变压器差动保护原理
- 格式:doc
- 大小:164.00 KB
- 文档页数:6
变压器差动保护相位补偿原理差动保护是变压器保护中最常用的一种保护方式,它能够有效地检测和定位发生在变压器内部的故障。
然而,在实际应用中,差动保护系统可能会受到相位误差的影响,从而引起误动作或漏动等问题。
为了解决这个问题,差动保护系统引入了相位补偿技术。
相位补偿的原理是通过对差动保护系统中的信号进行精确的相位补偿,以消除或减小相位误差对保护系统的影响。
相位补偿技术通常包括主动补偿和被动补偿两种方式。
主动补偿是指在差动保护系统中引入专门的相位补偿装置,通过校正差动保护所接收到的信号的相位差,从而达到消除或减小相位误差的目的。
主动补偿可以通过控制设备来实现,比如调整信号的延迟时间或者相位角度,从而使得差动保护系统中的信号在相位上保持一致。
主动补偿通常需要较高的精度和灵活性来满足实际应用需求,但也会增加系统的复杂度和成本。
被动补偿是指利用变压器本身的特点,通过配置合适的接线和变压器参数来实现相位补偿。
相比主动补偿,被动补偿更加简单和经济,但对变压器的参数要求较高。
被动补偿通常要求变压器各相之间的电气参数(如绕组电阻、电抗等)对称,同时需要选择合适的接线方式,以确保差动保护中信号相位的一致性。
无论是主动补偿还是被动补偿,相位补偿的关键是准确地测量和校正差动保护系统中各信号的相位。
在实际应用中,常常采用数字差动保护装置来实现相位补偿。
数字差动保护装置可以通过采样和处理差动信号,准确地测量和计算出信号的相位差,并根据预设的补偿算法来进行相位补偿。
相对于传统的模拟差动保护装置,数字差动保护装置具有更高的测量精度和灵活性,可以满足更复杂的保护要求。
在实际工程中,应根据变压器的不同特性和运行要求选择适当的相位补偿方式。
同时,对于差动保护系统的设计、安装和调试要保证准确可靠,以确保差动保护系统的稳定运行和灵敏性。
此外,还应定期检测差动保护系统的性能,进行必要的维护和校准,以保证该系统在正常运行时能够提供可靠的保护。
总结起来,变压器差动保护中的相位补偿原理是通过对差动保护系统中接收到的信号进行相位校正,消除或减小相位误差的影响。
微机型变压器差动保护基本原理
微机型变压器差动保护是用于保护变压器的一种电气保护装置。
它基于电气原理和微机控制技术,能够及时准确地检测和判断变压器绕组内部的故障情况,并采取相应的保护动作,以防止故障扩大和保护变压器正常运行。
微机型变压器差动保护的基本原理如下:
1.变压器差动保护的目的是通过比较变压器的输入和输出电流来检测变压
器绕组内部的故障。
正常情况下,输入电流和输出电流应该是相等的,而
在发生内部故障时,输入电流和输出电流之间会出现差异。
2.变压器差动保护系统主要由电流互感器、差动电流计算单元和保护动作单
元三部分组成。
电流互感器用于将变压器的输入和输出电流转换为低电流
信号,送入差动电流计算单元。
3.差动电流计算单元通过对输入和输出电流的加减运算,得到差动电流值。
差动电流值可以表示变压器绕组内部的电流差异情况。
4.差动电流计算单元将得到的差动电流值与预设的保护动作阈值进行比较。
当差动电流超过阈值时,说明变压器出现故障,保护动作单元就会发出保
护信号。
5.保护动作单元接收到保护信号后,会采取相应的控制动作,比如切断故障
绕组的供电,保护变压器不受进一步损坏。
6.此外,微机型变压器差动保护还可以实现对变压器的参数监测、故障录波、
通信等功能,提高保护的可靠性和智能化水平。
变压器差动保护工作原理变压器差动保护,听起来就像是科技界的一部大片,实际上它是电力系统中非常重要的一环。
想象一下,变压器就像电力的“超人”,负责把电压调整到我们日常生活中能用的水平。
可问题来了,超人也会有失误的时候,对吧?这时候,差动保护就像是他的“助手”,随时准备出手相助,确保变压器不会因为故障而“挂掉”。
这个保护的工作原理就像是在打扫卫生,保持一切井井有条。
变压器的输入和输出电流是它的“血液”,如果这两者不一致,就意味着有问题。
比如说,输入流量大于输出流量,这就像是你一边喝水,一边发现水龙头在流,结果你的杯子还是空的,这可不得了!变压器就像是开了一场“差动比赛”,这时候保护装置就会迅速反应,打响警报,阻止任何更大的损害发生。
这个差动保护的机制就像是一种“灵敏的雷达”,能够瞬间捕捉到任何异常的变化。
就算是微小的电流差异,它也能立马检测出来。
你想啊,电流的变化就像是气候变化,哪怕是一点点风吹草动,它都能敏锐察觉,真是个“敏感小精灵”。
这时候,保护装置就会开始动作,迅速切断电源,保护变压器免遭损坏。
有趣的是,这个过程其实是很迅速的,快得让人惊叹。
可以说,变压器在保护的帮助下,真的是“安全感爆棚”。
想象一下,一个人在马路上走,突然有车冲过来,他立马跳开,躲过了危机,这就是差动保护的效果。
它的反应速度可以说是“飞一般的感觉”,不容小觑。
变压器差动保护的设置也并不是一蹴而就的,它需要精确的参数设定。
就像是调味品,盐放多了,菜就咸了,少了又没味儿。
合理的设置能确保保护装置在恰当的时机发挥作用,而过度的保护反而可能导致频繁的误动作,给整个电力系统带来麻烦。
这时候就需要专业人员仔细调试,确保一切都在“正轨”上。
而这其中的每一步,就像是进行一场“高难度”的平衡木表演,既要有技巧又要有耐心。
搞定这些后,变压器的安全性就会大大提升。
毕竟,安全可不是小事,谁都不想在关键时刻掉链子,对吧?说到这里,大家可能会想,差动保护的优势究竟在哪里呢?答案简单明了,它不仅可以及时发现故障,避免变压器损坏,还能保护其他设备的安全。
变压器差动保护的基本原理引言变压器是电力系统中常见且重要的设备,其稳定运行对电网的正常运行起着至关重要的作用。
然而,变压器在运行过程中可能会遇到各种故障,如短路、接地故障等,若这些故障不能及时得到保护和处理,将会对设备和系统产生严重影响。
因此,差动保护作为变压器保护的一种重要手段,具有重要意义。
变压器差动保护的概念变压器差动保护是指通过测量变压器主绕组和副绕组之间的电流差值,判断变压器是否存在故障,并在故障发生时迅速切除故障设备的保护方法。
基本原理变压器差动保护的基本原理是利用变压器主副绕组的电流之差来判断设备是否发生故障。
其基本原理可概括为以下几个方面:1. 差动电流测量原理差动保护通过测量变压器主绕组和副绕组之间的差动电流来实现。
通常情况下,变压器在正常运行时,主绕组和副绕组之间的电流是基本相等的。
若发生故障,导致主绕组和副绕组之间的电流不相等,则表示变压器发生了故障。
2. 差动电流比较原理差动保护系统会将主绕组和副绕组的电流进行比较,以判断两者是否相等。
常用的比较方法有直流量比较方式和交流量比较方式。
直流量比较方式主要是将两个电流通过电流互感器转换为直流信号进行比较;而交流量比较方式则是将两个电流通过电流互感器转换为交流信号,利用相关技术进行相位比较。
3. 故障检测原理差动保护系统通过对差动电流进行检测,可以判断变压器是否发生了故障。
在差动保护系统中,通常会设置定值元件,用于设定差动电流的阈值。
当差动电流超过设定的阈值时,差动保护系统会判断变压器发生了故障,并触发相应的保护动作。
变压器差动保护的实现方式变压器差动保护可以通过硬件实现、软件实现以及硬件与软件相结合的方式实现。
常见的实现方式包括以下几种:1. 采用硬件差动保护装置硬件差动保护装置通常由差动保护继电器、电流互感器、采样器等组成。
差动保护继电器是实现差动保护的核心设备,它能够将主绕组和副绕组的电流进行比较,并根据设定的差动电流阈值进行故障判据。
变压器差动保护一、差动保护原理变压器差动保护的动作原理与线路纵差动保护相同,通过比较变压器两侧电流的大小和相位决定保护是否动作,单相原理接线图如图4-4所示。
三绕组变压器的差动保护,其原理与图4-4相类似,只是将三侧的“和电流”接人差动继电器KD ,这里不再赘述。
电力系统中,变压器通常采用Y ,dll 接线方式,两侧线电流的相位相差300。
如果将变压器两侧同名相的线电流经过电流互感器变换后,直接接入保护的差动回路,即使两个电流互感器的变比选择合适,使其二次电流数值相等,即21I I '=',流入差动继电器的电流也不等于零,因此在电流互感器二次采用相位补偿接线和幅值调整。
具体为变压器星形侧的三个电流互感器二次绕组采用三角形接线(自然消除了零序电流的影响),变压器三角侧的三个电流互感器二次绕组采用星形接线,将引入差动继电器的电流校正为同相位;同时,二次绕组采用三角形接线的电流互感器变比调整为原来的3倍。
微型机变压器差动保护,可以通过软件计算实现相位校正。
1.变压器正常运行或外部故障根据图4-4(a)所示电流分布,此时流入差动继电器KD 的电流是变压器两侧电流的二次值相量之差,适当选择电流互感器1TA 和2TA 的变比,再经过相位补偿接线和幅值调整,实际流人差动继电器的电流为不平衡电流,继电器不会动作,差动保护不动作。
此时流人差动继电器的电流为unb TA TA KD I n I n I I I I =-=-=••••''221121 (4—1) 式中 TA n 1——电流互感器1TA 、2TA 的变比;unb I ——流人差动继电器的不平衡电流。
2.变压器内部故障根据图4-4(b)所示电流分布,此时流人差动继电器KD 的电流是变压器两侧电流的二次值相量之和,使继电器动作,差动保护动作。
此时流人差动继电器的电流为TA TA KD n I n I I I I 221121••••+=+='' (4—2) 如果变压器只有一侧电源,则只有该侧的电流互感器二次电流流人差动继电器;如果变压器两侧有电源,则两侧的电流互感器二次电流都流入差动继电器,且数值相加。
差动保护在变压器保护中的原理和应用摘要:文章详细探讨了差动保护在变压器保护中的原理及实际应用,差动保护基于电磁感应与基尔霍夫电流定律,通过比较设备两侧电流差值来判定故障,具有高灵敏度、强选择性和可靠性的特点。
在变压器保护中,差动保护通过电流差动与电压差动等方式实现,并可与其他保护手段协同工作,确保变压器的安全稳定运行。
通过设定合理的动作整定值、引入磁通补偿和谐波滤波技术、采用双重化配置等策略,差动保护的准确性和可靠性得到了提升。
随着电力技术的不断进步,差动保护在变压器保护中将发挥更加重要的作用。
关键词:差动保护;变压器保护;电气保护技术变压器作为电力系统的关键设备,其稳定运行对于整个系统的安全至关重要。
差动保护作为一种高效、可靠的电气保护方法,在变压器保护中发挥着重要作用。
通过深入剖析差动保护的基本原理及其在变压器保护中的应用,可以更好地理解其优势,从而采取有效策略确保变压器的安全稳定运行,为电力系统的可靠供电提供坚实保障。
一、差动保护的基本原理差动保护作为一种重要的电气保护方法,在电力系统中扮演着关键的角色,特别是在变压器的保护上。
其基本原理主要基于电磁感应和基尔霍夫电流定律,通过精确比较被保护设备两侧电流的差值,来判断设备是否发生了故障。
在正常情况下,被保护的设备(如变压器)两侧电流应该相等,即流入和流出的电流保持平衡,此时差动电流为零。
然而,当设备内部出现故障,如绕组短路或接地故障时,两侧电流的平衡状态将被打破,导致差动电流的产生。
这个差动电流是故障发生的直接体现,也是差动保护动作的依据。
差动保护之所以能够有效,关键在于其高度的灵敏性和选择性。
灵敏性体现在它能够迅速检测到被保护设备内部的微小故障,即使故障电流很小,也能被差动保护所捕捉,从而确保及时切除故障部分,防止故障扩大化。
选择性则体现在差动保护只对被保护设备内部的故障敏感,对外部故障不敏感,这样可以避免因为外部故障而引发的误动作,保证了保护的准确性和可靠性。
变压器差动保护原理图解
差动爱护是依据被爱护区域内的电流变化差额而动作的。
它广泛用来爱护大容量的电力变压器、变电所母线、高压电动机等。
如右图所示是电力变压器的差动爱护原理图。
电流互感器TA1和TA2之间的区域就是差动爱护区,当爱护区内发生短路故障时,即变压器内部(如dl点),电流继电器KA中将产生较大的启动电流使爱护装置动作,而当爱护区外短路时,即变压器外部如(d2点),电流继电器中只流过一较小的不平稳电流,爱护装置不会动作。
所谓变压器的纵联差动爱护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的爱护。
纵联差动爱护装置,一般用来爱护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。
对于变压器线圈的匝间短路等内部故障,通常只作后备爱护。
纵联差动爱护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。
因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。
在正常状况下或爱护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但假如在爱护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到爱护作用。
变压器纵差爱护是根据循环电流原理构成的,变
压器纵差爱护的原理要求变压器在正常运行和纵差爱护区(纵差爱护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差爱护不动作。
但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差爱护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。
变压器差动保护作用及原理是什么1、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35kV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作;差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器做主保护。
2、保护原理:差动保护是利用基尔霍夫电流定律中在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零的原理工作的。
差动保护把被保护的变压器看成是一个接点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的;从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流〔折算后的电流〕相等,差回路中的电流为零。
当变压器正常运行或区外故障〔流过穿越性电流〕时,各侧电流互感器的副边电流流入保护装置,通过程序的运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-〔IM-IL〕接近为零〔IH为高压侧电流,IM为中压侧电流,IL为低压侧电流〕,那么保护不动作。
当变压器内部发生相间或匝间短路故障时,两侧〔或三侧〕向故障点提供短路电流,在差动回路中由于IM或IL改变了方向或等于零,流入差动继电器的电流IH-〔IM-IL〕不再接近于零;当差动电流大于差动保护装置的整定值时,保护动作,将被保护变压器的各侧断路器跳开,使故障变压器断开电源。
变压器差动保护的基本原理1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。
2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。
因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。
例如图8-5所示的双绕组变压器,应使8.3.2变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法(1)励磁涌流:在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。
(2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。
但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。
此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。
(3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。
②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。
③励磁涌流的波形出现间断角。
表8-1 励磁涌流实验数据举例(4)克服励磁涌流对变压器纵差保护影响的措施:采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。
2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。
变压器分侧差动保护原理变压器分侧差动保护是一种常用的电力系统保护方式,用于保护变压器的正常运行和防止故障发生。
它基于差动保护原理,通过比较变压器两侧电流的差值来判断是否存在故障,并及时采取保护动作,以保护变压器和电力系统的安全稳定运行。
变压器分侧差动保护的原理是利用变压器两侧电流之差来判断是否存在故障。
在正常情况下,变压器的输入电流等于输出电流,即变压器两侧电流之差为零。
而当变压器发生故障时,如短路或接地故障,会导致变压器两侧电流不平衡,即电流差值不为零。
因此,通过监测变压器两侧电流的差值,可以及时发现故障并采取相应的保护措施。
为了实现变压器分侧差动保护,通常需要安装差动保护装置。
差动保护装置由差动继电器和电流互感器组成。
电流互感器用于测量变压器两侧的电流,并将电流信号传输给差动继电器。
差动继电器则负责比较变压器两侧电流的差值,并根据设定的保护动作条件来判断是否需要进行保护动作。
在差动保护装置中,常用的保护动作条件包括电流差值超过设定值、电流差值持续时间超过设定时间等。
当满足保护动作条件时,差动继电器会发出保护信号,触发保护动作装置,如断路器或隔离开关,切断故障电路,以保护变压器和电力系统的安全运行。
为了提高变压器分侧差动保护的可靠性和灵敏度,通常还会采取一些辅助措施。
例如,可以在变压器两侧各安装一个零序电流互感器,用于检测变压器的零序电流,以提高对接地故障的检测能力。
此外,还可以采用通信技术,将差动保护装置与其他保护装置进行联动,实现更全面的保护功能。
变压器分侧差动保护是一种重要的电力系统保护方式,通过比较变压器两侧电流的差值来判断是否存在故障,并及时采取保护动作。
它能够有效保护变压器和电力系统的安全稳定运行,提高电力系统的可靠性和稳定性。
在实际应用中,还可以结合其他保护装置和通信技术,进一步提高保护的可靠性和灵敏度。
变压器差动保护作用及原理是什么1、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35kV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作;差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器做主保护。
2、保护原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。
差动保护把被保护的变压器看成是一个接点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的;从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。
当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过程序的运行,各侧电流存在的相位差由软件自动开展校正,自动计算出各侧电流IH-(IM- IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流),则保护不动作。
当变压器内部发生相间或匝间短路故障时,两侧(或三侧)向故障点提供短路电流,在差动回路中由于IM或IL改变了方向或等于零,流入差动继电器的电流IH-(IM- IL)不再接近于零;当差动电流大于差动保护装置的整定值时,保护动作,将被保护变压器的各侧断路器跳开,使故障变压器断开电源。
变压器差动保护基本原理
1 变压器差动保护
变压器差动保护是一种常用的配电网络欠压和故障短路的保护装置,是主变吸收故障线路的电流的原理。
变压器差动保护的基本原理
是通过比较变压器的两侧的投入和输出线路的电流,当两者相差较大,则说明发生了故障,为了保障设备不受到损坏而采取断开操作,从而
减少可能受损的部分及保护整个配电网络安全。
2 变压器差动保护原理
变压器差动保护基于主变电流平衡原理,当变压器的电流不平衡时,即产生了潜在的危险,可能发生的危害是由于变压器构成的元件
的局部过热导致的危险。
当发生短路或其他过载故障时,被损坏的线
路的电流大大超过正常电流,另一侧的电流减少或甚至消失,因此两
侧电流之间就产生了不平衡,此时就会触发变压器差动保护装置,通
过控制跳开保护装置断开故障线路,从而有效的保护变压器的安全运行,同时也对其它的设备也具有保护作用。
3 变压器差动保护机制
变压器差动保护机制的工作基本原理是将变压器的两端的电流被
分开检测统计,并将两路电流的差值越小,或者状况接近于一致,就
表示差动保护装置处于正常状态,而当两路电流之间存在差别时,说
明发生故障,变压器差动保护器就会触发,进行断开操作,以保护变
压器及其它设备不受损坏。
4 小结
变压器差动保护是一种常用的配电网络欠压和故障短路的保护装置,它通过比较变压器的两侧的投入和输出线路的电流,当两者相差较大,就会触发变压器差动保护器进行断开操作,准确的判断故障的类型,为变压器及其它设备的安全运行提供有效的防护。
范文 范例 指导 参考 word版 整理 变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:
I2'-I2''nhI1''低图一
nBCT2nlI2''
CT1I1'高I2'
Ia'低In'高差动
In
Ia
1、 图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,
I1’:流过变压器高压侧的一次电流; I”: 流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh: 高压侧电流互感器CT1变比; nl: 低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 范文 范例 指导 参考 word版 整理 单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图:
IopocIres.oOf制动电流Ires
图二
b
d
eIop动作电流
aP
下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时,由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下:差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法,施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7,所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 范文 范例 指导 参考 word版 整理 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之进行二次谐波判别,500kv及以上变压器,则还需进行5次谐波判别。以二次谐波为例:二次谐波系数=差电流中的二次谐波分量与基波分量的比值。当谐波系数大于整定值时,保护被闭锁;小于整定值时,保护被开放;根据经验,二次谐波制动比可整定为0.15~0.2; 五、不平衡电流 实际上,差动保护比率制动也好,谐波制动也好,归根结底都是要躲过变压器的不平衡电流,而不平衡电流,也正是可能引起差动保护误动的最重要因素之一。 产生变压器不平衡电流有以下几个重要的原因: 1、 由变压器励磁涌流Ily所产生的不平衡电流; 励磁涌流主要是由于在变压器空投时产生的含有大量高次谐波含量的电流 ,其中以2次谐波为主。我们的800变压器差动保护中有“二次谐波制动系数”一项定值,用来防止此原因造成的差动误动。 二次谐波制动系数:差电流中的二次谐波分量与基波分量的比值; 根据经验,此系数可整定为15%~25% 2、 由于变压器两侧电流相位不同而产生的不平衡电流; 由于变压器常采用Y,d11的接线方式,因此,如果两侧的电流互感器仍采用通常的接线方式,则二次侧电流由于相位不同,也会有一个差电流流入我们的保护装置。为了消除这种不平衡电流的影响,通常都是将变压器星星侧的三个电流互感器接成三角形,而将变压器三角形侧的三个电流互感器接成星形,并适当考虑联结方式后即可把二次电流的相位校正过来。 但我们的保护要求现场二次侧电流互感器的接线都接为星形接线,因此, 一次侧为Y,d11的接线方式的变压器将产生差流,差动保护靠程序将此不平衡电流补偿掉,具体方法如下: 如图所示为Y,d11两卷变压器两侧绕组及电流互感器接线方式及其中通过的一次、二次电流流向:(各电流均为向量值) 范文 范例 指导 参考
word版 整理
IbIaIaIbIcIaIcIbIa
IAAIAY'ICIBIABABCIbIcIcIBICC
其中:IA,IB,IC表示流过变压器高压侧一次绕组的电流; Ia,Ib,Ic 表示流过变压器低压侧一次绕组的电流; IAY’,IBY’,ICY’表示流过变压器高压侧电流互感器二次侧的电流; Ia△,Ib△,Ic△表示流过变压器低压侧电流互感器的一次侧电流; 各电流关系如下:
Ia= Ia△+ Ib<=> Ia△= Ia- Ib
Ib= Ib△+ Ic<=> Ib△= Ib- Ic Ic= Ic△+ Ia<=> Ic△= Ic- Ia 向量图:
IcIcICIcIB
Ib
IaIAY'IAIaIbIbIa
为了消除相位上带来的差异: 范文 范例 指导 参考
word版 整理 Iah’= IAY- IBY Ibh’= IBY- ICY Ich’= ICY- IAY 为了消除幅值上带来的差异: Iah= Iah’/1.732=(IAY- IBY) Ibh= Ibh’/1.732=(IBY- ICY) Ich= Ich’/1.732=(ICY- IAY) 而低压侧电流保持不变 Ial= Ia△ Ibl= Ib△ Icl= Ic△
其中:Iah,Ibh,Ich 表示保护装置中实际采到的高压侧电流;
Ial,Ibl,Icl表示保护装置中实际采到的高压侧电流; 向量图
ICIcIch'
因此,差动保护的高、低压侧电流相位一致,高压侧电流幅值不变。 3、由计算变比与实际变比不同而产生的不平衡电流 由于两侧的电流互感器都是根据产品目录选取标准的变比,而变压器的变比也是一致的,因此,三者的关系很难满足nl2/nl1=nB的要求,此时差动回路中将有电流流过。当采用具有速饱和铁心的差动继电器时,通常都是利用它的平衡线圈Wph、来消除此茶电流的影响。 4、由两侧电流互感器型号不同而产生的不平衡电流 由于两侧电流互感器型号不同,他们的饱和特性、励磁电流(归算置同一侧)也就不同,因此,在差动回路中所产生的不平衡电流也就较大。此时应采用电流互感器的通行系数。 5、由变压器带负荷调整分接头而产生的不平衡电流 带负荷调整变压器的分接头,是电力系统中采用带负荷调压的变压器来调整电压的方法,实际上改变分接头就是改变变压器的变比nB。如果差动保护已按照某一变比调整好,则当分接头改换时,就会产生一个新的不平衡电流流入差动回路。对由此而产生的不平衡 范文 范例 指导 参考 word版 整理 电流,应在总差动保护的整定值中予以考虑。 六、整定计算 差动电流的定值整定比较复杂,需要考虑的各种因素很多,这里只对一些定值做一个简单的介绍,仅作参考: 1、最小动作电流的整定 差动最小动作电流应大于变压器额定负载时的不平衡电流,即 Iop.min=Krel(Ker+ΔU+Δm)IN/na (87)
式中:IN——变压器额定电流; na——电流互感器的变比;
Krel——可靠系数,取1.3~1.5;
Ker——电流互感器的比误差,10P型取0.03×2,5P型和TP型取0.01×2;
ΔU——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值); Δm——由于电流互感器变比未完全匹配产生的误差,初设时取0.05。 在工程实用整定计算中可选取Iop.min=(0.2~0.5)IN/na。一般工程宜采用不小于0.3IN/na的整定值。 根据实际情况(现场实测不平衡电流)确有必要时也可大于0.5IN/na。 2、最小制动电流Ires.0的整定 最小制动电流宜取 Ires.0=(0.8~1.0)IN/na。
3、不平衡系数的整定 平衡系数通常是以高压侧为基准尽心计算的。 Kph=1 Kpm=Ih/Im Kpl=Ih/Il 式中:Kph——高压侧平衡系数 Kpm——中压侧平衡系数 Kpl——低压侧平衡系数 Ih——高压侧二次额定电流 Im——中压侧二次额定电流 Il——低压侧二次额定电流 下面以一实例计算一下变压器的平衡系数: 一电厂主变各侧参数如下:高压侧电压等级110KV,变比600/5,电抗器侧电压等级6.3KV,变比1000/5,机尾侧电压等级6.3KV,变比4000/5,则各侧平衡系数计算如下: 高压侧二次电流 i1=Sn/(1.732×110×600/5)A 电抗器侧二次电流 i2=Sn/(1.732×6.3×1000/5)A 机尾侧二次电流 i3=Sn/(1.732×6.3×4000/5)A 高压侧平衡系数k1定为1,则 电抗器侧平衡系数k2为:i1/i2=0.095 机尾侧平衡系数k3为 :i1/i3=0.38 由于我们差动保护定值平衡系数的整定范围为0.1——4,电抗器侧的平衡系数超范围,因此三侧平衡系数可同时乘以3,得出k1=3, k2=0.285, k3=1.14,