单项式、多项式、合并同类项测试
- 格式:doc
- 大小:138.50 KB
- 文档页数:4
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。
现象与思考 XIANXIANGYUSIKAO初中学生在初步学习单项式、多项式、整式时,总会出现一些简单而常见的问题,本文结合实际教学中学生容易出现的问题,分析如何学习单项式、多项式、整式,怎样掌握整式加减的小窍门等,抛砖引玉,以期为学生学习整式提供一定的指导意义。
一、单项式中出现的主要问题单项式的学习对学生而言并不难,但由于知识面窄,不能完全理解一些数学概念,学习中经常犯一些“小迷糊”。
1.单独的一个数或字母也是单项式在引入单项式时,多是以例子(如100a,0.7p,mn,-abc等)总结归纳出单项式的定义:表示数和字母乘积的式子叫做单项式。
学生通过观察例子和定义的描述,很多学生会认为同时含有数字和字母的式子才是单项式。
往往会忽略一点:单独的一个数或者一个字母也是单项式。
这一点应多注意,很多学生容易犯此小错误。
2.系数和次数的区分单项式系数和次数的区分比较简单,系数是指单项式中的数字因数,次数是单项式中所有字母指数的和。
一个是数字因数,一个是字母指数的和,两者在位置和意义上完全不同。
如-1.5h中,-1.5是系数,而指数是1.一定要把系数和次数理解清楚,为下面学习整式加减和多项式奠定基础。
尤其是圆的面积公式(πr2中)π是一个常数,不能当作一个字母来处理。
具体应用如下表:3.单项式里的运算单项式里没有加减运算。
如果有除法运算,分母里也一定没有字母,只有数字。
如x-y,ab+1,x/y都不是单项式。
而3a/4则是单项式,分母里没有字母,可看做3/4和a的乘法运算。
二、多项式中常见的问题在多项式里,学生容易出错是出现“-”号时,找对应项的系数和多项式次数的确定。
1.出现“-”号的情况我们知道:几个单项式的和称作多项式,当出现“-”号时,是不是多项式呢?这一点学生就有疑问。
减法是加法的特殊形式,减去一个数或式子,可以看作是加上一个负数或带负号的式子。
如4a2-8和x2y-x-y,可以转化为4a2+(-8)和x2y+(-x)+(-y),即出现“-”号时,它们也是多项式。
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试卷解读一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点: 整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?考点: 单项式乘多项式.专题: 应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方M;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方M.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点: 单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点: 单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点: 单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点: 单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。
单项式乘多项式练习题一.解答题〔共18小题〕1.先化简,再求值:2〔a2b+ab2〕﹣2〔a2b﹣1〕﹣ab2﹣2,其中a=﹣2,b=2.2.计算:〔1〕6x2•3xy 〔2〕〔4a﹣b2〕〔﹣2b〕3.〔3x2y﹣2x+1〕〔﹣2xy〕4.计算:〔1〕〔﹣12a2b2c〕•〔﹣abc2〕2=_________;〔2〕〔3a2b﹣4ab2﹣5ab﹣1〕•〔﹣2ab2〕=_________.5.计算:﹣6a•〔﹣﹣a+2〕6.﹣3x•〔2x2﹣x+4〕7.先化简,再求值3a〔2a2﹣4a+3〕﹣2a2〔3a+4〕,其中a=﹣2 8.〔﹣a2b〕〔b2﹣a+〕9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽〔a+2b〕米,坝高米.〔1〕求防洪堤坝的横断面积;〔2〕如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab〔5ab+3a2b〕11.计算:.12.计算:2x〔x2﹣x+3〕13.〔﹣4a3+12a2b﹣7a3b3〕〔﹣4a2〕=_________.14.计算:xy2〔3x2y﹣xy2+y〕15.〔﹣2ab〕〔3a2﹣2ab﹣4b2〕16.计算:〔﹣2a2b〕3〔3b2﹣4a+6〕17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣3x 2,得到的结果是x 2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x 、y 定义运算如下:x △y=ax+by+cxy ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l △3=1×l+2×3+3×1×3=16,现所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d 使得对任意有理数x △d=x ,求a 、b 、c 、d 的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.假设3k 〔2k-5〕+2k 〔1-3k 〕=52,那么k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是cm 。
单项式乘多项式练习题含答案原式=2(ab+ab) - 2(ab-1) - ab - 24ab - 2ab + 2 + ab - 23ab代入a=-2,b=2得:3ab=3(-2)(2)=-122.计算:1)6x^3xy2)(4a-b)(-2b)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.对于第二个式子,使用分配律展开括号,然后合并同类项即可.解答:1)6x^3xy = 6x^(3+1)y = 6x^4y2)(4a-b)(-2b) = -8ab + 2b^23.(3xy-2x+1)(-2xy)考点:多项式乘法.分析:根据多项式乘法的法则,将第一个括号中的每一项分别乘以第二个括号中的每一项,然后合并同类项即可.解答:(3xy-2x+1)(-2xy) = -6x^2y^2 + 4xy - 2xy4.计算:1)(-12abc)(-abc)2)(3ab-4ab-5ab-1)(-2ab)考点:单项式乘法;整式的加减.分析:对于第一个式子,根据单项式乘法的法则,将两个单项式相乘即可;对于第二个式子,使用分配律展开括号,然后合并同类项即可.解答:1)(-12abc)(-abc) = 12a^2b^2c^22)(3ab-4ab-5ab-1)(-2ab) = 12a^2b^2 + 2ab5.计算:-6a(-7a+2a-1)考点:单项式乘法;整式的加减.分析:根据单项式乘法的法则,将两个单项式相乘,然后合并同类项即可.解答:-6a(-7a+2a-1) = -6a(-5a-1) = 30a^2 + 6a6.-3x(2x-x+4)考点:整式的加减.分析:根据整式的加减法则,将括号中的每一项乘以系数-3,然后合并同类项即可.解答:-3x(2x-x+4) = -6x^2 + 3x - 12x7.先化简,再求值3a(2a-4a+3)-2a(3a+4),其中a=-2考点:整式的加减—化简求值;整式的加减.分析:先根据整式的加减法则化简式子,然后代入a=-2求值即可.解答:3a(2a-4a+3)-2a(3a+4) = 3a(-2a+3) - 2a(3a+4)6a^2 + 9a - 6a^2 - 8a12a^2 + a代入a=-2得:-12a^2+a=-12(-2)^2+(-2)=508.(-ab)(b-a+2)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.解答:(-ab)(b-a+2) = -ab^2 + a^2b - 2ab9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高h米.1)求防洪堤坝的横断面积;2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:梯形面积公式;体积公式.分析:对于第一问,根据梯形面积公式计算横断面积;对于第二问,将横断面积与长度相乘,再乘以坝高即可得到体积.解答:1)横断面积 = (上底+下底)×高÷2 = (a+a+2b)×h÷2 =(2a+2b)h÷2 = (a+b)h2)体积 = 横断面积×长度×坝高 = (a+b)h×100×h =100h(a+b)h = 100h^2(a+b)10.2ab(5ab+3ab)考点:单项式乘法.分析:根据单项式乘法的法则,将两个单项式相乘即可.解答:2ab(5ab+3ab) = 16a^2b^211.计算:(a+b+c)^2考点:二次方公式.分析:根据二次方公式展开式子即可.解答:(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc12.计算:2x(x-x+3)考点:整式的加减.分析:根据整式的加减法则,将括号中的每一项乘以系数2,然后合并同类项即可.解答:2x(x-x+3) = 2x(3) = 6x13.(-4a+12ab-7ab)(-4a)考点:整式的加减;单项式乘法.分析:使用分配律展开括号,然后合并同类项即可.解答:(-4a+12ab-7ab)(-4a) = 16a^2 - 8ab14.计算:xy(3xy-xy+y)考点:整式的加减.分析:根据整式的加减法则,将括号中的每一项乘以系数xy,然后合并同类项即可.解答:xy(3xy-xy+y) = 2xy^215.(-2ab)(3a-2ab-4b)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.解答:(-2ab)(3a-2ab-4b) = -6a^2b + 4ab^2 + 8ab16.(-2ab)(3b-4a+6)考点:单项式乘多项式;整式的加减.分析:根据单项式乘多项式的法则,将单项式分别乘以多项式中的每一项,然后合并同类项即可.解答:(-2ab)(3b-4a+6) = -6ab^2 + 8a^2b - 12ab17.某同学在计算一个多项式乘以-3x时,因抄错运算符号,算成了加上-3x,得到的结果是x-4x+1,那么正确的计算结果是多少?考点:多项式乘法;整式的加减.分析:根据多项式乘法的法则,将多项式中的每一项乘以-3x,然后合并同类项即可.解答:x-4x+1 = -3x(x+2) + 7x,正确的计算结果为-3x(x+2) + 7x = -3x^2 - 6x + 7x = -3x^2 + x18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:方程求解.分析:根据题目中的条件列方程组,解出a、b、c、d的值即可.解答:由1△2=3得:a+2b+2c=3由2△3=4得:2a+3b+6c=4由x△d=x得:ax+bd+cdx=x将x=0代入上式得:bd=0,由于d不为零,所以b=0代入前两个式子得:a+4c=3,2a+12c=4解得:a=-5,c=2/3代入最后一个式子得:-5x+2/3xd=x解得:d=15/2分析:这篇文章主要考查了单项式与多项式相乘的运算法则和整式的化简,以及应用题中的梯形面积公式的应用。
9.2单项式乘多项式一、选择题1.化简,结果正确的是()A. B. C. D.2.计算:的结果是()A. B.C. D.3.化简的结果为()A. B. C. 9 D.4.计算的结果是()A. B. C. D.5.要使的展开式中不含项,则k的值为()A. B. 0 C. 2 D. 36.一个多项式除以,其商为,则该多项式为()A. B.C. D.7.下列计算中:;;;,错误的个数有()A. 1个B. 2个C. 3个D. 4个8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有();;;.A. B. C. D.9.若,则的值为()A. 216B. 246C.D. 17410.若与的值永远相等,则m、n、k分别为()A. 6,3,1B. 3,6,1C. 2,1,3D. 2,3,1二、填空题11.计算:_______________.12.已知,那么______.13.若多项式与单项式的积是,则该多项式为______.14.一个长方体的长、宽、高分别是、、x,则它的表面积为______.15.已知,则的值为______.16.若,则__________,__________.17.一个矩形的面积为,一边长为2ab cm,则它的周长为________cm.18.要使成立,则a和b的值分别为.三、计算题19.计算:;.四、解答题20.先化简,再求值:,其中.21.阅读:已知,求的值.解:.你能用上述方法解决以下问题吗试一试已知,求的值.22.某同学在计算一个多项式乘以时,因抄错运算符号,算成了加上,得到的结果是,那么正确的计算结果是多少?答案和解析1.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:故选B.2.【答案】A【解析】【分析】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:.故选:A.3.【答案】C【解析】解:原式.故选:C.直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案.此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】解:原式,故选C.【分析】原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则求出答案.【解答】解:的展开式中不含项,中不含项,,解得:.故选C.6.【答案】D【解析】【分析】本题考查了多项式除以单项式,弄清被除式、除式、商三者之间的关系是求解的关键.根据被除式商除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式.故选D.7.【答案】C【解析】【分析】此题考查了单项式乘多项式和完全平方公式,熟练掌握公式及运算法则是解本题的关键.各项计算得到结果,即可作出判断.【解答】解:,故错误;,故错误;,故错误;,故正确,错误的有3个.故选C.8.【答案】D【解析】解:表示该长方形面积的多项式正确;正确;正确;正确.故选:D.根据图中长方形的面积可表示为总长总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.9.【答案】B【解析】解:原式,当时,原式,故选:B.将原式变形为,再将代入计算可得.本题主要考查单项式乘多项式,解题的关键是熟练掌握单项式乘多项式的运算法则.10.【答案】A【解析】【分析】本题考查的是单项式乘以多项式有关知识,首先对该式进行相乘,然后再利用等式两边的式子相等进行解答即可.【解答】解:,,,,解得:,,.故选A.11.【答案】【解析】解:故答案为:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.此题考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:单项式与多项式相乘实质上是转化为单项式乘以单项式;用单项式去乘多项式中的每一项时,不能漏乘;注意确定积的符号.12.【答案】【解析】解:,,解得.故答案为:.根据单项式与多项式相乘的运算法则进行计算,使结果对应相等,得到关于x的方程,解方程得到答案.本题考查的是单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】【解析】解:多项式与单项式的积是,该多项式为:.故答案为:.直接利用整式的除法运算法则计算得出答案.此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.14.【答案】【解析】解:表面积是,故答案为:.先根据题意列出算式,再求出即可.本题考查了整式的混合运算,能根据题意列出算式是解此题的关键.15.【答案】16【解析】解:,,即,则,故答案为:16.将已知等式去括号、合并可得,整体代入到原式可得答案.本题主要考查代数式的求值,解题的关键是掌握去括号、合并同类项的法则及因式分解的应用、整体代入思想的运用.16.【答案】;.【解析】【分析】这是一道考查单项式乘以多项式的题目,解题关键在于掌握法则,根据对应相等,即可求出M和N.【解答】解:,,,即,,故答案为;.17.【答案】【解析】【分析】此题考查了多项式除以单项式、单项式乘多项式在实际中的应用.求出矩形的另一边长是解题的关键.先根据矩形的面积公式求出另一边的长,再根据矩形的周长长宽列式,通过计算即可得出结果.解:,.故答案为.18.【答案】2,【解析】【分析】【分析】先将等式左边去括号合并同类项,再根据多项式相等的条件即可求出a与b的值.此题考查了整式的混合运算,涉及的知识有:去括号法则,合并同类项法则,以及多项式相等的条件,熟练掌握法则是解本题的关键.【解答】解:因为,所以,,解得,.19.【答案】解:原式;原式.【解析】本题考查了单项式乘以多项式,按照单项式乘以多项式法则进行计算即可;本题考查了幂的乘方与积的乘方、单项式乘以多项式,先算幂的乘方与积的乘方再算单项式乘以多项式即可求得答案.20.【答案】解:原式,,当时,原式.【解析】本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.21.【答案】解:,,,,,.【解析】本题考查了单项式乘多项式,整体代入是解题关键.根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.22.【答案】解:这个多项式是,正确的计算结果是:.【解析】用错误结果减去已知多项式,得出原式,再乘以得出正确结果.。
同类项与合并同类项-重难点题型【知识点1 同类项的概念】(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 同类项中所含字母可以看成是数字、单项式、多项式等. (2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项. 【题型1 判断两单项式是否同类项】【例1】(2020秋•广安期末)下列各选项中的两个单项式,是同类项的是( ) A .3和2 B .﹣a 2和﹣52 C .−15a 2b 和12ab 2D .2ab 和2xy【变式1-1】(2020秋•鄂州期末)下列各组单项式中,不是同类项的是( ) A .32与23 B .﹣5x 2 与36x 2C .25a 3bc 与23a 3bcD .17x 2y 与﹣0.9yx 3【变式1-2】(2020秋•内江期末)下列各组代数式中,属于同类项的是( ) A .x 2与xy 2 B .3ab 2与﹣3ab 2C .﹣4xyz 与2x 2y 2z 2D .3a 与2b【变式1-3】(2021春•安丘市月考)下列各组中,不是同类项的是( )A .12a 3y 与2ya 33B .22abx 3与5bax 33C .6a 2mb 与﹣a 2bmD .13x 3y 与13xy 3【题型2 由同类项定义求值】【例2】(2021春•道县期末)若23x a y 3与32x 2y b 是同类项,则a +b =( )A .5B .1C .﹣5D .4【变式2-1】(2020秋•织金县期末)若单项式a m ﹣1b 2与12a 2b n 是同类项,则n m 的值是( )A .3B .6C .8D .9【变式2-2】(2021春•万州区校级月考)已知单项式﹣3x m ﹣1y 3与52x n y m +n 是同类项,那么m 、n 的值分别是( ) A .m =2,n =1B .m =1,n =2C .m =0,n =﹣1D .m =﹣1,n =2【变式2-3】(2020秋•石阡县期末)如果13x a +1y 2a +3与﹣3x 2y 2b﹣1是同类项,那么a ,b 的值分别是( ) A .a =1,b =2B .a =1,b =3C .a =2,b =3D .a =3,b =2【知识点2 合并同类项】(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【题型3 判断合并同类项的正误】【例3】(2020秋•莲湖区期末)下列计算正确的是( ) A .5a +2b =7abB .5a 3﹣3a 2=2aC .4a 2b ﹣3ba 2=a 2bD .−12y 2−14y 2=−34y 4【变式3-1】(2021•株洲模拟)下面计算正确的是( ) A .4x 2﹣x 2=3 B .3a 2+2a 3=5a 5 C .3a 2+2b =5abD .﹣0.25ab +14ba =0【变式3-2】(2021春•香坊区期末)下列各式正确的是( ) A .5xy 2﹣3y 2x =2xy 2 B .4a 2b 2﹣5ab =﹣a C .7m 2n ﹣7mn 2=0D .2x 2+3x 4=5x 6【变式3-3】(2020秋•新邵县期末)下列运算正确的是( ) A .3x ﹣2x =1 B .2x 2+3x 3=5x 5C .7x 3﹣3x 3=4x 3D .22021﹣22020=2【题型4 由合并同类项法则求值】【例4】(2020秋•苏州期末)若3x m +5y 2与23x 8y n 的差是一个单项式,则代数式﹣m n 的值为( ) A .﹣8B .9C .﹣9D .﹣6【变式4-1】(2021春•勃利县期末)若3x 2y m 与2x m +n ﹣1y 的和仍为一个单项式,则m 2﹣n 的值为( ) A .1B .﹣1C .﹣3D .3【变式4-2】(2020秋•怀安县期末)已知m 、n 为常数,代数式2x 4y +mx |5﹣n |y +xy 化简之后为单项式,则m n 的值共有( ) A .1个B .2个C .3个D .4个【变式4-3】(2021•湘潭模拟)已知m ,n 为常数,三个单项式4x 2y ,mx 3−n 2y ,8x 3y 的和仍为单项式,则m +n 的值的个数共有( ) A .1个B .2个C .3个D .4个【题型5 不含某项问题】【例5】(2020秋•渝中区期末)若多项式x 2﹣2kx ﹣x +7化简后不含x 的一次项,则k 的值为( ) A .0 B .﹣2C .12D .−12【变式5-1】(2020秋•台前县期中)多项式﹣x 3﹣4x 2+x +1与多项式3x 3+2mx 2﹣5x +3相加后不含二次项,则m 的值为( ) A .2B .﹣2C .4D .﹣4【变式5-2】(2020秋•薛城区期末)若多项式x 2+2kxy ﹣5y 2﹣2x ﹣6xy +4中不含xy 项,则k= .【变式5-3】(2020秋•雁江区期末)已知关于x ,y 的多项式mx 2+4xy ﹣7x ﹣3x 2+2nxy ﹣5y 合并后不含有二次项,则n m = . 【题型6 与字母取值无关问题】【例6】(2020秋•防城区期中)多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( )A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关【变式6-1】(2020秋•朝阳区校级月考)如果关于字母x 的多项式3x 2﹣mx ﹣nx 2﹣x ﹣3的值与x 的值无关,则mn = .【变式6-2】(2020秋•宣化区期中)已知代数式﹣3x 2+2y ﹣mx +5﹣3nx 2+6x ﹣20y 的值与字母x 的取值无关,求23m ﹣2mn +n 3的值.【变式6-3】(2020秋•射洪市期中)如果关于字母x 的二次多项式﹣3x 2+mx ﹣5+nx 2﹣x +3的值与x 的取值无关,求m 2+2mn +n 2的值.【题型7 合并同类项的计算】【例7】(2020秋•恩施市期中)合并下列多项式中的同类项. (1)5a 2+2ab ﹣3b 2﹣ab +3b 2﹣5a 2; (2)6y 2﹣9y +5﹣y 2+4y ﹣5y 2.【变式7-1】(2020秋•东莞市校级期中)化简: (1)﹣3x 2y +3xy 2﹣2xy 2+2x 2y ; (2)2a 2﹣5a +a 2+6+4a ﹣3a 2.【变式7-2】(2020秋•天心区校级月考)化简: (1)12m 2﹣3mn 2+4n 2+12m 2+5mn 2﹣4n 2.(2)7a 2﹣2ab +b 2﹣5a 2﹣b 2﹣2a 2﹣ab .【变式7-3】(2020秋•武侯区校级期中)化简: (1)4a 2+3b 2﹣2ab ﹣3a 2+b 2.(2)(−13xy )+(−25x 2)−12x 2﹣(−16xy ).【题型8 先合并同类项再求值】【例8】先合并同类项,再求值:3a 2﹣5a +2﹣6a 2+6a ﹣3,其中a =﹣1.【变式8-1】先合并同类项,再求值﹣xyz ﹣4yz ﹣6xz +3xyz +5xz +4yz ,其中x =﹣2,y =﹣10,z =﹣5.【变式8-2】当a =13时,求多项式5a 2﹣5a +4﹣3a 2+6a ﹣5的值. (1)将a 的值直接代入多项式中计算; (2)先化简多项式,再将a 的值代入计算.【变式8-3】(2020秋•抚顺县期末)先化简,再求值:13ab −12a 2+14a 2﹣(−23ab ),其中a 、b 满足条件:x 2a y b +1与2xy 3是同类项.。
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。
单项式乘多项式练习题一.解答题〔共18小题〕1.先化简,再求值:2〔a 2b+ab 2〕﹣2〔a 2b ﹣1〕﹣ab 2﹣2,其中a=﹣2,b=2.2.计算:〔1〕6*2•3*y 〔2〕〔4a ﹣b 2〕〔﹣2b 〕3.〔3*2y ﹣2*+1〕〔﹣2*y 〕4.计算:〔1〕〔﹣12a 2b 2c 〕•〔﹣abc 2〕2=_________; 〔2〕〔3a 2b ﹣4ab 2﹣5ab ﹣1〕•〔﹣2ab 2〕=_________.5.计算:﹣6a •〔﹣﹣a+2〕 6.﹣3*•〔2*2﹣*+4〕7.先化简,再求值3a 〔2a 2﹣4a+3〕﹣2a 2〔3a+4〕,其中a=﹣2 8.〔﹣a 2b 〕〔b2﹣a+〕9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽〔a+2b 〕米,坝高米. 〔1〕求防洪堤坝的横断面积;〔2〕如果防洪堤坝长100米,则这段防洪堤坝的体积是多少立方米?10.2ab 〔5ab+3a 2b 〕 11.计算:. 12.计算:2*〔*2﹣*+3〕 13.〔﹣4a 3+12a 2b ﹣7a 3b 3〕〔﹣4a 2〕=_________.14.计算:*y 2〔3*2y ﹣*y 2+y 〕 15.〔﹣2ab 〕〔3a 2﹣2ab ﹣4b 2〕16.计算:〔﹣2a 2b 〕3〔3b 2﹣4a+6〕17.*同学在计算一个多项式乘以﹣3*2时,因抄错运算符号,算成了加上﹣3*2,得到的结果是*2﹣4*+1,则正确的计算结果是多少?18.对任意有理数*、y 定义运算如下:*△y=a*+by+c*y ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l △3=1×l+2×3+3×1×3=16,现所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d 使得对任意有理数*△d=*,求a 、b 、c 、d 的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.假设3k 〔2k-5〕+2k 〔1-3k 〕=52,则k=____ ___.4.如果*+y=-4,*-y=8,则代数式的值是cm 。
新人教版七年级数学上册第二章整式的加减知识点和典型例题I 基本题型一、列单项式、多项式1.某次旅游分甲、乙两组,已知甲组a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则共要付门票___元. 2.某公司职员,月工资a 元,增加10%后达到________元.3.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为________.4.甲车的速度为每小时x 千米,乙车的速度为每小时y 千米.若甲、乙两车由两地同时出发,相向而行,t 小时后相遇,则两地距离为________千米.若两车同时分别从两地出发,同向而行,t 小时甲车追上乙车,则两地距离为_____千米.5.有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高________米.6.含盐20%的盐水x 千克,其中含盐________千克,含水________千克.7.某项工程甲独干a 天完成,乙独干b 天完成,则甲、乙合作每天完成工程的_____ 8.一种小麦磨成面粉后,重量减轻15%,要得到m 千克面粉,需要小麦______千克。
9.一辆汽车从A 地出发,先行驶了s 米之后,又以υ米/秒的速度行驶了t 秒.汽车行驶的全部路程等于 米 10.电影院第一排有a 个座位,后面每排都比前一排多一个座位,若第n 排有m 个座位,那么m=11.用含有字母的式子填空:(1)a 与b 的143倍的差是_.(2)某商品原价为a 元,提高了20%后的价格 . 12.已知三角形的第一边长是2a b +,第二边比第一边长(2)b -,第三边比第二边小5。
则三角形的周长为 。
13.某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为二、判断区分单项式、多项式、整式 1.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有 ( )A .5个整式B .4个单项,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同2.在代数式ba b a b a x a m +-+-,,2,31,0,21π中,整式有( )A 、3个 B 、4个 C 、5个 D 、6个 3.下列代数式中,是单项式的有 .①-15; ②32a ; ③π1x 2y; ④ abc32; ⑤3a+2b; ⑥0; ⑦ 7m4.单项式22ab 2c 的系数是 ,次数是 .5.πR 2是次单项式,-32是次单项式.6.把下列代数式分别填在相应的括号里:a 2b,,43,3,2,1ab y x x ---x 2-x-1 单项式:{ }多项式:{ }整 式:{ }7.整式21,3x -y 2,23x 2y ,a ,πx +21y ,522a π,x +1中,单项式有: 多项式有:8.在,中,单项式有: 。
第 1 页 共 4 页
单项式、多项式、合并同类项测试题 姓名
一、填空题(每空2分,共38分)
1.单项式-652yx的系数是 ,次数是 .
2.多项式2-152xy-4yx3是 次 项式,它的项为
3、用代数式表示:倍的倍与的32yx的差的一半 ,
4、若3bman是关于a、b的五次单项式,且系数是3,则mn 。
5.如果两个同类项的系数互为相反数,那么合并同类项后结果是 .
6.写出- 12 a²b³c²的三个同类项 、 、 .
7.若- 3x³y2k+1与4x³y7是同类项,则k= .
8.化简 12 a - 13 a + 56 a= .
9、多项式424325xxyyyx是 次 项式。
10、把多项式x4-y4+3x3y-2xy2-5x2y3用适当的方式排列。
(1)按字母x的升幂排列得: ;
(2)按字母y的升幂排列得: 。
11、如果mxyn是关于yx,的一个单项式,且系数是9,次数是4,那么多项式mxnymn4是_______次________项式。
二、选择题(每小题2分,共18分)
1、代数式ba215,3,32yx,232xx,yx,2x,5中,单项式共有 ( )
A、6个 B、5个 C、4个 D、3个
2、下列说法中正确的是 ( )
A、x的次数为0, B、x的系数为1,
C、-5是一次单项式, D、ba25的次数是3次
3、多项式xx227是 ( )
A、一次二项式 B、二次二项式
C、四次二项式 D、五次二项式
4、下列各组式子中,是同类项的是 ( )
第 2 页 共 4 页
A、nmmn2541与 B、abcab55与 C、bayx2222与 D、52与3
2
5、下列说法正确的是 ( )
A、a是单项式,它有系数为0 B、两个5次多项式的和还是一个5次多项式。
C、多项式222yxyx是单项式2x、xy2、2y的和
D、如果一个多项式的次数是3,那么这个多项式的任何一项的次数都不大于3
6.下列各组中的两项是同类项的是( )
A.- xy 和xyz B.23 ab³和0.2ab³ C.8x²y³和- 3x³y² D.x³和y³
7.下列各式运算正确的是( )
A.4x²y- 5xy²=xy² B.- 3a+ 5= 2a C.5mn- 2mn+ 4mn=7mn D.x4+ 2x4=3x
8
8.三角形的一边等于m + n,另一条边比第一条边长m – 3,第三条边等于2n- m,这个三角形的周长等于( )
A.m + 3n – 3 B.2m + 4n – 3 C.m – n – 3 D. 2m + 4n + 3
9、一个两位数,十位上的数字是个位上的数字的3倍,如果十位上的数是x,则这个两位数是 ( )
A、xx31 B、103xx C、310xx D、3xx
三、 解答题(共44分)
1.如果单项式3a2bm+1的次数与单项式31x3y2z2的次数相同,试求m的值。
(5分)
第 3 页 共 4 页
3、化简(每小题4分,共16分)
(1)22231722mmm (2)2222642336ababbaba
(3)2x²- 5x+ 3x²+ 4x- 3x²- 5
(4)22222243845baabababbaab
4、先化简再求值2222342251,2.xyyxyxxyxy,其中(6分)
第 4 页 共 4 页
6.有这样的一道题,求多项式a³b³ - 12 ab² + b²- 2a³b³+ 0.5ab² + b² + a³b³- 2b³- 3的值.其中a= 2.3,b= -0.25,有一个同学指出,题目中的条件a= 2.3,b= -0.25是多余的,他的
说法有无道理
(6分)