有限元分析
- 格式:pptx
- 大小:320.94 KB
- 文档页数:52
有限元分析毕业设计有限元分析毕业设计毕业设计是大学生在学业结束前的一项重要任务,也是对所学知识的综合应用和实践能力的考验。
在工程类专业中,有限元分析是一种常见的工程设计方法,被广泛应用于各个领域,如机械、土木、航空等。
本文将探讨有限元分析在毕业设计中的应用。
一、有限元分析的基本原理有限元分析是一种基于数值计算的工程设计方法,通过将复杂的结构划分为有限个简单的单元,利用数学方法求解各个单元的力学行为,最终得到整个结构的力学性能。
有限元分析的基本原理是将结构分割为有限个单元,每个单元都有一组未知的位移和应力,通过建立单元之间的关系,利用数值方法求解出这些未知量。
二、有限元分析在毕业设计中的应用1. 结构强度分析在毕业设计中,结构强度分析是一个重要的环节。
通过有限元分析,可以模拟结构在不同载荷下的受力情况,评估结构的强度和稳定性。
例如,在机械工程的毕业设计中,可以利用有限元分析来评估零件的强度,确定合适的材料和尺寸,从而提高产品的可靠性和安全性。
2. 热传导分析热传导分析是另一个常见的应用领域。
在毕业设计中,有时需要对材料或结构在不同温度下的热传导性能进行分析。
有限元分析可以模拟材料的热传导行为,预测温度分布和热流量。
例如,在建筑工程的毕业设计中,可以利用有限元分析来评估建筑物的保温性能,优化建筑材料的选择和结构设计。
3. 流体力学分析流体力学分析是有限元分析的另一个重要应用领域。
在毕业设计中,有时需要对流体在管道、泵站、水利工程等系统中的流动行为进行分析。
有限元分析可以模拟流体的流动特性,预测流速、压力分布和流量。
例如,在水利工程的毕业设计中,可以利用有限元分析来评估水流在河道中的流动情况,优化河道的设计和水利工程的规划。
三、有限元分析的优势和局限性有限元分析作为一种数值计算方法,具有一些明显的优势。
首先,它可以模拟复杂的结构和物理现象,提供准确的数值结果。
其次,有限元分析具有灵活性,可以根据不同的需求进行模型的建立和分析。
有限元分析方法有限元分析(Finite Element Analysis, FEA)是一种数值分析方法,用于解决物理问题的近似解。
它基于将有限元区域(即解释对象)分解成许多简单的几何形状(有限元)并对其进行数值计算的原理。
本文将深入探讨有限元分析的原理、应用和优点。
有限元分析的原理基于弹性力学理论和数值计算方法。
它通过将解释对象分解为有限个简单的几何区域(有限元)和节点,通过节点之间的连接来建立模型。
这些节点周围的解释对象区域称为“单元”,并且通过使用单元的形状函数近似解释对象的形状。
每个单元都有一个与之相连的节点,通过对每个单元的受力进行计算,可以得到整个解释对象的受力分布。
然后,利用一系列运算和迭代,可以计算出解释对象的位移、应力和变形等相关参数。
有限元分析的应用范围广泛,从结构力学、热传导、电磁场分析到流体力学等各个领域。
在结构力学中,它被用于分析各种结构的静力学、动力学和疲劳等性能。
在热传导领域,它可以用于研究物体内部的温度分布和传热性能。
在电磁场分析中,它可用于计算复杂电磁场下的电场、磁场和电磁场耦合问题。
在流体力学中,有限元方法可以解决各种流体流动、热传递和质量转移问题。
有限元分析的优点之一是可以处理各种复杂边界条件和非线性材料特性。
它可以考虑到不同材料的非线性本质,例如弹塑性和接触等问题。
另外,有限元方法还可以适应任意形状和尺寸的几何模型,因此非常适用于复杂工程问题的建模与分析。
有限元分析的使用需要一定的专业知识和经验。
首先,需要将解释对象抽象成几何模型,并进行细分和离散化。
其次,需要选择适当的几何元素和材料模型,以及合适的边界条件和加载方式。
然后,需要定义求解器和数值方法,并使用计算机程序对模型进行计算。
最后,需要对结果进行后处理和验证,以确保其准确性和可靠性。
总的来说,有限元分析是一种强大的工程分析工具,在解决各种物理问题方面有广泛的应用。
它通过将复杂的问题简化为简单的有限元模型,通过数值计算的方法获得近似解。
有限元分析原理
有限元分析是一种数值计算方法,用于解决连续介质力学问题。
该方法将连续物体离散化成有限数量的单元,利用节点间的相互作用关系来近似描述整个物体的行为。
有限元分析可应用于结构力学、流体力学、电磁场和热传导等问题。
在有限元分析中,物体被划分为有限数量的单元,每个单元内部假设为连续的。
单元中的节点与相邻单元的节点通过节点之间的关系函数相连。
通过构建单元和节点之间的连接关系,可以建立一个离散的方程系统,描述物体的行为。
这些方程可通过斯坦贝克方程、热传导方程、流体动力学方程等来表示。
有限元分析首先进行离散化,选择适量化的单元和节点,并确定单元之间的相互关系。
然后,根据物理方程和边界条件,建立起离散的方程系统。
接下来,使用数值方法解决这个离散化的方程系统,以获得物体在各个节点上的位移、应力、温度、流速等信息。
最后,通过合理的后处理手段,对分析结果进行可视化和解释。
有限元分析最重要的一点是满足位移连续性和力的平衡条件。
这意味着在节点之间的位移应该连续,并且在单元之间力的平衡条件也应该满足。
通过选择适当的单元类型和节点连接方式,可以满足这些要求。
总之,有限元分析通过建立离散的单元和节点之间的相互关系,并运用数值方法求解离散化的方程系统,从而近似描述连续介
质物体的力学行为。
这是一种广泛应用于工程学和科学研究领域的方法,能够提供有效的数值解决方案。
有限元分析过程有限元分析过程可以分为以下三个阶段:1.建模阶段:建模阶段是根据结构的实际形状和实际工况,建立有限元分析的计算模型——有限元模型,为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是离散结构。
然而,我们仍然需要处理许多相关的工作:如结构形式处理、集合模型建立、元素特征定义、元素质量检查、编号顺序、模型边界条件定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。
3.后处理阶段:它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
注:在上述三个阶段中,有限元模型的建立是整个有限元分析过程的关键。
首先,有限元模型为计算提供了所有原始数据,这些输入数据的误差将直接决定计算结果的准确性;其次,有限元模型的形式对计算过程有很大影响。
合理的模型不仅可以保证计算结构的准确性,而且可以避免计算量过大和对计算机存储容量要求过高;第三,由于结构形状和工作条件的复杂性,不容易建立实用的有限元模型。
需要综合考虑多种因素,对分析人员提出了更高的要求;最后,建模时间在整个分析过程中占相当大的比例,约占整个分析时间的70%。
因此,缩短整个分析周期的关键是注重模型的建立,提高建模速度。
原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据:包括每个节点的编号、坐标值等;2.单元数据:A.组成单元的单元号和节点号;b、单位材料特性,如弹性模量、泊松比、密度等;c、单元的物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d、一维单元的截面特征值,如截面面积、惯性矩等;e、相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。
有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。
本文将以一个实例来介绍有限元分析的基本过程和步骤。
实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。
假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。
我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。
有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。
常用的网格划分方法有三角形划分、四边形单元划分等。
根据具体问题的要求和复杂度,选择合适的划分方法。
单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。
在弯曲问题中,常见的单元模型有梁单元、壳单元等。
在本实例中,我们选择梁单元作为杆件的单元模型。
对于梁单元,我们需要定义每个节点的位移和约束条件。
根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。
材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。
对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。
加载条件可以包括集中力、均布力、弯矩等。
在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。
单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。
常见的方程模型有刚度矩阵方法、位移法等。
根据所选的单元模型,选择合适的方程模型进行计算。
通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。
将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。
结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。
通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。
有限元的原理有限元分析是一种工程数值分析方法,它利用数学原理和计算机技术,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是将复杂的结构分割成许多小的单元,通过对每个单元的力学行为进行精确描述,最终得到整个结构的力学响应。
本文将从有限元分析的基本原理、步骤和应用进行介绍。
有限元分析的基本原理是离散化方法,它将一个连续的结构分解成有限个单元,每个单元都是一个简单的几何形状,如三角形、四边形等。
然后对每个单元进行力学建模,建立单元的位移场和应力场的数学模型。
通过组合所有单元的数学模型,得到整个结构的位移场和应力场的近似解。
有限元分析的基本原理是基于弹性力学理论,它假设结构在受力作用下是弹性变形,即满足胡克定律。
有限元分析的数学模型通常是一个大型的代数方程组,通过求解这个方程组,得到结构的位移场和应力场。
有限元分析的步骤包括建立有限元模型、施加边界条件、求解代数方程组和后处理结果。
首先,需要对结构进行几何建模,将结构分解成有限个单元,并确定每个单元的材料性质和几何尺寸。
然后,需要施加边界条件,即给定结构的约束条件和外载荷。
接下来,需要将结构的力学行为建立成代数方程组,通常采用有限元法中的单元法则和变分原理。
最后,通过求解代数方程组,得到结构的位移场和应力场,并进行后处理,如应力分布、位移云图等。
有限元分析在工程领域有着广泛的应用,如结构分析、热传导分析、流体力学分析等。
在结构分析中,有限元分析可以用于预测结构的强度、刚度和稳定性,为结构设计提供理论依据。
在热传导分析中,有限元分析可以用于预测结构的温度分布和热传导性能,为热工设计提供支持。
在流体力学分析中,有限元分析可以用于模拟流体在结构内部的流动行为,为流体工程设计提供参考。
总之,有限元分析是一种强大的工程数值分析方法,它通过离散化方法和数学建模,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是基于弹性力学理论,通过求解代数方程组,得到结构的位移场和应力场。
结构有限元分析
结构有限元分析(Finite Element Analysis, FEA)是一种工程分析方法,用于分析和解决力学结构问题。
它将结构划分为离散的有限元,通过有限元之间的相互作用,建立代表结构行为的数学模型,并通过数值方法求解得到结构的应力、应变、位移等信息。
结构有限元分析的基本步骤包括:
1. 几何建模:将结构几何特征转化为计算机可识别的几何模型,通常采用CAD软件或者网格划分软件进行建模。
2. 网格划分:将结构划分为离散的有限元,通常根据结构的几何形状和材料特性进行网格划分。
3. 材料建模:定义结构材料的力学性质,如弹性模量、材料的屈服强度、断裂韧度等。
4. 边界条件:定义结构的边界条件,如受力情况、支撑情况等。
5. 单元分析:对网格划分后的每个有限元进行力学分析,计算每个有限元的应力、应变等信息。
6. 装配和求解:将各个有限元的信息装配成线性方程组,然后通过数值方法求解得到结构的位移、应力场等信息。
7. 后处理:分析和解释分析结果,如绘制应力云图、位移云图等。
结构有限元分析广泛应用于工程领域,包括建筑结构、航空航天、汽车工程、机械工程等。
它可以帮助工程师预测结构的性能和行为,优化结构设计,提高结构的安全性和可靠性。
目录第一章模型概述 (1)1.1 模型简介 (1)1.2 材料特性 (1)1.3 受力分析 (2)第二章有限元分析 (3)2.1 使用软件 (3)2.2 基础操作准备 (3)2.3 静力学分析 (4)2.3.1 约束和受力 (4)2.3.2 结果分析 (5)2.4 模态分析 (7)第三章装配视图展示 (11)总结 (13)第一章模型概述1.1 模型简介本模型是完成锥齿轮减速机合箱加工工序——镗输出轴轴承孔工序的夹具模型。
该夹具是结合锥齿轮减速机加工工序进行设计完成的。
采用的是杠杆滑块夹具,原理图如图1.1所示,基本尺寸如图1.2所示。
图1.1 杠杆滑块夹具图1.2 夹具尺寸1.2 材料特性夹具采用材料为45号钢,材料特性如表1所示。
表1 材料特性1.3 受力分析当加工夹紧时,气缸的输出压力最大,因此对夹紧状态进行受力分析,因此在夹紧时计算的气缸输出力应满足夹紧条件。
该机构夹紧时的受力分析图如图1.3所示:图1.3 受力分析图由转矩平衡方程:,将带入算得:气缸的最大动力为:。
经过计算,F处的压强为1.05 MPa,W k 处的压强为2.7 MPa。
装配简图如图1.4所示。
图1.4 装配简图第二章有限元分析2.1 使用软件本次课程使用软件是ANSYS WORKBENCH,ANSYS WORKBENCH是美国ANSYS公司开发的一款融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
ANSYS WORKBENCH和ANSYS MECHANICAL(常称之为ANSYS,或经典界面)都能满足基本有限元分析需求,前者是一个综合设计平台,封装了很多过程和软件,更易上手,后者更注重原理和求解器等等的选择,对结构、力学、有限元等理论知识要求更高。
结合模型难易程度,选择使用ANSYS WORKBENCH有限元分析软件对夹紧状态下的夹具进行了静力学分析和模态分析。
2.2 基础操作准备首先将solidworks所建夹具三维模型导出为x_t格式备用。
有限元分析原理与步骤
有限元分析是一种数值计算方法,用于解决工程结构的力学问题。
它将任意复杂的结构分割成为若干个简单的子结构,通过数学模型和计算机软件进行力学分析。
有限元分析的步骤如下:
1. 建立几何模型:根据实际结构的几何形状,使用CAD软件
或者手工绘图等方式建立三维或二维模型。
2. 网格划分:将结构模型划分成若干个小单元,如三角形、四边形或六边形等,这些小单元构成了有限元网格。
3. 选择适当的元素类型:根据结构的特性选择合适的元素类型,如杆件元、梁单元、板单元等。
4. 建立整体刚度矩阵:根据每个小单元的几何形状和材料性质,计算每个小单元的刚度矩阵,将其组装成整个结构的刚度矩阵。
5. 施加边界条件:确定结构的边界条件,如固定支座、约束等。
6. 施加荷载:施加力、压力、温度等荷载条件。
7. 求解方程:通过求解结构的刚度方程,得到结构的位移、应力、应变等结果。
8. 后处理结果:根据求解得到的结果,进行结果的可视化及分
析。
通过以上步骤,有限元分析可以提供结构的力学性能分析,如应力、应变、变形等,为工程设计和优化提供参考依据。
有限元分析的基本原理有限元分析可以简单地被定义为利用有限元函数对复杂的工作进行分析的一种方法。
它是一种建模方法,可以用于分析和计算复杂的物理系统,比如结构、机械、流体和声学。
有限元分析之所以受到青睐,是因为它具有许多优点,主要使用计算机仿真软件,减少了计算时间和金钱开支,能够模拟复杂庞大的结构行为,其结果也是相当准确可靠的。
有限元分析的基本原理是求解复杂系统的基本方法,可以分析任意形状的物体,例如结构的弯曲,几何参数的变化,材料的物理性质,应力、应变和应变能等。
它也可以用于模拟复杂的流体流动,声学及复杂系统的动力学运动。
有限元分析的基本思想有两个方面:划分和表示。
首先,划分是指将结构(比如,受力或者被测量的物体)按照一定尺度进行划分,这些尺度被称为有限元,它们可以是球形,不规则多面体,或者任意形状的小单元。
其次,表示是指通过引入一系列的有限元函数来描述物体的力学行为,它们包括位移、应变、应力以及弹性能量等。
此外,执行有限元分析的步骤也非常重要。
首先,应先确定结构和物体的几何形状,然后确定材料的物理性质,如弹性模量、断裂力学模型等。
接着,应该给出材料的边界条件,包括温度场、加载或者支撑等,确定模型的基本形状。
最后,可以确定该系统的外力场,并通过计算机仿真软件来解决有限元方程,从而获得复杂结构的应力、应变和位移等参数。
有限元分析一直被广泛应用在工程、物理和力学领域,因为它能够模拟复杂的结构行为,结果也是相当精确可靠的。
它有助于更好地揭示物体的力学性质,而且还能够分析复杂的流体流动、声学及动力学运动的物理行为。
此外,有限元分析开支也更少,时间也更短,所以它一直被广泛地用于工程设计。
综上所述,有限元分析是一种有效的求解复杂系统方法,使用计算机仿真软件,可以分析任意形状的物体,结果也是相当准确可靠的。
它一直被广泛用于工程、物理和力学领域,但仍然存在许多改进和发展的空间。
有限元分析的基本原理有限元分析(FiniteElementAnalysis,简称FEA)是一种基于数值分析的工程分析技术,是利用数学和计算机技术有效地解决各种工程问题的有效方法。
这种方法可以有效地估计结构的性能和可靠性、确定生产工艺中因果因素的存在及发挥、优化设计方案等。
因此,有限元分析在结构分析、装备设计和工艺优化等领域越来越受到重视。
有限元分析的基本原理是建立数学模型,将物体的形状细分为若干有限几何元(即称为有限元),再分析各有限元中的问题。
这样做是因为任何实际物体都不能用完美的几何形状来表示,而实际物体只有当它们由有限数量的有限元组成时,才能建立数学模型。
这样,连续体可以被视为由有限数量的有限元组成的接近它们的几何形状,而在实际中,这些有限元的几何形状可以是正方体、圆柱体或更复杂的几何形状。
有限元分析的基本步骤是:首先,建立物体的数学模型,该模型是一个定义连续体的几何形状和物理特性的多维函数;其次,将形状分解为有限的几何单元,每个几何单元独立地拥有自己的特征;第三,在各有限元上,建立恰当的有限元函数,并且求解整个模型所对应的所有方程;最后,根据有限元分析的结果,得到物体的性能及物理特性。
有限元分析有两个主要应用:结构分析和流体分析。
结构分析是指由于载荷(外力)或外界环境变化,而引起物体形变、应力以及破坏等现象的分析。
流体分析是指分析流体的动态特性,如流体的压力、速度和温度分布情况。
流体可以是有限的液体或气体体系,也可以是无限的气体或水,取决于流体的密度和粘度。
有限元分析是一种数值技术,它有助于我们更好地理解工程问题,更好地评估设备性能,并最终提高设备的可靠性和有效性。
它被广泛应用于航空航天、船舶制造、汽车工业等多个领域。
有限元分析的基本原理是通过将实际物体的几何形状分解成有限的几何单元,并建立恰当的有限元函数,以求解有限元问题。
通过深入理解有限元分析的基本原理,可以更好地实现结构设计、装备优化和新型技术研究等工作。
有限元分析6、离散的目的是什么?(6 分)答案要点:将无穷自由度问题转换成有限个自由度问题,从而将连续的微分方程转换为有限个代数方程求解。
7、总刚矩阵是一个奇异阵,其物理意义是什么?(6 分)答案要点:结构在无约束或约束不足时,结构可以可以发生刚体运动,从而在结构的位移中包含刚体位移,而不是变形位移。
8、建立有限元模型应遵循哪两个基本原则?(6 分)答案要点:(1)保证计算结果的精度;(2)控制模型的规模。
每答对1 个得3 分。
9、结构有限元静力分析主要计算什么内容?(6 分)答案要点:(1)结构变形;(2)结构应变;(3)结构应力。
每答对1 个得2 分。
(5)变差缩减性;(6)仿射不变性。
备注:每种性质须给出简要的说明,每个性质各 1 分。
1、比较体素构造法和边界表示法的优缺点,并给出混合表示方法的特点。
(6 分)答案要点:(1)边界表示法边界表示法在图形处理上有明显的优点,因为这种方法与工程图的表示法相近,根据其数据可以迅速转化为线框模型和面模型。
尤其在曲面造型领域,便于计算机处理、交互设计与修改。
对于面的数学描述而言,用边界表示法可以表达平面和自由曲面(如Coons 曲面、NURBS 曲面)。
边界表示法的缺点是数据量庞大,对于简单形体如球体、柱体等的表示显得过于复杂。
(2 分)(2)体素构造法体素构造法在几何形状定义方面具有精确、严格的特点。
其基本定义单位是体和面,但不具备面、环、边、点的拓扑关系,因此其数据结构简单。
在特征造型方面,体素正是零件基本形状的具体表示,因此对于加工过程中的特征识别具有重要作用。
正是由于体素构造法未能建立完整的边界信息,因此难以向线框模型和工程图转化,并且在显示时必须进行形状显示域的大量计算。
同样,对于自由形状形体的描述也难以进行,对于模型的局部形状修改不能进行。
(2 分)(3)混合表示在实践中,体素构造法和边界表示法各有所长,因此目前的几何造型引擎几乎都采用体素构造和边界表示的混合方法来进行实体造型。