层序地层学读书报告
- 格式:docx
- 大小:224.42 KB
- 文档页数:11
学号:2006130035姓名:陈龙成绩:基准面和可容空间基本知识体系及自己的看法高分辨率层序地层学理论的核心内容是:在基准面旋回变化过程中,由于可容纳空间与沉积物补给通量比值的变化,相同沉积体系域或相域中发生沉积物的体积分配作用和相分异作用,导致沉积物的保存程度、地层堆积样式、相序、相类型及岩石结构和组合类型发生变化[1]。
基准面是高分辨率层序地层学研究的核心,可容空间是与基准面密切关联的概念,本文总结出了基准面及可容空间的基本知识体系,同时就基准面和可容空间也提出了自己的观点。
1.基准面和可容空间基准面和可容空间都是高分辨率层序地层学中极其重要的概念。
特别是基准面这个概念,是高分辨率层序地层学研究的直接对象,最终在实际应用中我们也是要划分出层序的上升和下降旋回。
而可容空间却是和基准面直接关联的概念。
T.A.Cross(1994)引用并发展了Wheeler(1964)提出的基准面概念,分析了基准面旋回与成因层序形成的过程-响应原理。
基准面(Baselevel)并非海平面,也不是一个相当于海平面向陆延伸的水平面,而是一个相对于地球表面波状升降的、连续的、略向盆地方向下倾的抽象面(非物理面),其位置,运动方向及升降幅度不断随时间发生变化的[2]。
可容空间是指位于基准面之下的、沉积物表面与基准面之间可供潜在沉积物充填的全部空间[1]。
可容空间包括早期未被充填遗留下来的老空间和新增可容空间。
可容空间又称可容纳空间、容纳空间、容存空间,它是与基准面相伴存在的一个客观事物。
新增可容空间是指在沉积物沉积的同时新形成的可供沉积物充填的空间[7]。
可容空间是与基准面相伴随而存在着的,可容空间的增加与减少直接受控于基准面的升降和基底构造沉降。
学号:2006130035姓名:陈龙成绩:图2.基准面与可容空间示意图2.为什么提出基准面这个概念我们知道影响层序地层发育的影响因素主要有:海平面、构造沉降、沉积负荷补偿、沉积物补给、气候、沉积地形等因素。
层序地层学在油气勘探领域中的应用引言层序地层学在油气勘探中扮演着重要的角色。
通过对地层的层序性质进行深入研究,不仅可以帮助地质学家更好地理解地层的时空分布规律,还能够指导油气勘探的开展。
本文将从层序地层学的概念入手,深入探讨其在油气勘探领域中的应用,并共享个人观点和理解。
一、层序地层学概念及基本原理1. 层序地层学的概念层序地层学是地层地质学的一个重要分支,研究地层的堆积和发育规律,以时间和空间为基础,探讨地层的垂直序列和水平关系,揭示地层的层序性质。
通过对地层的层序性质进行认真研究,可以揭示地层的堆积规律、沉积环境和演化历史,为油气勘探提供可靠的地质依据。
2. 层序地层学的基本原理地层的分层规律不仅受沉积条件、构造运动和物源质量等因素控制,还受海平面波动和气候变化等因素的影响。
层序地层学通过对不同层序特征的分析,可以揭示这些影响因素,从而推断出地层的沉积环境和演化过程。
在油气勘探中,这些信息对于确定有利油气形成和富集区具有重要的指导意义。
二、层序地层学在油气勘探中的应用1. 层序地层学与油气勘探的关系油气勘探的关键在于找准有利的油气富集区,而地层的层序性质往往是决定油气勘探目标的关键。
通过对地层的层序特征进行认真研究,可以揭示油气富集区的空间分布规律和聚集规律,指导油气勘探的开展,提高勘探的成功率。
2. 层序地层学在勘探目标的确定中的应用层序地层学通过对地层层序特征的识别和解释,可以帮助地质学家确定有利的油气勘探目标。
特别是在复杂构造、复杂沉积盆地和难以区分的地质构造中,层序地层学的应用尤为突出,对于确立勘探目标和提高勘探效果具有重要的意义。
3. 层序地层学在勘探实践中的案例分析通过对全球范围内的勘探实践案例进行分析,可以发现层序地层学在油气勘探中的重要作用。
在北美地区的页岩气勘探中,层序地层学对于确定页岩气富集区的空间分布和富集规律起到了关键作用,为页岩气的大规模开发提供了可靠的地质依据。
三、个人观点和理解从事多年的油气勘探工作,我深切体会到层序地层学在勘探中的重要作用。
层序地层学层序地层学是地层学的一个分支,是根据地震、钻井和露头资料进行地层分布型式、沉积环境和岩相综合解释的一门科学。
人们发现,在同一时期的、情况各异的许多沉积盆地内发育着的地层形式,说明存在着一种有效的全球控制因素,这种因素即是全球海平面变化。
P.R.Vail等(1977)曾提出了这样一种观点:大多数地表地质学家普遍见到的旋回性沉积作用基本上或完全受全球范围的海平面升降变化的控制。
层序地层学的产生起源于Mac Jeryey在70年代后期的研究成果,他在数学上模拟和定量表示了产生全球旋回曲线的海平面、构造沉降和物源供给之间的相互关系。
这项工作显示出层序地层学以统一思想对地层学和盆地演化进行研究所产生的巨大潜力。
然而,层序地层学成为独立的学科形成于80年代后期,是由P.R.Vail、J.B.Samgree和J.C.Van Wagoner等学者提出并完善的。
P.R.Vail等(1987)提出的层序地层学概念及其有关沉积模式,是以海洋环境为背景,针对被动大陆边缘提出的。
层序地层学的核心部分是研究全球海平面升降变化对沉积作用的控制。
包括对大陆边缘碎屑沉积作用的控制和对大陆边缘碳酸盐沉积作用的控制。
层序及其内部组成部分体系域是全球海平面升降、地壳沉降以及沉积物供给之间相互作用的产物。
全球海平面升降和构造沉降共同作用的结果,引起海平面的相对变化。
在全球海平面升降的控制下,海平面的相对变化速度是碎屑沉积地层型式和岩相分布的主要控制因素;在长期构造运动的背景下,海平面的相对变化控制碳酸盐沉积地层型式和岩相分布。
根据上述这些相互作用可以建立沉积模式,用以检验人们的认识,预测沉积地层关系和岩相,进行全球不同地域、不同时代地层间的对比。
因此,层序地层学是从四维时空上来认识沉积记录,并将其和全球海平面的周期性变化联系起来,认为沉积记录是全球海平面变化与地壳沉降和沉积物供给的函数,从而增强了全球不同地域、不同时代地层间的可对比性和沉积相的可预测性,将沉积学和地层学推向了一个新的阶段。
第1篇一、前言地质学是一门研究地球的物质组成、结构、演化以及地质作用和地质现象的科学。
它是自然科学的一个重要分支,与地球科学、地球物理学、地球化学等学科密切相关。
本报告旨在总结地质学基础课程的学习成果,对所学知识进行梳理和总结,以期为今后的学习和研究打下坚实基础。
二、课程概述地质学基础课程是一门面向地质学及相关专业学生的专业基础课程,主要内容包括地球的形成与演化、地球的内部结构、地质构造、矿物学、岩石学、地质年代学等。
通过本课程的学习,使学生掌握地质学的基本理论、基本知识和基本技能,为后续专业课程的学习和研究奠定基础。
三、学习内容总结1. 地球的形成与演化地球的形成与演化是地质学研究的起点。
地球起源于约46亿年前的原始太阳星云,经过漫长的演化过程,形成了现在的地球。
地球的形成与演化主要包括以下几个阶段:(1)原始地球的起源:地球起源于原始太阳星云,通过引力凝聚形成了原始地球。
(2)地球的冷却与固结:原始地球在引力作用下不断冷却,地球内部的物质开始分化,形成了地核、地幔和地壳。
(3)地球的构造运动:地球内部的物质运动导致地球表面发生构造运动,形成了山脉、平原、盆地等地貌。
(4)地球的生物演化:地球上的生命起源于约38亿年前,经历了从无到有、从简单到复杂的过程。
2. 地球的内部结构地球的内部结构分为地核、地幔和地壳三个圈层。
地核主要由铁、镍等金属元素组成,地幔主要由硅酸盐岩石组成,地壳主要由岩石构成。
地球内部结构的研究方法主要包括地震波传播、地磁测量、地球化学等。
3. 地质构造地质构造是指地球表面和内部岩石的形态、分布和相互关系。
地质构造的研究方法主要包括地质观测、地质调查、地球物理勘探等。
地质构造主要包括以下几种类型:(1)褶皱构造:岩石层在受到挤压作用下发生弯曲变形,形成褶皱。
(2)断层构造:岩石层在受到拉伸或压缩作用下发生断裂,形成断层。
(3)火山构造:火山喷发形成的岩石和地貌。
4. 矿物学矿物学是研究地球上的矿物质成分、结构、形态和物理化学性质的科学。
层序地层学在油气勘探中的应用地层学是石油勘探中的一个重要学科,而层序地层学作为地层学的一个分支,对于油气勘探具有重要的应用价值。
层序地层学主要研究不同地层单元之间的相互关系及其垂直演化规律,通过对地层的垂向变化进行精细刻画,能够为油气勘探提供更精确的靶层定位和有效储集层预测,从而降低勘探风险,提高勘探效率。
下面将从层序地层学的基本原理、应用技术以及典型案例等方面进行论述。
首先,层序地层学的基本原理需要深入理解。
地层是地球上的一层层不同岩性和岩相的构成,而地层之间的关系有助于我们理解地层的垂向演化规律。
层序地层学通过分析地层单元之间的沉积相对比,可以揭示河流、湖泊、海洋等不同环境条件下的沉积规律,并根据沉积规律构建出层序地层模式。
这些层序地层模式可以帮助我们理解地质历史,预测地层储集潜力,从而指导油气勘探工作。
其次,层序地层学的应用技术也是油气勘探不可或缺的一部分。
现代勘探技术的发展使得我们能够获取更多的地层信息,而层序地层学正是利用这些地质信息来进行油气勘探的。
地震勘探是一种常用的技术手段,通过分析地震波在地下的传播路径和速度变化,可以得出地层的垂向变化情况。
此外,钻井资料和岩心分析也是层序地层学中常用的技术手段,通过分析钻井岩心和测井曲线,可以获得地层的物性数据,从而更准确地判断层序地层模式及其储集潜力。
最后,我们来看一个典型的应用案例。
在某个油气勘探区域,通过地震勘探和钻井资料分析,储量前景较好的靶层被初步确定。
然而,由于构造运动和岩性变化的影响,该靶层在地域范围内存在着垂向变化。
为了更好地预测储集层的空间分布和类型,层序地层学被引入进行精细刻画。
调查人员首先使用地震勘探技术获取该区域的地层结构图,然后使用钻井资料和岩心分析结果对地震图像进行验证。
通过对比分析地层单元之间的沉积相对比,研究人员发现靶层可以划分为不同的层序单元,并构建出相应的层序模式。
根据层序模式,研究人员可以准确预测储集层的位置和类型,从而为油气勘探提供更精准的指导。
实验一野外露头资料的层序地层分析
一、实验目的:
依据层序地层学的基本概念和理论体系,深化认识准层序和准层序组的沉积特征,确定准层序的垂向叠置样式,识别首次海泛面、最大海泛面和层序边界,描述不同体系域类型和海平面升降变化特征,撰写实验报告。
二、露头资料地质背景:
露头位于新疆乌鲁木齐天山牧场祁家沟,地质层位为石炭系上统,主体沉积为敏感反映沉积水体和沉积水动力变化的不同类型碳酸盐岩以及部分碎屑岩,主要沉积环境为碳酸盐台地和碳酸盐台地边缘斜坡沉积。
三、实验结果
根据准层序反映水体向上变浅、沉积物粒度向上变粗的特征,自下而上共划分了17个准层序。
根据沉积相分析,下切谷之下为Ⅰ型层序的底界面SB1。
其上相变为台地边缘相,反映水体变深,发生海泛,故下切谷与台地边缘相之间为首次海泛面,首次海泛面与Ⅰ型层序底界面之间为LST。
水体继续加深,发育前缘斜坡相,继而又变为台地边缘相,说明水体开始变浅,故前缘斜坡相与其上的台地边缘相之间为最大海泛面,首次海泛面与最大海泛面之间为TST,准层序组为退积型。
自最大海泛面之上,沉积相类型在台地边缘相和滩边缘相之间变化,反映海平面保持不变并开始缓慢下降,准层序组类型为加积。
最上方的泥晶灰岩段,显示水体再次变深,所以,泥晶灰岩段之下应为层序的顶界面SB2,其下至最大海泛面之间为HST,其上开始新的层序。
所以,在不考虑沉积物供给等条件的情况下,海平面自LST开始上升,在下切谷顶部开始初次海泛,随后海平面继续上升,在前缘斜坡相顶部达到最大海泛,继而海平面保持稳定并开始缓慢下降,在泥晶灰岩段下方下降到本层序的最低点,其后又开始新一期海平面升降变化。
一、实习背景与目的地层学是地质学的一个重要分支,研究地壳中沉积岩的成因、分布、特征及其形成过程中的地质事件。
为了加深对地层学理论知识的理解,提高野外实际操作能力,我们于[实习时间]在[实习地点]进行了地层学实习。
本次实习旨在:1. 理解地层的基本概念和分类;2. 掌握地层剖面描述和测量方法;3. 学会识别不同类型的地层特征;4. 分析地层剖面,了解地层形成过程及地质事件。
二、实习内容与过程1. 地层概述实习伊始,我们对实习区地层进行了概述。
实习区位于[实习地点],地质构造复杂,地层发育齐全。
实习区地层可分为三个大的地层单元:古老地层、中生界和新生界。
2. 地层剖面描述在实习过程中,我们分组对地层剖面进行了详细描述。
以下为部分描述:- 古老地层:以[地层名称]为代表,主要为[岩性描述],岩性特征明显,层理发育,厚度较大。
- 中生界:以[地层名称]为代表,主要为[岩性描述],岩性变化较大,常见化石,层理发育,厚度较大。
- 新生界:以[地层名称]为代表,主要为[岩性描述],岩性以[岩性描述]为主,常见河流相沉积,层理发育,厚度较小。
3. 地层剖面测量我们使用罗盘、钢尺等工具对地层剖面进行了测量,记录了地层厚度、层位等信息。
4. 地层特征识别在实习过程中,我们学会了识别不同类型的地层特征,如:- 沉积构造:层理、波痕、交错层理等;- 化石:植物化石、动物化石等;- 岩性特征:颜色、颗粒大小、成分等。
5. 地层剖面分析通过对地层剖面的分析,我们了解了地层形成过程及地质事件。
例如,在[地层名称]地层中,我们发现了一层富含化石的沉积层,推测该地层为[地质事件]时期沉积。
三、实习体会与收获1. 理论联系实际:通过本次实习,我们将地层学理论知识与野外实际操作相结合,加深了对地层学知识的理解。
2. 提高野外操作能力:实习过程中,我们学会了地层剖面描述、测量、特征识别等技能,提高了野外实际操作能力。
3. 培养团队协作精神:实习过程中,我们分组进行工作,互相学习、互相帮助,培养了团队协作精神。
岩石的概念矿物的天然集合体称为岩石。
岩石可由一种矿物组成,如纯洁的大理岩由方解石组成;而多数岩石是由两种以上的矿物组成,如花岗岩主要由石英、长石、云母3种矿物组成。
岩石虽然也有一定的化学成分和物理性质,但与矿物相比,其物质组成不固定,有一定的变化范围,物理性质也不均匀。
岩石的种类很多,但从成因和形成过程来看,一般被分为三大类:岩浆岩、沉积岩、变质岩。
它们在地球上的分布情况,各不相同。
沉积岩主要分布在地壳表层部分,占陆壳面积75%; 而距地表越深,岩浆岩和变质岩就越多,在地壳的深部和上地慢,主要由岩浆岩和变质岩构成。
按体积计算,地壳中岩浆岩占64.7%,变质岩占27.4%,沉积岩占7.9%。
1、岩浆岩岩浆岩是岩浆在地下或喷出地表后冷凝形成的岩石。
大部分岩浆岩是结晶质,小部分是玻璃质。
岩浆岩的形成温度较高,一般介于700-1500℃之间。
岩浆岩主要由硅酸盐矿物组成,在地壳中具有一定的产状、形态。
根据岩石的矿物成分和化学成份,岩浆岩分为喷出岩和侵入岩。
岩浆岩的种类很多,组成岩浆岩的矿物种类也各不相同。
但最主要的矿物有:石英、长石、云母、角闪石、辉石、橄榄石等。
石英、长石中含sio2,al2o3高,颜色浅,称浅色矿物;角闪石、辉石、橄榄石中feo, mgo含量高,硅铝含量少,颜色较深,称为暗色矿物按成分对岩浆岩进行分类sio2 % ---------45-----------52-----------65---------- 超基性岩基性岩中性岩酸性岩颜色(色率)--深---(70)---深中--(40)-- 浅中---(15)---浅--- 主要橄榄石斜长石斜长石石英,斜长石矿物辉石辉石角闪石正长石,云母喷出岩玄武岩安山岩流纹岩深成岩橄榄岩辉长岩闪长岩花岗岩岩浆岩的化学成分分类1、超基性岩类超基性岩类在地表分布很少,仅占岩浆岩总面积的0.4%。
超基性岩体的规模也不大,常形成外观象透镜状、扁豆状的岩体,它们好像一串大小不同的珠子一样沿着一定方向延伸,断断续续排列,有时可以追索上千公里。
层序地层学地理学学科
《层序地层学》是一门涉及地质结构、矿物学、地层结构的地的理学科。
随着地质年代学的发展,在19世纪,层序地层学开始成为独特的学科,成为地球科学中的一个重要分支。
层序地层学也称作“层序地层结构学”。
层序地层学主要研究地壳的历史演变,如形成地层的物质来源,探究岩石构成的演变过程、层序的历史发展以及其所表示的地质年代的研究。
为了更好地识别和分析地层,研究者需要运用各种实验和分析技术,如岩石薄片、地壳测绘、地球物理、地球化学等,来分析和揭示岩石的层序特征。
层序地层学在识别油气藏和矿产资源中有着重要的作用。
准确识别目标油气藏或矿产资源所在的层序,是油气勘探与矿产勘探中的基础性工作。
层序地层学研究成果,可以帮助油气勘探者更有效的探测油气藏和矿产资源,从而更快的获得收益和利润。
层序地层学是一门复杂的学科,它综合了地质学、地球物理、地球化学等多学科的知识,涉及面广泛,内容繁杂,也是地质工程学科中的重要组成部分。
通过系统交叉学科研究、层序地层学研究,研究者可以获得更深入的了解地壳的历史演化及其表示的地质信息。
层序地层学也可以用于地质教育和地质科普,帮助地质教师和科普人员熟悉地质历史的演化过程及其表象,因此可以发挥重要作用。
在地质教学中,层序地层学可以普及科学知识,可以帮助学生更好地理解地质学中自然现象,从而更好地了解地质历史及其表示的地质信
息。
因此,层序地层学在地质科学研究中具有十分重要的意义。
通过系统的层序地层学研究,可以更好地了解地质历史的演化,发挥其在油气勘探和矿产勘探中的作用,也可以帮助更好地普及科学知识,推动地质科学进步。
层序地层学简析万建华【摘要】层序地层学是我国众多科学家探寻的一门科学,其多样化的层序模式表明了科学家的劳动成果,复杂的底层记录暗示着其响应机制研究的不断深入.在寻求强针对性层序底层模式的时代,其研究也影响了相关概念体系的一致和协调发展,因而寻求相关概念体系一致的层序地层学标准化成为重要课题,也是层序地层学研究的重要命题.在层序地层学研究过程中,对海退的两种类型的区分和识别成为其发展的重要基础,这个过程与层序地层模式不同,因而成为其走向标准化的关键一步.对层序地层学基本概念及发展历程进行介绍,阐述了层序地层学的标准化发展和相关应用.【期刊名称】《黑龙江科学》【年(卷),期】2018(009)002【总页数】2页(P160-161)【关键词】层序地层学;简析;发展历程;应用【作者】万建华【作者单位】黑龙江省煤田地质物测队,哈尔滨150036【正文语种】中文【中图分类】P539.2自20世纪70年代,相关地层学专著的发表标志着层序地层学概念的提出,随着时代的不断发展,该学科也逐步完善,走向系统化发展。
层序地层学发展的历程十分艰辛,从不被接受到众多科学家认同,是从无到有的过程。
近年来,层序边界等新兴的层序地层学理念的提出,促进了层序地层学的进一步发展,是科学家不辞辛苦地对全球复杂地层进行调查和记录而取得的重大突破,表明了层序地层学在当代社会的最新进展,同时探究层序地层学的标准化也成为研究层序地层学的最新命题,是众多科学家不断努力的方向和前进动力。
1 层序地层学简介及发展历程1.1 层序地层学简介普遍认为层序地层学是从20世纪70年代的地震学中发展起来的,不过研究人员对于地震地层学的研究要远远晚于对层序地层学的研究。
在18世纪前后,国外学者就提出了沉积搬运和侵蚀作用等随时间变动而发生周期性变化,也就是当今著名的地质旋回理论的根本。
地层在最初被提出来时是在1949年,指地表上面不完整的单元,伴随近年来的深入研究,其他研究人员也提出了更为先进的层序概念,指能被人们进行预测和具有内在联系的垂向沉积序列,能够表明沉积相的变迁过程。
普通地质读书报告范文
地质学是研究地球的物质组成、内部结构、地壳运动和地球历史演变等方面的学科。
我选择了读《地质学导论》一书,目的是增进对地质学基础知识的理解和对地球的认识。
在书中,作者首先介绍了地质学的起源和发展历史,从古代的观察和记录开始,到现代地质学的科学研究方法和技术,呈现了地质学作为一门学科的进化过程。
这一部分让我了解到地质学的学科定位和研究方法的多样性。
随后,作者对地球的各个层面进行了详细的描述。
从地球内部的构造、岩石和矿物的组成,到地质过程中的板块运动、火山活动和地震,揭示了地球内部运动和外部现象之间的相互关系。
通过学习这些内容,我对地球内部结构的复杂性有了更深刻的认识,并了解到地球表面和地震等自然现象是地球内部运动的结果。
此外,作者还对地球的历史演变进行了探讨。
通过对化石的研究和地质层序的分析,可以了解到地球的演化历程以及生物的进化过程。
我通过这些内容的学习,更深入地了解到地质学如何通过研究岩石、化石和地层来推测地球历史。
在阅读过程中,我发现书中还包含了一些地质学的应用。
例如,通过对地质条件的研究,可以确定地质地质背景、地下水资源和矿产资源等。
这些应用让我对地质学在实际生活中的重要性有了更深刻的认识。
总的来说,通过阅读《地质学导论》一书,我对地质学的基本概念和研究方法有了更全面的了解。
这本书不仅提供了地质学的基础知识,还深入探讨了地球的内部结构、地质过程和历史演变。
通过学习这些内容,我对地球的认识得到了拓展,并对地质学在实际应用中的意义有了更深入的了解。
我相信这些知识对我的学术和职业发展都将会有所帮助。
层序地层学基本概念 一、 层序、体系域、准层序概念之异同与比较 (一) 层序 1、层序地层学 是根据露头、钻井、测井和地震资料,结合有关沉积环境和岩相古地理解释,对地层层序格架进行地质综和解释的地层学分支。 2、层序的概念 层序是一套相对整一的、成因上存在联系的、顶底以不整合面或与之相对的整合面为界的底层单元,一个沉积层序可以包含若干个不同类型的沉积体系域以及准层序组和准层序。 3、层序的分级 在大多数的情况下,一个沉积层序是在一个海平面变化周期内形成的,不同级别的海平面相对变化周期相对应于相应级别的沉积层序。(一般分为5个级别):一级层序的体系域是由一个或多个二级周期所形成的二级层序所组成;二级层序的体系域是由一个或多个三级周期所形成的三级层序所组成;三级层序是由一系列准层序组组成的体系域所组成;一个四级层序往往是由一个或几个准层序所组成(可包含完整或不完整的体系域);五级层序往往仅包含一个或几个准层序(往往仅出现某个体系域的局部)。 4、每个层序中的某个体系域可以包含一个或几个准层序组,一个准层序组包括一个或几个准层序。 5、不同级别的海平面相对变化周期中所包含的初始海泛面、最大海泛面等也是有级次的。 因此综合上述几个基本概念得出:任何一个级别的层序在理论上都进行体系域划分,通常情况下在三级层序下面划分,对于陆相湖盆来说一般划分为低位体系域,湖进(侵)体系域,高位体系域。与海相盆地相对应的是初次湖泛面和最大湖泛面。 层序和体系域其实是同一套地层不同的划分方式,就是一个矩阵的不同表达方式(行和列)的区别。这样一想,就应该清楚,不同层序级别都可划分体系域。 根据威尔逊旋回,任何一级的层序都会出现水进水退的过程,也就是说都应该有低位/水进/高位体系域(或只发育其中的一个/两个).但是体系域的概念的提出最初又是在三级层序中出现的.也就是说习惯上,只有在三级层序,才使用体系域.
(二) 体系域 1、体系域定义 由小层序和组成层序的次级单元的一个或多个小层序组形成的同期沉积体系的联合体称为沉积体系域。体系域的解释是建立在小层序堆叠型式、与层序的位置关系和层序边界类型的基础上。 2.低水位体系域[LST] 低水位体系域是在海平面缓慢下降,然后又开始缓慢上升阶段的沉积。在不同的盆地边缘发育不同的低水位体系域。在有不连续的陆架边缘的盆地中,低水位体系域由不同时的上下两部分组成:下部为低水位扇或盆底扇;上部为低水位楔。
2.1盆底扇 是在低的斜坡和盆底沉积的以海底扇为特征的低水位体系域的一部分。扇的形成与峡谷侵蚀到斜坡和河谷下切至大陆架有关。硅质碎屑沉积物通过河谷和峡谷穿过斜坡和大陆架形成盆底扇。尽管盆底扇的出现远离峡谷口,或者峡谷口不明显,但是盆底扇可能形成于峡谷口。盆底扇的底面(与低水位体系域的底面一致)是Ⅰ型层序界面,扇顶则是下超面。 2.2斜坡扇 由浊积有堤水道和越岸沉积物组成的扇状体,盖在盆底扇上且被上覆的低水位楔下超。 2.3低水位楔 由一个或多个进积小层序组组成的沉积楔。向海方向被陆架坡折限制,上超在先前形成的层序斜坡上。因此,低水位体系域的准层序组有加积(盆底扇和斜坡扇)、进积等型式(低水位楔)。 3.陆架边缘体系域是Ⅱ型层序的最下部的体系域,即2类层序界面之上的第一个体系域,它由一个或多个微显进积至加积的小层序或小层序组组成。在沉积滨岸线坡折的向海一侧,该体系域下超在Ⅱ类层序界面之上。特点:陆架边缘体系域沉积期间,随着海退的不断进展,陆架虽有暴露,但其大部分可暂时被半咸水淹没,因此陆架边缘体系域顶部附近可有广泛的煤系分布。一般地,陆架(棚)边缘体系域内部沉积相的叠置特征是自下而上海相沉积逐渐增多,与上覆的海进体系域的分界面为海进面。
4.海进(海侵)体系域 [TST] 海进体系域是1类和2类层序的中部体系域,其下界面为海进面,下伏体系域为LST或 SMST。海进体系域是海平面上升期间的沉积,因此它由一个至多个退积小层序组成。不同类型的层序中海进体系域发育程度不尽相同,比较而言2类层序中的 TST更为发育。 特点:(1)在发育 l类层序界面的情况下,海进早期阶段的沉积局限于深切谷内,而且, LST沉积之后海平面仍在陆架之下,广大的陆架地区没有海进沉积。只有在海平面开始迅速上升之后,陆架才逐渐覆水并最终被淹没,沉积中心也逐渐向陆迁移,此时才有较为广泛的海进沉积。(2)在发育2类层序界面的情况下,由于没有深切谷,而且陆架也未全部露出水面,因而海进一开始便有沉积的广阔空间,所以2类层序中的海进体系域更为发育和广泛。 5.高水位体系域 [HST] 高水位体系域是层序最上部的体系域,是海平面高位期的沉积。在海进体系域形成之后,海平面上升已非常缓慢,在其上升到最高水位这段时期内沉积的 HST,以加积小层序为特色,为早期 HST;此后,海平面开始缓慢下降,此阶段形成的 HST则以进积小层序为主,为晚期 HST。 HST内的小层序在向陆方向可上超在层序界面上,在向盆地方向则下超在海进体系域或低位体系域之上。 (三) 准层序 1、准层序 准层序是一个以海泛面或与之对应的面为界、成因上有联系的层或层组构成的相对整合序列,是测井层序地层分析的最小基本单元;厚度为几米到几十米。有成因关联的一套准层序构成准层序组,根据准层序的叠置样式,准层序组可划分为进积、加积、退积三种类型。碳酸盐岩中的沉积层序由典型的浅水台地沉积物和较深水沉积物组成,为不整合围限的地层序列。单个层序一般由三个相关的相组成,称为“体系域”。这是海面上升、静止并最终下降的单一旋回的沉积。体系域是碳酸盐岩台地的基本构造组成。一个层序内的地层向上的顺序依次被称为低位、海侵和高位体系域。低位体系域或者由外来沉积物组成,也就是陆源碎屑物重新沉积到盆地中,或者(和)由原地的物质建造组成,一般为近海、浅海相覆盖的潮汐相。上覆的高位体系域的沉积物一般是单个层序的最厚部分,通常由从加积至进积的台地相和边缘台地的向海沉积的深水相组成。台地内部的高位体系域的沉积物由叠加的准层序构成。这种准层序是被不整合覆盖的向上变浅的沉积相,它反映了台地范围的短期地表裸露。 准层序的边界:是一个海泛面及与之相关的界面。大多数准层序边界海泛面均存在着深水沉积与浅水沉积的一个截然界面。 准层序沉积特征:是一个向上沉积水体不断变浅的序列,层厚向上增大,生物扰动向上减少,沉积相向上指示水深变浅,三维空间上表现简单的冲刷和变粗的趋势。 准层序形成环境:一个完整准层序的形成是与海平面相对升降变化密切相关的。在准层序形成的第一阶段,沉积物的沉积速率大与海平面相对上升速率或海平面处于相对下降阶段。此时沉积物不断向前推进,较浅水沉积相上覆在相对较深水沉积上,形成自下而上沉积水体由深变浅的准层序沉积序列。第二阶段是海平面上升速率明显大于沉积物供给速率形成海泛面的时期。此时在第一阶段形成的沉积物纸上产生了硅质碎屑沉积物的无沉积作用面,并可在该面上沉积薄层炭酸岩盐、海吕石、富含有机质的泥灰岩或火山灰,也可以在早期沉积物顶面形成不同类型的海泛滞留沉积。第三阶段是形成新的准层序沉积阶段。此时的海泛面发生较明显的相对下降,沉积物供给速率大于可容空间增长速率,沉积物不断向前进积,形成新的准层序。新的准层序叠覆在前期准层序顶界海泛面之上,穿过该海泛面存在明显的水深增加的证据。 准层序的边界形成机理:当水深速率明显大于沉积物沉积速率时便形成了边界。 2、准层序组 是指由成因相关的一套准层序构成的、具特征堆砌样式的一种地层序列,其边界为一个重要的海泛面和与之可对比的面,有时它可以和层序边界一致。 准层序组对比的重要意义:准层序和准层序组的边界均是不同级别或不同规模的海泛面,因此,据海泛面确立的准层序和准层序组地层对比格架具有地层年代意义。层序地层对比所建立的年代地层框架有利于高效地进行油气资源勘探开发,使石油勘探开发科技人员值得重视和采用的一种地层对比方法。 盆地类型:被动型边缘盆地,运动型边缘盆地。 层序边界的类型:Ⅰ型,层序界线是在全球海平面下降速率大于盆地下降速率时产生的,即此时发生了较大规模的相对海平面下降。Ⅱ型层序界线是在全球海平面下降速率几乎或小于沉积滨坡折处沉降速度时形成的。不同类型层序界线的形成是全球海平面升降变化于盆地沉降速率之间相互作用的结果。这种差异性相互作用就形成了不同层序界限内的不同沉积沉积组合方式。 Ⅰ型层序边界的识别标志:1、广泛出露地表的陆上侵蚀不整合面。2、层序界面上下地层颜色、岩性以及沉积相的垂向不连续或错位。3、伴随海平面相对下降,有河流回春作用形成的深切谷实层序边界的典型标志。4、相对海平面明显下降造成层序界面处的古生物化石断代或绝灭。5、在岩性和地层产状突变的层序界面处,测井曲线具有良好的层序界面反映。6、层序界面上下体系域或准层序类型的突变。7、伴随着沉积相向盆地方向的迁移,可在敌剖面上识别出一个层序的顶部海岸上超的乡下迁移现象和一个层序下部层序界面之上的海岸上超的向陆迁移现象,他们与地震剖面上的地震反射终止关系(消蚀、顶超、上超、下超)共同构成了层序边界的识别标志。其中消蚀、顶超、上超是在地震剖面上不整合面的识别标志。 层序边界识别标志:1、在地震剖面上不整合面的识别标志:消蚀、顶超、上超 2、生物特征识别标志:生物碎屑层,植物根迹化石,遗迹化石,生物数量、种属的变化。 3、沉积学标志:相突变,古土壤层,微观成岩标志。4、测井曲线特征。5、综合分析。 深切谷:时下切的河流体系,其通过下切作用使河道向盆地延伸并且如下伏地层,以海平面的相对下降相对应,在陆棚上,深切谷以层序边界为下界,以首次主要海泛面为上部边界。 具陆棚坡折边缘的Ⅰ型层序地层样式:(1)低位体系域是在相对海平面下降以及其后的缓慢上升时期形成的,其底为Ⅰ型不整合界面及其对应的整合面,其顶为首次越过陆棚坡折带的初始海泛面。(2)海侵体系域是具有陆棚坡折边缘的Ⅰ型层序中部的一个体系域。它在海平面快速上升期间,克容空间增长速率大于沉积物供给速率的情况下形成的。其底界为首次海泛面,顶界为最大海泛面。(3)高位体系域是在海平面相对上升速率不断降低时形成的,或者说是在克容空间增长速率小于沉积物供给速率时形成的。它广泛分布于陆棚之上,其下部以加积式准层序叠置样式向陆上超于层序边界之上,向海方向下超于海侵体系域顶面之上。 具陆棚坡折的盆地的Ⅱ型层序地层样式:(1)陆棚边缘系域是Ⅱ型层序最下