加工、电火花加工等)由于其高效、精密等特点,被广泛应用于各个领域。
数值模拟可以对非传统加工工艺中的温度分布、熔池形态、应力变化等进行分析、预测,为选择合适的加工参数和优化加工方案提供数据支持。
四、数值模拟在材料加工中的未来发展数值模拟在材料加工中的应用正面临着越来越多的挑战,如如何将数值模拟模型与实际生产过程进行深度融合,从而更好地现实虚拟并行;如何进一步提高数值模拟的分辨率,更精确地预测变形、熔池形态、纹路跳动等问题;如何将数值模拟与机器学习相结合,实现更高效、更智能的生产过程等。
数值模拟方法在材料成型中的应用。
数值方法主要包括有限元法、边界元法和有限差分法。
这类方法能够模拟金属成形过程,直观描述材料的变形流动状况,定量地计算出工件内部的应力、应变和温度分布状态,适用于分析非常复杂的成形过程。
在各种数值模拟方法中,有限元法由于能够准确描述变形过程的物理特性,全面考虑各种初、边值条件的影响,对复杂边界具有较高的拟合精度,并且可以求出全部物理量,因此得到了最为广泛的应用。
根据金属成形过程中材料本构关系的不同,有限元法可分为两大类[78]:一类是固体型塑性有限元法,包括小变形弹塑性有限元法和大变形弹塑性有限元法,另一类是流动性塑性有限元法,包括刚塑性有限元法和刚(粘)塑性有限元法。
建立有限元时所采用的方法,及把问题表述为变分形式或加权残差形式,再把该表述进行有限元离散化,并有效的求解所导出的有限元方程,最终结果是在计算机上实现了一个完整的数值处理过程:有限元矩阵的表述,用来计算这些矩阵的数值积分,把单元矩阵集合成相应于整个有限元系统的矩阵,以及系统平衡方程组的数值求解。
弹塑性有限元法由Marcal和King于1967年首先提出[78],它同时考虑弹性变形和塑性变形,弹性区采用Hook定律,塑性区采用Prandtl.Reuss 方程和Mises屈服准则。
采用弹塑性有限元法分析金属塑性成过程,不仅能按照变形路径得到塑性区的变化、工件的应力、应变分布规律和大小以及几何形状的变化,而且还能有效地处理卸载问题、计算残余应力和残余应变,从而可以进行回弹预测及缺陷分析。
但是弹塑性有限元法由于要考虑变形历史的相关性,需要采用增量加载,在每一增量加载步中,都须作弹性计算来判断原来处于弹性区的单元是否已进入屈服,对进入屈服后的单元就要采用弹塑性本构关系,从而改变了单元刚度矩阵。
为了保证精度和解的收敛性,每次加载不能使很多单元同时屈服,这就使得每次计算时的变形增量不能太大。
对于大变形问题计算时间较长、效率较低。
等以液态铸造成形,固态塑性成形和连续成形以及黏流态注射成形等为代表的材料加工工程。
将一个成形铸造过程定义为由一组控制方程加上边界条件构成的数学的有解的问题,是在计算机系统平台上利用数值方法仿真(虚拟)材料的成形过程。
目的:帮助人们认识与掌握材料特性、成形方案、工艺参数等内在、外在因数对材料成形质量和工模具寿命
分)成有限个形状简单的子域单元②利用有限个节点将各子域连接起来,使其分别承受相应的等效节点载荷③借助子域插值函数和“平衡”条件构建各子域的物理场控制方程④将这些方程按规则组合⑤在给定的
载荷、建立边界初始条件②求解计算过程,内容:计算刚度曲线、节点位移、应变应力③后置处理过程,
件或曲面零件的一种冲压加工方法。
②胀形:在模具作用下,迫使毛坯厚度减薄和表面积增大,以获得零件几何形状的冲压加工方法。
③修边:指利用模具刃口切除拉深件上工艺补充部分材料的冲压加工方法。
④翻边:指利用模具将板坯或制作上的内外边缘翻制成竖边的冲压加工方法。
⑤弯曲:指在模具的作用下,将板料或板料局部按设计要求弯制成一定角度和一定曲率半径的冲压加工方法。
⑥落料和冲孔:两者都是
利用模具刃口沿封闭轮廓曲线冲切毛坯而完成加工,落料获得平板零件或板坯,
具体有:①起皱缺陷模拟:起皱是薄板冲压成形中常见的缺陷之一,起皱严重到一定程度将使零件报废,仿真技术能较好地预测给定条件下冲压件可能产生的起皱,并通过修改模具或工艺参数予以消除。
②拉裂:是冲压件成形失效的另一种形式,采用计算机仿真技术能够较为准确地计算材料在冲压成形中的流动情况,因而可较准确地预测变形体内的应变分布和板坯的减薄,为判断是否存在拉裂可能性提供科学、可靠的依据。
③回弹:冲压成形件卸载后的回弹是不可避免的物理现象,冲压成形数值模拟技术的诞生为计算复杂冲压件的回弹提供了有
、①在UG 软件中生成零件模型,将生成零件另存为iges格式文件。
②在Dynaform软件中点击菜单栏中的“文件”,出现下拉菜单,选择“导入”,弹出对话框,选择对象文件,点击“确定”。
2、零件网格划分:①打开后缀名为“.df“的零件,并设为当前零件。
②点击菜单栏中“前处理”选择“单元”,弹出单元对话框。
③点击对话框中“曲面网格化”,点击右上角“网格划分”按钮,弹出网格对话框。
④在网格对话框中点击“选择曲面”,用十字光标点击曲面使之变白,点击确定。
⑤点击“应用”,并接受自动网格划分结果即可。