当前位置:文档之家› 三极管的基本结构档

三极管的基本结构档

三极管的基本结构档
三极管的基本结构档

三极管的基本结构是两个反向连结的PN接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为发射极(emitter, E)、基极(base, B)和集电极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,发射极特别被标出,箭号所指的极为n型半导体,和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。

三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形下,电洞和电子的电位能的分布图。三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB E(这部分是三极管作用不需要的部分)。 InB E在射极与与电洞复合,即InB E=IErec。pnp三极管在正向活性区时主要的电流种类可以清楚地在图3(a)中看出。

射极注入基极的电洞流大小是由EB接面间的正向偏压大小来控制,和二极体的情形类似,在启动电压附近,微小的偏压变化,即可造成很大的注入电流变化。更精确的说,三极管是利用VEB(或VBE)的变化来控制IC,而且提供之IB远比IC小。npn三极管的操作原理和pnp 三极管是一样的,只是偏压方向,电流方向均相反,电子和电洞的角色互易。pnp三极管是利用VEB控制由射极经基极,入射到集电极的电洞,而npn三极管则是利用VBE控制由射极经基极、入射到集电极的电子。三极管在数字电路中的用途其实就是开关,利用电信号使三极管在正向活性区(或饱和区)与截止区间切换,就开关而言,对应开与关的状态,就数字电路而言则代表0与1(或1与0)两个二进位数字。若三极管一直维持偏压在正向活性区,在射极与基极间微小的电信号(可以是电压或电流)变化,会造成射极与集电极间电流相对上很大的变化,故可用作信号放大器。

编辑本段工作原理

晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN 硅管的电流放大原理。对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电

区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib 式中:β1--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib 式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。三极管放大时管子内部的工作原理 1、发射区向基区发射电子电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 2、基区中电子的扩散与复合电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 3、集电区收集电子由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。主要参数

特征频率fT

当f= fT时,三极管完全失去电流放大功能。如果工作频率大于fT,电路将不正常工作。工作电压/电流

用这个参数可以指定该管的电压电流使用范围。

hFE

电流放大倍数。

VCEO

集电极发射极反向击穿电压,表示临界饱和时的饱和电压。

PCM

最大允许耗散功率。

封装形式

指定该管的外观形状,如果其它参数都正确,封装不同将导致组件无法在电路板上实现。部分常用三极管参数

MPSA42 NPN 21E 电话视频放大300V0.5A0.625W MPSA92 PNP 21E 电话视频放大300V0.5A0.625W MPS2222A NPN 21 高频放大75V0.6A0.625W300MHZ 9011 NPN EBC 高频放大50V30mA0.4W150MHz 9012 PNP 贴片低频放大50V0.5A0.625W 9013 NPN EBC 低频放大50V0.5A0.625W ] 9013 NPN 贴片低频放大50V0.5A0.625W 9014 NPN EBC 低噪放大50V0.1A0.4W150MHZ 9015 PNP EBC 低噪放大50V0.1A0.4W150MHZ 9018 NPN EBC 高频放大30V50MA0.4W1GHZ 8050 NPN EBC 高频放大40V1.5A1W100MHZ 8550 PNP EBC 高频放大40V1.5A1W100MHZ 2N2222 NPN 4A 高频放大60V0.8A0.5W25/200NSβ=45 2N2222A NPN 小铁高频放大75V0.6A0.625W300MHZ 2N2369 NPN 4A 开关40V0.5A0.3W800MHZ 2N2907 NPN 4A 通用60V0.6A0.4W26/70NSβ=200 2N3055 NPN 12 功率放大100V15A115W 2N3440 NPN 6 视放开关450V1A1W15MHZ 2N3773 NPN 12 音频功放开关160V16A150W COP 2N6609 2N3904 NPN 21E 通用60V0.2Aβ=100-400 2N3906 PNP 21E 通用40V0.2Aβ=100-400 2N5401 PNP 21E 视频放大

160V0.6A0.625W100MHZ 2N5551 NPN 21E 视频放大160V0.6A0.625W100MHZ 2N5685 NPN 12 音频功放开关60V50A300W 2N6277 NPN 12 功放开关180V50A250W 2N6609 PNP 12 音频功放开关160V15A150W COP 2N6678 NPN 12 音频功放开关650V15A175W15MHZ 2N6718 NPN 小铁音频功放开关100V2A2W50MHZ 3DA87A NPN 6 视频放大100V0.1A1W 3DG6A NPN 6 通用15V20mA0.1W100MHz 3DG6B NPN 6 通用20V20mA0.1W150MHz 3DG6C NPN 6 通用20V20mA0.1W250MHz 3DG6D NPN 6 通用30V20mA0.1W150MHz 3DG12C NPN 7 通用45V0.3A0.7W200MHz 3DK2B NPN 7 开关30V30mA0.2W 3DK4B NPN 7 开关40V0.8A0.7W 3DK7C NPN 7 开关25V50mA0.3W 3DD15D NPN 12 电源开关300V5A50W 3DD102C NPN 12 电源开关300V5A50W 3522V 5.2V稳压管录像机用A634 PNP 28E 音频功放开关40V2A10W A708 PNP 6 NF/S 80V0.7A0.8W A715C PNP 29 音频功放开关35V2.5A10W160MHZ A733 PNP 21 通用50V0.1A180MHZ A741 PNP 4 S 20V0.1A A781 PNP 39B 开关20V0.2A A928 PNP ECB 通用20V1A0.25W A933 PNP 21 Uni 50V0.1A140MHz A940 PNP 28 音频功放开关150V1.5A25W4MHZ /C2073 A950 PNP 21 通用30V0.8A0.6W A966 PNP 21 音频激励输出30V1.5A0.9W COP:C2236 A968 PNP 28 音频功放开关60V1.5A25W100MHZ/C2238 A1009 PNP BCE 功放开关350V2A15W A1012 PNP 28 音频功率放60V5A25W A1013 PNP 21 视频放大160V1A0.9W A1015 PNP 21 通用60V0.15A0.4W8MHZ A1020 PNP 21 音频开关50V2A0.9W A1123 PNP 21 低噪放大150V0.05A0.75W A1162 PNP 21d 通用贴片50V0.15A0.15W A1216 PNP BCE 功放开关180V17A200W20MHZ /2922 A1220 PNP 29 音频功放开关120V1.5A20W150MHZ/C2690 A1265 PNP BCE 功放开关140V10A100W30MHZ /C3182 A1295 PNP BCE 功放开关230V17A200W30MHZ /C3264 A1301 PNP BCE 功放开关160V10A100W30MHZ /C3280 A1302 PNP BCE 功放开关200V15A150W30MHZ /C3281 A1358 ? PNP 高频120V1A10W120MHZ A1444 PNP BCE 高速电源开关100V15A30W80MHZ 6 A1494 PNP BCE 功放开关200V17A200W20MHZ /C3858 A1516 PNP BCE 功放开关180V12A130W25MHZ A1668 PNP 28B 电源开关200V2A25W20MHZ A1785 PNP BCE 驱动400V1A1W/120V1A0.9W140MH A1941 PNP BCE 功放开关140V10A100WCOP:5198 A1943 PNP BCE 功放开关230V15A150W /C5200 A1988 PNP 30 功放开关B449 PNP 12 功放开关50V3.5A22.5W 锗管

B631K PNP 29 音频功放开关120V1A8W130MHZ B647 PNP 21 通用120V1A0.9W140MHZ /D667 B649 PNP 29 视放180V1.5A1W /D669 B669 PNP 28 达林顿功放70V4A40W B673 PNP 28 达林顿功放100V7A40W B675 PNP 28 达林顿功放60V7A40W B688 PNP BCE 音频功放开关120V8A80W /D718 B734 PNP 39B 通用60V1A1W /D774 B744 PNP 21 通用30V0.1A0.25W B772 PNP 29 音频功放开关40V3A10W B774 PNP 21 通用30V0.1A0.25W B817 PNP 30 功放开关160V12A100W /D1047 B834 PNP 28 功放开关60V3A30W B937A PNP 功放开关60V2A35 DRAL B1020 PNP 28 功放开关达林顿100V7A40Wβ=6000 B1079 PNP 30 达林顿功放100V20A100Wβ=5000/D1559 B1185 PNP 28B 功放开关60V3A25W 70MHZ /D1762 B1238 PNP ECB 功放开关80V0.7A1W 100MHZ B1240 PNP 39B 功放开关40V2A1W100HZ B1243 PNP 39B 功放开关40V3A1W70HZ B1316 PNP 54B 驱动功放达林顿100V2A10Wβ=15000 B1317 PNP BCE 音频功放180V15A150W B1335 PNP 28 音频功放低噪80V4A30W B1375 PNP BCE 音频功放60V3A2W9MHZ B1400 PNP 28B 达林顿功放120V6A25W B1429 PNP BCE 功放开关180V15A150W B1494 PNP BCE 达林顿功放120V25A120W C106 NPN EBC 音频功放开关60V1.5A15W C380 NPN 21 高频放大35V0.03A250MHZ C458 NPN 21 通用30V0.1A230MHz C536 NPN 21 通用40V0.1A180MHZ C752 NPN 21 通用30V0.1A300MHz C815 NPN 21 通用60V0.2A0.25W C828 NPN 21 通用45V0.05A0.25W C900 NPN 21 低

噪放大30V0.03A100MHZ C943 NPN 4A 通用60V0.2A200MHZ C945 NPN 21 通用50V0.1A0.5W250MHZ C1008 NPN 6 通用80V0.7A0.8W50MHZ C1162 NPN 29 音频功放开关35V1.5A10W C1213 NPN 39B 监视器专用35V0.5A0.4W C1222 NPN 21 低噪放大60V0.1A100MHZ C1494 ? NPN 40A 发射36V6A PQ=40W/175MHZ C1507 NPN 28 视放300V0.2A15W C1674 NPN 21 HF/ZF 30V0.02A600MHz C1815 NPN 21 通用60V0.15A0.4W8MHZ C1855 NPN 21f HF/ZF 20V0.02A550MHz C1875 NPN 12 彩行1500V3.5A50W C1906 NPN 21 高频放大30V0.05A1000MHZ C1942 NPN 12 彩行1500V3A50W C1959 NPN 21 通用30V0.4A0.5W300MHz C1970 NPN 28 手机发射40V0.6A PQ=1.3W/175MHZ C1971 NPN 28A 手机发射35V2.0A PQ=7.0W/175MHZ C1972 NPN 28A 手机发射35V3.5A PQ=15W/175MHZ C2012 NPN 21 HF 30V0.03A200MHZ C2027 NPN 12 行管1500V5A50W C2068 NPN 28E 视频放大300V0.05A1.5W80MHZ C2073 NPN 28 功率放大150V1.5A25W4MHZ /A940 C2078 NPN 28 音频功放开关80V3A10W150MHZ C2120 NPN 21 通用30V0.8A0.6W C2228 NPN 21 视频放大160V0.05A0.75W C2230 NPN 21 视频放大200V0.1A0.8W C2233 NPN 28 音频功放开关200V4A40W C2236 NPN 21 通用30V1.5A0.9W /A966 C2238 NPN 28 音频功放开关160V1.5A25W100MHZ C2320 NPN 21 通用50V0.2A0.3W200MHZ C2335 NPN 28 视频功放500V7A40W C2373 NPN 28 功放200V7.5A40W C2383 NPN 21 视频开关160V1A0.9W /A1015 C2443 NPN 大铁功放开关600V50A400W C2481 NPN 29 音频功放开关150V1.5A20W C2482 NPN 21 视频放大300V0.1A0.9W C2500 NPN 21 通用30V2A0.9W150MHZ C2594 NPN 29 音频功放开关40V5A10W C2611 NPN 29 视频放大300V0.1A1.25W C2625 NPN 30 音频功放开关450V10A80W C2682 NPN 29 NF/Vid 180V0.1A8W C2688 NPN 29 视放管300V0.2A10W80MHZ C2690 NPN 29 音频功放开关120V1.2A20W C2751 NPN BCE 电源开关500V15A120Wβ=40 C2837 NPN 30 音频功放开关150V10A100W C2898 NPN 28 音频功放开关500V8A50W C2922 NPN 43 音频功放开关180V17A200W50MHZ /A1216 C3026 NPN 12 开关管1700V5A50Wβ=20 C3030 NPN BCE 开关管达林顿900V7A80Wβ=15 C3039 NPN 28 电源开关500V7A50Wβ=40 C3058 NPN 12 开关管600V30A200W β=15 C3148 NPN C2500 NPN 21 通用30V2A0.9W150MHZ C2594 NPN 29 音频功放开关40V5A10W C2611 NPN 29 视频放大300V0.1A1.25W C2625 NPN 30 音频功放开关450V10A80W C2682 NPN 29 NF/Vid 180V0.1A8W C2688 NPN 29 视放管300V0.2A10W80MHZ C2690 NPN 29 音频功放开关120V1.2A20W150MHZ/A1220P C2751 NPN BCE 电源开关500V15A120Wβ=40 C2837 NPN 30 音频功放开关150V10A100W C2898 NPN 28 音频功放开关500V8A50W C2922 NPN 43 音频功放开关180V17A200W50MHZ /A1216 C3026 NPN 12 开关管1700V5A50Wβ=20 C3030 NPN BCE 开关管达林顿900V7A80Wβ=15 C3039 NPN 28 电源开关500V7A50Wβ=40 C3058 NPN 12 开关管600V30A200W β=15 C3148 NPN 28 电源开关900V3A40Wβ=15 C3150 NPN 28 电源开关900V3A50Wβ=15 C3153 NPN 30 电源开关900V6A100Wβ=15 C3182 NPN 30 功放开关140V10A100Wβ=95/A1265 C3198 NPN 21 高频放大60V0.15A0.4W130MHZ C3262 NPN BCE 达林顿功放800V10A100W C3264 NPN BCE PA功放开关230V17A200Wβ

=170/A1295 C3280 NPN 30 音频功放开关160V12A120Wβ=100 C3281 NPN 30 音频功放开关200V15A150W30MHZβ=100 C3300 NPN 30 音频功放开关100V15A100W β=600 C3310 NPN 28C 电源开关500V5A40W C3320 NPN 28C 电源开关500V15A80W β= 15 C3355 NPN 21F 高频放大20V0.1A6500MHZ G C3358 NPN 40B 高频放大20V0.1A7000MHZ C3457 NPN BCE 电源开关1100V3A50Wβ=12 u N C3460 NPN BCE 电源开关1100V6A100W β=12 C3466 NPN BCE 电源开关1200V8A120Wβ=10 C3505 NPN 28B 电源开关

900V6A80W β=20 C3527 NPN BCE 电源开关500V15A100Wβ=13 C3528 NPN BCE 电源开关500V20A150Wβ=13 C3595 NPN 29 射频30V0.5A1.2Wβ=90 C3679 NPN BCE 电源开关900V5A100W6MHZ C3680 NPN BCE 电源开关900V7A120W6MHZ C3688 NPN BCE 彩行1500V10A150W C3720 NPN BCE 彩行1200V10A200W C3783 NPN BCE 高压高速开关900V5A100W C3795 NPN BCE 高压高速开关900V5A2W8MHz C3807 NPN BCE 低噪放大30V2A1.2W260MHZ C3858 NPN BCE 功放开关200V17A200W20MHZ /A1494 C3866 NPN BCE 高压高速开关900V3A40W C3873 NPN BCE 高压高速开关500V12A75W30MHZ C3886 NPN BCE 开关,行管1400V8A50W8MHZ C3893 NPN 28B 行管1400V8A50W8MHZ C3907 NPN 28B 功放开关180V12A130W30MHZ C3953 NPN 29 视放120V0.2A1.3W 4000MHZ C3987 NPN 28 达林顿50V3A20W C3995 NPN BCE 行管1500V12A180W 34寸C3997 NPN BCE 行管1500V15A250W C3998 NPN BCE 行管1500V25A250W C4024 NPN BCE 功放开关100V10A35W 24MHZ C4038 NPN BCE 门电路50V0.1A0.3W180MHZ C4059 NPN BCE 高速开关600V15A130W 0.5/2.2US C4106 NPN BCE 电源开关500V7A50W20MHZ? C4111 NPN BCE 开关行管1500V10A150W C4119 NPN BCE 微波炉开关1500V15A250W C4231 NPN 50C 音频功放800V2A30W C4237 NPN BCE 高压高速开关1000V8A120W30MHZ C4242 NPN BCE 高压高速开关450V7A40W C4288 NPN BCE 行管1400V12A200W8MHZ C4297 NPN BCE 电源开关500V12A75W10MHZ C4429 NPN BCE 电源开关1100V8A60W C4517 NPN BCE 音频功放550V3A30W6MHZ C4532 NPN BCE C4582 NPN 28b 电源开关600V15A75W20MHZ ON4673 NPN BCE ON4873 NPN BCE C4706 NPN BCE 电源开关900V14A130W6MHz C4742 NPN 46 彩行1500V6A50W(带阻尼) C4745 NPN 46 彩行1500V6A50W { C4747 NPN 46 彩行1500V10A50W C4769 NPN BCE 微机行管1500V7A60W(带阻尼) C4913 NPN BCE 大屏视放管2000V0.2A35W C4924 NPN BCE 音频功放800V10A70W C4927 NPN BCE 行管1500V8A50W C4927 NPN BCE SONY29"行管1500V8A50W C4941 NPN BCE 行管1500V6A65W 500/380NS C4953 NPN BCE 500V2A25W C5020 NPN BCE 彩行1000V7A100W C5068 NPN BCE 彩行1500V10A50W C5086 NPN BCE 彩行1500V10A50W C5088 NPN BCE 彩行1500V10A50W C5129 NPN BCE 彩显行管1500V8A50W(带阻) C5132 NPN BCE 彩行1500V16A50W C5144 NPN BCE 大屏彩行1700V20A200W C5148 NPN BCE C5149 NPN BCE 高速高频行管1500V8A50W(带阻) C5198 NPN BCE 功放开关140V10A100W C5200 NPN BCE 功放开关230V15A150W /A1943 C5207 NPN BCE 彩行1500V10A50W 原C5243 NPN BCE 彩行1700V15A200W 原C5244 NPN BCE 彩行1700V15A200W C5249 NPN BCE C5250 NPN BCE 开关1000V7A100W C5251 NPN BCE 彩行1500V12A50W C5252 NPN BCE 彩行1500V15A100W C5294 NPN BCE C5296 NPN BCE 开关管25"--34" 大屏彩显电源管C5297 NPN BCE 开关管25"--34" 大屏彩显电源管C5331 NPN BCE 大屏彩显行管1500V15A180W C5423 NPN BCE D40C NPN ECB 对讲机用40V0.5A40W75MHZ(达林顿) D325 NPN BCE 功放开关50V3A25W D385 NPN 11 达林顿功放100V7A30W D400 NPN 21 通用25V1A0.75W 8A D415 NPN 29 音频功放开关120V0.8A5W D438 NPN 21 通用500V1A0.75W100MHz D547 NPN 大铁功放开关600V50A400W D560 NPN BCE 达林顿功放150V5A30W D600K NPN 29 音频功放开关120V1A8W130MHZ/B631K D637 NPN 39E 通用60V0.1A150MHZ D667 NPN 21 视频放大120V1A0.9W140MHZ/B647 D669 NPN 29 视频放大180V1.5A1W140MHZ/D669 D718 NPN 30 音频功放开关120V8A80W D774 NPN 39B 通用100V1A1W /B734 D789 NPN 21 音频输出100V1A0.9W D820 NPN 12 彩行1500V5A50W D870 NPN 12 彩行1500V5A50W RRRR D880 NPN 28 音频功放开关60V3A10W D882 NPN 29 音频功放开关40V3A30W D884 NPN 28 音频功放开关330V7A40W D898 NPN 12 彩行1500V3A50W D951 NPN 12

彩行1500V3A65W D965 NPN 21 音频40V5A0.75W D966 NPN 21 音频40V5A1W D985 NPN 29 功放150V1.5A10W D986 NPN 29 功放150V1.5A10W D1025 NPN 28 达林顿功放200V8A50W D1037 NPN BCE 音频功放开关150V30A180W D1047 NPN 30 音频功放开关160V12A100W /B817 D1071 NPN 28 功放300V6A40W D1163A NPN 28 行偏转用350V7A40W60MHz D1175 NPN 12 行偏转用1500V5A100W D1273 NPN 28 音频功放80V3A40W50MHZ D1302 NPN 21 音频25V0.5A0.5W200MHZ D1397 NPN BCE 开关1500V3.5A50W3MHz D1398 NPN BCE 开关1500V5A50W3MHz D1403 NPN 28B 彩行1500V6A120W D1403 NPN 28B 彩行1500V6A120W D1415 NPN 28B 功放电源开关100V7A40Wβ=6000 达林顿D1416 NPN 28B 功放电源开关80V7A40Wβ=6000( 达林顿) D1426 NPN 28B 彩行1500V3.5A80W D1427 NPN 28B 彩行1500V5A80W D1428 NPN 28B 彩行1500V6A80W D1431 NPN 28B 彩行1500V5A80W D1433 NPN 28B 彩行1500V7A80W D1439 NPN BCE 彩行1500V3A80W D1541 NPN 28B 彩行1500V3A80W D1545 NPN 28B 彩行1500V5A50W D1547 NPN BCE 彩行1500V7A80W D1554 NPN BCE 彩行1500V3.5A80W D1555 NPN BCE 彩行1500V5A80W D1556 NPN BCE 彩行1500V6A80W D1559 NPN BCE 达林顿功放100V20A100W D1590 NPN 28 达林顿功放150V8A25W D1632 NPN 28B 彩行1500V4A70W D1640 NPN 29 达林顿功放120V2A1.2W D1651 NPN SP 彩行1500V5A60W3MHZ D1710 NPN BCE 彩行1500V5A50W D1718 NPN 28C 音频功放180V15A3.5W20MHZ D1762 NPN BCE 音频功放开关60V3A25W90MHZ D1843 NPN BCE 低噪放大50V1A1W D1849 NPN 50A 彩行1500V7A120W D1850 NPN 50A 彩行1500V7A120W D1859 NPN 50A 音频80V0.7A1W120MHZ D1863 NPN 50A 音频120V1A1W100MHZ D1877 NPN 30 彩行1500V4A50W(带阻尼) D1879 NPN 30 彩行1500V6A60W(带阻尼) D1887 NPN 30 彩行1500V10A70W D1930 NPN 21 达林顿达林顿100V2A1.2W D1975 NPN 53A 音频功放180V15A150W D1978 NPN 21 达林顿120V1.5A0.9W D1980 NPN 61B 达林顿100V2A10W D1981 NPN ECB 达林顿100V2A1W D1993 NPN 45B 音频低噪55V0.1A0.4W D1994A NPN ECB 音频驱动60V1A1W D1997 NPN 45B 激励管40V3A1.5W100MHZ D2008 NPN ECB 音频功放80V1A1.2W D2012 NPN BCE 音频功放60V3A2W3MHZ D2136 NPN ECB 功放80V1A1.2W D2155 NPN 53A 音频功放180V15A150W D2256 NPN 46 达林顿功放120V25A125W D2334 NPN 28B 彩行1500V5A80W D2335 NPN BCE 彩行1500V7A100W D2349 NPN BCE 大屏彩显行管D2374 NPN BCE D2375 NPN BCE D2388 NPN EBC 达林顿90V3A1.2W D2445 NPN BCE 彩行1500V12.5A120W D2498 NPN BCE 彩行1500V6A50W D2588 NPN BCE 点火器用DK55 NPN BEC 开关400V4A60W BC307 PNP 21a 通用50V0.2A0.3W BC327 PNP CBE 低噪音频50V0.8A0.625W COM BC337 BC337 NPN 21a 音频激励低噪50V0.8A0.625W COM BC327 BC338 NPN 21a 通用激励50V0.8A0.6 BC546 NPN 21a 通用80V0.2A0.5W BC547 NPN CBE 通用50V0.2A0.5W300MHZ BD135 NPN 29 音频功放45V1.5A12.5W BD136 PNP 29 音频功放45V1.5A12.5W BD137 NPN 29 音频功放60V1.5A12.5W BD138 PNP 29 音频功放60V1.5A12.5W BD139 PNP 29 音频功放80V1.5A12.5W BD237 NPN 29 音频功放100V2A25W BD238 PNP 29 音频功放100V2A25W BD243 NPN 28 音频功放45V6A65W BD244 PNP 28 音频功放45V6A65W BD681 NPN 29 达林顿功放100V4A40W BD682 NPN 29 达林顿功放100V4A40W BF458 NPN 29 视放250V0.1A10W BU208A NPN 12 彩行1500V5A12.5W BU208D NPN 12 彩行1500V5A12.5W (带阻尼) BU323 NPN 28 达林顿功放450V10A125W BU406 NPN 28 行管400V7A60W BU508A NPN 28 行管1500V7.5A75W BU508A NPN 28 行管1500V7.5A75W BU508D NPN 28 行管1500V7.5A75W (带阻尼) BU806 NPN 28 功放400V8A60W DAR-L BU932R NPN 12 功放500V15A150W DAR-L BU941 NPN 12 BU1508DX NPN 28 开关功

放BU2506DX NPN 30 开关功放1500V7A50W /600NS BU2508AF NPN 30 开关功放700V8A125W /600NS BU2508AX NPN 30 开关功放700V8A125W /600NS BU2508DF NPN 30 开关功放700V8A125W/600NS(带阻尼) BU2508DX NPN 30 开关功放1500V8A50W/600NS(带阻尼) BU2520AF NPN 30 开关功放800V10A150W 1/500NS BU2520AX NPN 30 开关功放1500V10A150W 1/500NS BU2520DF NPN 30 开关功放800V10A150W1/500NS(带阻) BU2520DX NPN 30 开关功放1500V10A50W/600NS (带阻) BU2522AF NPN 30 开关功放1500V11A150W /350NS BU2522AX NPN 30 开关功放1500V11A150W /350NS BU2525AF NPN 30 开关功放1500V12A150W /350NS BU2525AX NPN 30 开关功放1500V12A150W /350NS BU2527AF NPN 30 开关功放1500V15A150W BU2532AW NPN 30 开关功放1500V15A150W(大屏) BUH515 NPN BCE 行管1500V10A80W BUH515D NPN BCE 行管1500V10A80W(带阻尼) BUS13A NPN 12 开关功放1000V15A175W BUS14A NPN 12 开关功放1000V30A250W BUT11A NPN 28 开关功放1000V5A100W BUT12A NPN 28 开关功放450V10A125W BUV26 NPN 28 音频功放开关90V14A65W /250ns BUV28A NPN 28 音频功放开关225V10A65W /250ns BUV48A NPN 30 音频功放开关450V15A150W BUW13A NPN 30 功放开关1000V15A150W BUX48 NPN 12 功放开关850V15A125W BUX84 NPN 30 功放开关800V2A40W BUX98A NPN 12 功放开关400V30A210W5MHZ DTA114 PNP 10K-10K 160V0.6A0.625W(带阻) DTC143 NPN 录像机用4.7K-4.7K HPA100 NPN BCE 大屏彩显行管21# HPA150 NPN BCE 大屏彩显行管21# HSE830 PNP BCE 音频功放80V115W1MHZ HSE838 NPN BCE 音频功放80V115W1MHZ MN650 NPN BCE 行管1500V6A80W MJ802 NPN 12 音频功放开关90V30A200W MJ2955 PNP 12 音频功放开关60V15A115W MJ3055 NPN 12 音频功放开关60V15A115W MJ4502 PNP 12 音频功放开关90V30A200W MJ10012 NPN 12 达林顿400V10A175W MJ10015 NPN 12 电源开关400V50A200W MJ10016 NPN 12 电源开关500V50A200W MJ10025 12 电源开关850V20A250W MJ11032 NPN 12 电源开关120V50A300W DAR-L MJ11033 PNP 12 电源开关120V50A300W DAR-L MJ13333 NPN 12 电源开关400V20A175W MJ15024 NPN 12 音频功放开关400V16A250W4MHZ(原25.00) MJ15025 PNP 12 音频功放开关400V16A250W4MHZ(原25.00) MJE271 PNP 29 达林顿MJE340 NPN 29 视放300V0.5A20W MJE350 PNP 29 视放300V0.5A20W MJE2955T PNP BCE 音频功放开关60V1075W2MHZ MJE3055T NPN BCE 音频功放开关70V1075W2MHZ MJE5822 PNP BCE 音频功放开关500V8A MJE9730 NPN BCE MJE13003 NPN 29 功放开关400V1.5A14W MJE13005 NPN 28 功放开关400V4A60W MJE13007 NPN 28 功放开关1500V2.5A60W TIP31C NPN BCE 功放开关100V3A40W3MHZ TIP32C PNP BCE 功放开关100V3A40W3MHZ TIP35C NPN 30 音频功放开关100V25A125W3MHZ TIP36C PNP 30 音频功放开关100V25A125W3MHZ TIP41C NPN 30 音频功放开关100V6A65W3MHZ TIP42C PNP 30 音频功放开关100V6A65W3MHZ TIP102 NPN 28 音频功放开关100V8A2W TIP105 28 音频功放开关TIP122 NPN 28 音频功放开关100V8A65W DARL TIP127 PNP 28 音频功放开关100V8A65W DARL TIP137 PNP 28 音频功放开关100V8A70W DARL TIP142 NPN 30 音频功放开关100V10A125W DAR-L Y TIP142大NPN 30 音频功放开关100V10A125W DAR-L TIP147 PNP 30 音频功放开关100V10A125W DAR-L 0 TIP147大PNP 30 音频功放开关100V10A125W DAR-L 0 TIP152 电梯用TL431 21 电压基准源UGN3120 SGO 霍尔开关UGN3144 SGO 霍尔开关60MIAL1 电磁/微波炉1000V60A300W T30G40 NPN BCE 大功率开关管400V30A300W 5609 COML:5610 5610 COML:5609 9626 NPN21 通用MPSA42 NPN 21E 电话视频放大300V0.5A0.625W MPSA92 PNP 21E 电话视频放大300V0.5A0.625W MPS2222A NPN 21 高频放大75V0.6A0.625W300MHZ

9011 NPN EBC 高频放大50V30mA0.4W150MHz 9012 PNP 贴片低频放大50V0.5A0.625W 9013 NPN EBC 低频放大50V0.5A0.625W 9013 NPN 贴片低频放大50V0.5A0.625W 9014 NPN EBC 低噪放大50V0.1A0.4W150MHZ 9015 PNP EBC 低噪放大50V0.1A0.4W150MHZ 9018 NPN EBC 高频放大30V50MA0.4W1GHZ 8050 NPN EBC 高频放大40V1.5A1W100MHZ 8550 PNP EBC 高频放大40V1.5A1W100MHZ 2N2222 NPN 4A 高频放大60V0.8A0.5W25/200NSβ=45 2N2222A NPN 小铁高频放大75V0.6A0.625W300MHZ 2N2369 NPN 4A 开关40V0.5A0.3W800MHZ 2N2907 NPN 4A 通用60V0.6A0.4W26/70NSβ

=200 2N3055 NPN 12 功率放大100V15A115W 2N3440 NPN 6 视放开关450V1A1W15MHZ 2N3773 NPN 12 音频功放开关160V16A150W COP 2N6609 2N3904 NPN 21E 通用60V0.2A 2N3906 PNP 21E 通用40V0.2Aβ=100-400 2N5401 PNP 21E 视频放大160V0.6A0.625W100MHZ 2N5551 NPN 21E 视频放大160V0.6A0.625W100MHZ 2N5685 NPN 12 音频功放开关60V50A300W 2N6277 NPN 12 功放开关180V50A250W 2N6609 PNP 12 音频功放开关160V15A150W COP 2N37730

编辑本段放大电路

三极管工作状态有三种,放大、饱和、截止,其中又以放大状态最为复杂,主要用于小信号的放大领域,常用的三极管放大电路形式有:共发射极放大电路,共集电极放大电路,共基极放大电路三种,其中共集电路用于电流放大(功率放大),共基电路用于高频放大,共射电路用于低频放大。三极管放大电路包含静态参数和动态参数两大类,静态参数又称静态工作点,是保证三极管正常工作的基础,意义是在输入条件为零时,晶体管的基极电流Ib,集电极电流Ic,be极之间的电压Ubc,管压降Uceq。当有输入信号时,晶体管呈现的输入电阻Ri,输出电阻Ro,电压增益Au等参数被称为动态参数。另外还有一类参数被称为放大电路频率特性参数,主要包括放大电路的低频端截止频率,高频端截止频率,通频带,增益平坦度,幅(度)频(率)特性曲线等。三极管的作用晶体三极管,是最常用的基本元器件之一,晶体三极管的作用主要是电流放大,他是电子电路的核心元件,现在的大规模集成电路的基本组成部分也就是晶体三极管。三极管基本机构是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。发射区和基区之间的PN结叫发射结,集电区和基区之间的PN 结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN 结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。三极管是一种控制元件,三极管的作用非常的大,可以说没有三极管的发明就没有现代信息社会的如此多样化,电子管是他的前身,但是电子管体积大耗电量巨大,现在已经被淘汰。三极管主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。但是集电极电流的变化比基极电流的变化大得多,这就是三极管的电流放大作用。刚才说了电流放大是晶体三极管的作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。根据三极管的作用我们分析它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把

电源的能量转换成信号的能量罢了。三极管有一个重要参数就是电流放大系数β。当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。三极管的作用还有电子开关,配合其它元件还可以构成振荡器,此外三极管还有稳压的作用。

编辑本段检测

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和 2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极。二、 PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。(1) 对于NPN型三极管,穿透电流的测量电路。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。四、测不出,动嘴巴若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极

常用三极管型号及参数

常用三极管型号及参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFU020 50V 15A 42W **NMO场效应 IRFPG42 1000V 4A 150W ** NMO场效应 IRFPF40 900V 4.7A 150W ** NMO场效应 IRFP9240 200V 12A 150W ** PMOS场效应 IRFP9140 100V 19A 150W **PMOS场效应 IRFP460 500V 20A 250W ** NMO场效应 IRFP450 500V 14A 180W **NMO场效应IRFP440 500V 8A 150W **NMO场效应IRFP353 350V 14A 180W **NMO场效应IRFP350 400V 16A 180W **NMO场效应IRFP340 400V 10A 150W **NMO场效应IRFP250 200V 33A 180W **NMO场效应IRFP240 200V 19A 150W **NMO场效应IRFP150 100V 40A 180W **NMO场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFP140 100V 30A 150W **NMO场效应IRFP054 60V 65A 180W **NMO场效应IRFI744 400V 4A 32W **NMO场效应IRFI730 400V 4A 32W **NMO场效应IRFD9120 100V 1A 1W **NMO场效应IRFD123 80V 1.1A 1W **NMO场效应IRFD120 100V 1.3A 1W **NMO场效应IRFD113 60V 0.8A 1W **NMO场效应IRFBE30 800V 2.8A 75W **NMO场效应

三极管及放大电路基础教案..

第 2 章三极管及放大电路基础 课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。4.理解三极管的主要参数的含义。【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和 集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电 流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。

三极管三个电极的电流(基极电流1 B、集电极电流l C、发射极电流l E)之间的关系为: I E| |I C I C l B l C、 l B l B 2.1.3三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1.输入特性曲线 输入特性曲线是指当集-射极之间的电压V CE为定值时,输入回路中的基极电流I B与加在基-射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集-射极间的 电压V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区:I B 0曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管 没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1?性能参数:电流放大系数、,集电极-基极反向饱和电流I CBO,集电极-发射极反向饱和电流I CEO。 2.极限参数:集电极最大允许电流I CM、集电极-发射极反向击穿电压V(BR)CEO、集电 极最大允许耗散功率P CM 。 3.频率参数:共发射极截止频率 f 、特征频率f T 。 2.1.5 三极管的分类三极管的种类很多,分类方法也有多种。分别从材料、用途、功率、频率、制作工艺等方面对 三极管的类型予以介绍。 三、课堂小结1.三极管的结构、类型和电路符号。2.三极管的电流放大作用。 3.三极管三种工作状态的特点。4.三极管的主要参数。 四、课堂思考 P37 思考与练习题1、2、3。

全系列常用三极管型号参数资料(精)

全系列常用三极管型号参数资料 编者按:这些虽不能涵盖所有的三极管型号,例如3DD系列等,但是都是极其常用的型号,例如901系列,简直是无所不在。在网上查的电子元件手册都是卖书的广告,找到点参数型号确实不易。 名称封装极性功能耐压电流功率频率配对管 D633 28 NPN 音频功放开关100V 7A 40W 达林顿 9013 21 NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A 50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP 视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 9012 21 PNP 低频放大50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 9012 贴片PNP 低频放大50V 0.5A 0.625W 9013

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

三极管及放大电路基础教案..

第2章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为: C B E I I I +=、B C I I = --β、B C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1. 输入特性曲线 输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2. 输出特性曲线 输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。 截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数- -β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。 2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

三极管共射放大电路实验报告

实验名称:三极管共射放大电路 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、学习共射放大电路的设计方法。 2、掌握放大电路静态工作点的测量与调整方法。 3、学习放大电路性能指标的测试方法。 4、了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法。 5、进一步熟悉示波器、函数信号发生器、交流毫伏表的使用。 二、实验内容 1、静态工作点的调整和测量 2、测量电压放大倍数 3、测量最大不失真输出电压 4、测量输入电阻和输出电阻 5、测量上限频率和下限频率 6、研究静态工作点对输出波形的影响 三、主要仪器设备 1、示波器、信号发生器、晶体管毫伏表 2、共射电路实验板 四、实验原理与实验步骤 单管共射放大电路 1、放大电路静态工作点的测量和调试 准备工作: (1) 对照电路原理图,仔细检查电路的完整性和焊接质量。 (2) 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。确认后,先关

闭直流稳压电源。 (3) 将电路板的工作电源端与12V 直流稳压电源接通。然后,开启直流稳压电源。此时,放大电路处于工作状态。 静态工作点的调整,调节电位器,使Q 点满足要求(ICQ =1.5mA)。 直接测电流不方便,一般采用电压测量法来换算电流。 测电压时,要充分考虑到万用表直流电压档内阻对被测电路的影响 。因此应通过测电阻Rc 两端的压降VRc ,然后计算出ICQ 。 (若测出VCEQ <0.5V ,则说明三极管已饱和;若VCEQ ≈+VCC ,则说明三极管已截止。若VBEQ>2V ,则说明三极管已被击穿) 2、测量电压放大倍数 (1) 必须保持放大电路的静态工作点不变! (2) 从信号发生器输出1kHz 的正弦波,作为放大电路的输入(Vi=10mV 有效值) 。 (3) 用示波器监视输出波形,波形正确后再用交流毫伏表测出有效值。 3、测量最大不失真输出电压 (1) 静态工作点不变,用示波器监视输出波形。 (2) 逐渐增大输入信号幅度,直至输出刚出现失真。 (3) 测量时通常以饱和失真为准(当Q 点位于中间时)。 (4) 交流毫伏表测出有效值。 4、测量输入电阻 实验原理: 放大电路的输入电阻可用电阻分压法来测量,图中R 为已知阻值的外接电阻,分别测出Vs 和Vi ,则 实验步骤: (1) 输入正弦波(幅度和频率?) 。 (2) 用示波器监视输出波形,要求不失真。 (3) 用交流毫伏表测出Vs 和Vi ,计算得到Ri 。 5、测量输出电阻 实验原理: 放大电路的输出电阻可用增益改变法来测量,分别测出负载开路时的输出电压Vo'和带上负载RL 后的输出电压Vo ,则 R V V V R V V V I V R i s i i s i i i i -=-== /) ('o L o L o V R R R V +=L o o o R V V R ???? ??-=1'

常用晶体三极管参数

常用晶体三极管参数 2008-05-12 11:12 常用晶体三极管参数 名称封装极性耐压电流功率频率配对管 D633 28 NPN 音频功放 100V 7A 40W 达林顿 9013 21 NPN 低频放大 50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大 50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大 50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大 30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大 40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大 40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用 60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关 40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用 60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大 100V 15A 115W MJ2955 2N3440 6 NPN 视放开 450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放 160V 16A 50W 2N3904 21E NPN 通用 60V 0.2A 2N2906 21C PNP 通用 40V 0.2A 2N2222A 21铁 NPN 高频放大 75V 0.6A 0.625W 300MHZ 2N6718 21铁 NPN 音频功放 100V 2A 2W 2N5401 21 PNP 视频放大 160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大 160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放 60V 50A 300W 2N6277 12 NPN 功放开 180V 50A 250W 9012 21 PNP 低频放大 50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放 650V 15A 175W 15MHZ 9012 贴片 PNP 低频放大 50V 0.5A 0.625W 9013 3DA87A 6 NPN 视频放大 100V 0.1A 1W 3DG6B 6 NPN 通用 20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用 25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用 30V 0.02A 0.1W 150MHZ MPSA42 21E NPN 电话视频 300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频 300V 0.5A 0.625W MPSA42

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

三极管放大电路实验报告

三极管放大电路 1、问题简述: 要求设计一放大电路,电路部分参数及要求如下: (1)信号源电压幅值:0.5V; (2)信号源内阻:50kohm; (3)电路总增益:2倍; (4)总功耗:小于30mW; (5)增益不平坦度:20 ~ 200kHz范围内小于0.1dB。 2、问题分析: 通过分析得出放大电路可以采用三极管放大电路。 2.1 对三种放大电路的分析 (1)共射级电路要求高负载,同时具有大增益特性; (2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1; (3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。 综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。 2.2 放大电路的设计思路 在此放大电路中采用两级放大的思路。 先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。 3、实验目的 (1)进一步理解三极管的放大特性; (2)掌握三极管放大电路的设计; (3)掌握三种三极管放大电路的特性; (4)掌握三极管放大电路波形的调试; (5)提高遇到问题时解决问题的能力。 4、问题解决 测量调试过程中的电路: 增益调试: 首先测量各点(电源、基极、输出端)的波形:

结果如下:

绿色的线代表电压变化,红色代表电源。调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3。 V A=R2//R3//(1+β)R5 / [R2//R3//(1+β)R5+R1],其中由于R1较大因此R2、R3也相对较大。 第一级放大输出处的波形调试(采用共射级放大电路): 结果为: 红色的电压最大值与绿色电压最大值之比即为放大倍数。 则需要适当增大R2,减小R3的阻值。 总输出的调试: 如果放大倍数不合适,则调节R4与R5的阻值。即当放大倍数不足时,应增大R4,减小R5。 如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回C极,调节C极的输出。 功率的调试: 由于大功率电路耗电现象非常严重,因此我们在设计电路时,应在满足要求的情况下尽可能的减小电路的总功耗。减小总功耗的方法有: (1)尽可能减小输入直流电压; (2)尽可能减小R2、R3的阻值; (3)尽可能增大R6的阻值。 电路输入输出增益、相位的调试: 由于在放大电路分别采用了共射极和共集电极电路,因此输出信号和输入信号相位相差180度。体现在波形上是,当输入交流信号电压达到最大值是,输出信号到达最小值。 由于工作频率为1kHz,当采用专门的增益、相位仪器测量时需要保证工作频率附近出的增益、相位特性比较平稳,尤其相位应为±180度附近。一般情况下,为了达到这一目的,通常采用的方法为适当增大C6(下图为C1)的电容。 最终调试电路:

三极管的作用:三极管放大电路原理

三极管的作用:三极管放大电路原理 一、放大电路的组成与各元件的作用 Rb和Rc:提供适合偏置--发射结正偏,集电结反偏。C1、C2是隔直(耦合)电容,隔直流通交流。 共射放大电路 Vs ,Rs:信号源电压与内阻; RL:负载电阻,将集电极电流的变化△ic转换为集电极与发射极间的电压变化△VCE 二、放大电路的基本工作原理

静态(Vi=0,假设工作在放大状态) 分析,又称直流分析,计算三极管的电流和极间电压值,应采用直流通路(电容开路)。 基极电流:IB=IBQ=(VCC-VBEQ)/Rb 集电极电流:IC=ICQ=βIBQ 集-射间电压:VCE=VCEQ=VCC-ICQRc 动态(vi≠0)分析:

放大电路对信号的放大作用是利用三极管的电流控制作用来实现,其实质上是一种能量转换器。 三、构成放大电路的基本原则 放大电路必须有合适的静态工作点:直流电源的极性与三极管的类型相配合,电阻的设置要与电源相配合,以确保器件工作在放大区。输入信号能有效地加到放大器件的输入端,使三极管输入端的电流或电压跟随输入信号成比例变化,经三极管放大后的输出信号(如 ic=β*ib)应能有效地转变为负载上的输出电压信号。 电压传输特性和静态工作点 一、单管放大电路的电压传输特性

图解分析法:

输出回路方程: 输出特性曲线: AB段:截止区,对应于输出特性曲线中iB<0的部分。 BCDEFG段:放大区 GHI段:饱和区 作为放大应用时:Q点应置于E处(放大区中心)。若Q点设置C处,易引起载止失真。若Q点设置F处,易引起饱和失真。 用于开关控制场合:工作在截止区和饱和区上。 二、单管放大电路静态工作点(公式法计算)

常用贴片三极管主要参数及丝印

常用贴片三极管主要参数(SOT-23) 序号型号 TYPE 极性 POLA RITY P D (mW) I C (mA) BV CBO (V) BV CEO (V) h FE V CE(sat)I C/I B f TYPE (MHZ) 打标 Marking Min/Max I C mA V CE Volts Max Volts mA 1S9012PNP3005004025120/3505010.6500501502T1 2S9013NPN3005004025120/3505010.650050150J3 3S9014NPN2001005045200/1000150.31005150J6 4S9015PNP2001005045200/1000150.310010150M6 5S9018NPN20050251870/190 1.O50.51001600J8 6S8050NPN3005004025120/3505010.650050150J3Y 7S8550PNP3005004025120/3505010.6500501502TY 8SS8050NPN1001500402585/30010010.58008080Y1 9SS8550PNP1001500402585/30010010.58008080Y2 10C1815NPN20015060500130/400260.251001080HF 11A1015PNP2001505050130/400260.31001080BA 12C945NPN2001506050130/400160.310010150CR 13A733PNP2001506050120/475160.31001050CS 142SC1623NPN200100605090/600160.310010250L4、L5、L6、L7 15M28S NPN20010004020300/1000010010.556002010028S 16M8050NPN2001000402580/30010010.580080150Y11 17M8550PNP2001000402585/30010010.580080150Y21 18MMBT5551NPN30060018016080/25010 5.O0.550 5.O80G1 19MMBT5401PNP300600160150100/20010 5.O0.5500.51002L 20MMBTA42NPN300300300300100/20010100.2202501D 21MMBTA92NPN300300300300100/20010100.2202502D 222SC2412NPN2001506050120/560160.4505180BQ、BR、BS 232SC3356NPN300100201250/30020100.51057000R23、R24、R25 242SC3837NPN30050301856/39010100.52041500CN、CP、CQ、CR 252SC3838NPN30050201156/3905100.51053200AN、AP、AQ、AR 26BC807-16PNP2255005045100/25010010.7500502005A 27BC807-25PNP2255005045160/40010010.7500502005B 28BC807-40PNP2255005045250/60010010.7500502005C 29BC817-16NPN2255005045100/25010010.7500502006A 30BC817-25NPN2255005045160/40010010.7500502006B 31BC817-40NPN2255005045250/60010010.7500502006C 32BC846A NPN2251008065110/220250.610051001A 33BC846B NPN2251008065200/450250.610051001B 34BC847A NPN2251005045110/220250.610051001E 35BC847B NPN2251005045200/450250.610051001F 36BC847C NPN2251005045420/800250.610051001G 37BC848A NPN2251003030110/220250.610051001J 38BC848B NPN2251003030200/450250.610051001K 39BC848C NPN2251003030450/800250.610051001L 40BC858A PNP2251008065125/250250.6510051003A 41BC858B PNP2251008065220/475250.6510051003B 42BC857A PNP2251005045125/250250.6510051003E 43BC857B PNP2251005045220/475250.6510051003F 44BC875C PNP2251005045420/800250.6510051003G

半导体三极管及放大电路基础

半导体三极管及放大电 路基础 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体三极管及放大电路基础 第一节学习要求 第二节半导体三极管 第三节共射极放大电路 第四节图解分析法 第五节小信号模型分析法 第六节放大电路的工作点稳定问题 第七节共集电极电路 第八节放大电路的频率响应概述 第九节本章小结 第一节学习要求 (1)掌握基本放大电路的两种基本分析方法--图解法与微变等效电路法。会用图解法分析电路参数对电路静态工作点的影响和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。 (2)熟悉基本放大电路的三种组态及特点;掌握工作点稳定电路的工作原理。 (3)掌握频率响应的概念。了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。 第二节半导体三极管(BJT) BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互影响,使BJT表现出不同 于单个 PN结的特性而具有电流放大,从而使PN结的应 用发生了质的飞跃。本节将围绕BJT为什么具有电流放 大作用这个核心问题,讨论BJT的结构、内部载流子的 运动过程以及它的特性曲线和参数。 一、BJT的结构简介 BJT又常称为晶体管,它的种类很多。按照频率分,有高频管、低频管;按照功率分,有小、中、大功

率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。但从它们的外形来看,BJT都有三个电极,如图所示。 图是NPN型BJT的示意图。它是由两个 PN结的三层半导体制成的。中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。虽然发射区和集电区都是N 型半导体,但是发射区比集电区掺的杂质多。在几何尺寸上,集电区的面积比发射区的大,这从图也可看到,因此它们并不是对称的。 二、BJT的电流分配与放大作用 1、BJT内部载流子的传输过程 BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。 在外加电压的作用下, BJT内部载流子的传输过程为: (1)发射极注入电子 由于发射结外加正向电压V EE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射

三极管放大实验报告

(一)、实验目的 1.对晶体三极管进行实物识别,了解它们的命名方法和主要技术指标; 2.学习放大电路动态参数(电压放大倍数等)的测量方法; 3.调节电路相关参数,用示波器观测输出波形,对饱和失真失真的情况进行研究; 4.通过实验进一步熟悉三极管的使用方法及放大电路的研究方法。 (二)、实验原理 一、三极管 1. 三极管基本知识 三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。三极管的分类方式很多,按照材料可分为硅管和锗管;按照结构可分为NPN和PNP;按照功能可分为开关管、功率管、达林顿管、光敏管等;按照功率可分为小功率管、中功率管和大功率管;按照工作频率可分为低频管、高频管和超频管;按照安装方式可分为插件三极管和贴片三极管。 三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,根据排列方式的不同可将三极管分为PNP和NPN两种。 从三个区引出相应的电极,分别为基极b发射极e和集电极c。发射区和基区之间的PN 结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大。 两种不同类型三极管的表示方式如图1所示,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。

图1 不同类型三极管表示方式 2.三极管放大原理 (1)发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 (2)基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 (3)集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。 3.三极管的工作状态 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。 放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。 饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。

常用二极管三极管参数

9月28日 常用二极管参数 整流二极管主要参数 50V 100V 200V 300V 400V 500V 600V 800V 1000V 1A 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1.5A 1N5391 1N5392 1N5393 1N5394 1N5395 1N5396 1N5397 1N5398 1N5399 2A PS200 PS201 PS202 PS204 PS206 PS208 PS209 3A 1N5400 1N5401 1N5402 1N5404 1N5405 1N5406 1N5407 1N5408 1N5409 稳压二极管主要参数 型号最大功耗(mW) 稳定电压(V) 电流(mA) 代换型号 国产稳压管日立稳压管 最小值最大值新型号旧型号 HZ4B2 500 3.8 4 5 2CW102 2CW21 4B2 HZ4C1 500 4 4.2 5 2CW102 2CW21 4C1 HZ6 500 5.5 5.8 5 2CW103 2CW21A 6B1 HZ6A 500 5.2 5.7 5 2CW103 2CW21A HZ6C3 500 6 6.4 5 2CW104 2CW21B 6C3 HZ7 500 6.9 7.2 5 2CW105 2CW21C HZ7A 500 6.3 6.9 5 2CW105 2CW21C HZ7B 500 6.7 7.3 5 2CW105 2CW21C HZ9A 500 7.7 8.5 5 2CW106 2CW21D HZ9CTA 500 8.9 9.7 5 2CW107 2CW21E HZ11 500 9.5 11.9 5 2CW109 2CW21G HZ12 500 11.6 14.3 5 2CW111 2CW21H HZ12B 500 12.4 13.4 5 2CW111 2CW21H HZ12B2 500 12.6 13.1 5 2CW111 2CW21H 12B2 HZ18Y 500 16.5 18.5 5 2CW113 2CW21J HZ20-1 500 18.86 19.44 2 2CW114 2CW21K HZ27 500 27.2 28.6 2 2CW117 2CW21L 27-3 HZT33-02 400 31 33.5 5 2CW119 2CW21M RD2.0E(B) 500 1.88 2.12 20 2CW100 2CW21P 2B1 RD2.7E 400 2.5 2.93 20 2CW101 2CW21S RD3.9EL1 500 3.7 4 20 2CW102 2CW21 4B2 RD5.6EN1 500 5.2 5.5 20 2CW103 2CW21A 6A1 RD5.6EN3 500 5.6 5.9 20 2CW104 2CW21B 6B2 RD5.6EL2 500 5.5 5.7 20 2CW103 2CW21A 6B1 RD6.2E(B) 500 5.88 6.6 20 2CW104 2CW21B RD7.5E(B) 500 7 7.9 20 2CW105 2CW21C RD10EN3 500 9.7 10 20 2CW108 2CW21F 11A2 RD11E(B) 500 10.1 11.8 15 2CW109 2CW21G RD12E 500 11.74 12.35 10 2CW110 2CW21H 12A1 RD12F 1000 11.19 11.77 20 2CW109 2CW21G RD13EN1 500 12 12.7 10 2CW110 2CW21H 12A3 RD15EL2 500 13.8 14.6 15 2CW112 2CW21J 12C3

相关主题
文本预览
相关文档 最新文档