信号的复频域分析——拉普拉斯变换和拉普拉斯逆变换
- 格式:doc
- 大小:217.00 KB
- 文档页数:15
第十二章 拉普拉斯变换及逆变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。
我们经常应用拉普拉斯变换进行电路的复频域分析。
本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。
第一节 拉普拉斯变换在代数中,直接计算是很复杂的,而引用对数后,可先把上式变换为然后通过查常用对数表和反对数表,就可算得原来要求的数N 。
这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。
一、拉氏变换的基本概念定义12.1 设函数()f t 当0t ≥时有定义,若广义积分()pt f t e dt +∞-⎰在P 的某一区域内收敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即dte tf P F pt ⎰∞+-=)()( (12.1)称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。
函数()F P 称为()f t 的拉氏变换(Laplace) (或称为()f t 的象函数)。
函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数),记作)()]([1t f P F L =-,即)]([)(1P F L t f -=。
关于拉氏变换的定义,在这里做两点说明:(1)在定义中,只要求()f t 在0t ≥时有定义。
为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。
(2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。
为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。
(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。
一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。
例12.1 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。
常用拉普拉斯变换及反变换在数学和工程领域中,拉普拉斯变换是一种非常有用的工具,它能够将时域中的函数转换到复频域中,从而使许多问题的分析和求解变得更加简单。
接下来,让我们一起深入了解一下常用的拉普拉斯变换及反变换。
拉普拉斯变换的定义是对于一个实变量 t 的函数 f(t),其拉普拉斯变换 F(s) 定义为:\F(s) =\int_{0}^{\infty} f(t) e^{st} dt\其中,s 是一个复变量,通常表示为 s =σ +jω,σ 是实部,ω 是虚部,j 是虚数单位。
常用的函数拉普拉斯变换有很多,下面列举一些常见的例子。
单位阶跃函数 u(t),其定义为 t < 0 时,u(t) = 0;t ≥ 0 时,u(t) =1。
它的拉普拉斯变换为 1 / s 。
指数函数 e^at (a 为常数),其拉普拉斯变换为 1 /(s a) 。
正弦函数sin(ωt) 的拉普拉斯变换为ω /(s^2 +ω^2) 。
余弦函数cos(ωt) 的拉普拉斯变换为 s /(s^2 +ω^2) 。
单位脉冲函数δ(t),其拉普拉斯变换为 1 。
这些常见函数的拉普拉斯变换在解决各种问题时经常会用到。
那么,为什么要进行拉普拉斯变换呢?这是因为在时域中分析一些问题可能会比较复杂,而通过拉普拉斯变换将其转换到复频域后,可以利用复频域中的一些特性和方法来简化问题的处理。
例如,在求解线性常系数微分方程时,通过对方程两边进行拉普拉斯变换,可以将微分方程转化为代数方程,从而更容易求解。
接下来,我们再看看拉普拉斯反变换。
拉普拉斯反变换是将复频域中的函数 F(s) 转换回时域中的函数 f(t) 。
拉普拉斯反变换的计算方法通常有部分分式展开法和留数法等。
部分分式展开法是将 F(s) 分解为几个简单分式的和,然后根据已知的常见函数的拉普拉斯变换,直接写出对应的时域函数。
例如,如果 F(s) =(s + 1) /((s + 2)(s + 3) ),可以通过部分分式展开为 A /(s + 2) + B /(s + 3) 的形式,然后求出 A 和 B 的值,再根据常见函数的拉普拉斯变换反求出时域函数。
信号与系统天津大学电子信息工程学院第五章连续系统的复频域分析一、拉普拉斯变换(LT)(一)从傅里叶变换到拉普拉斯变换z1、从FT到双边LT信号f(t)的傅里叶变换(FT)为z许多函数不满足绝对可积条件,其F( jω)中一般都含有冲激函数。
用衰减因子e-σt乘以f(t),适当选择σ的值,使f(t)·e-σt绝对可积,从而可求得其FT:如果令s=σ+jω——称为f(t)的双边LT3z根据FT-1反变换式,可得:——F(s)的双边拉普拉斯反变换z F(s)称为f(t)的象函数,f(t)称为F(s)的原函数。
z记作:F(s)=_{f(t) },f(t)=_-1{F(s) },或者简52、收敛域(ROC)使双边LT 的象函数F b (s )存在的s 平面的区域称为双边LT 的收敛域z (1)因果信号z (2)反因果信号z(3)双边函数73、单边拉普拉斯变换单边拉普拉斯变换单边拉氏逆变换4、单边LT的收敛域——F(s)存在的充分条件对于双边LT,必须认真研究收敛域问题,须由F(s)和收敛域共同确定原函数f(t)9LT的收敛域分为以下三种情况:z①收敛域是整个s平面根据收敛条件:推广:凡时宽有限且幅度有限的信号(满足绝对可11②F (s )在s 平面的部分区域收敛z 一般而言,单边LT 的收敛域是在s 平面上σ>σ0的区域。
z 收敛域的横坐标σ0(=α)称为收敛坐标,直线σ=σ0称为收敛轴。
③在整个平面上,F (s )都不收敛,即F (s )不存在z 如:、t t 等函数,其随t 上升而增加的速度超过指数阶函数,F (s )不存在。
2t e 如因果信号f (t )满足:(1)在有限区间a <t <b ()内可积,(2)对于某个有,则对于,拉普拉斯积分式绝对且一致收敛。
(教材P214定理)0a b ≤<<∞0σ0lim |()|0,t t f t e σσσ−→∞=>0Re()s σσ=>(二)常用函数的单边LT变换z1、复指数函数13可推出一些函数的LT:15z2、f(t)=t n·ε(t),n为正整数17 3、冲激函数δ(t)与冲激偶δ’(t)二、Laplace变换的性质z1、线性性质19 2、尺度变换(比例性)注:a < 0不适用于单边LT213、时移(延时)特性说明:①注意f (t -t 0)·ε(t -t 0) 与f (t -t 0)·ε(t )的区别z②注意延时性与比例性综合应用的情况例123有始周期函数的拉氏变换等于其第一周期的拉氏变换-Ts25z例2(教材P219例5.2-3)试求在t =0-时接入的周期性冲激序列的象函数。
实验5连续时间系统的复频域分析一、实验目的1、掌握拉普拉斯变换及其反变换的定义,并掌握MAT1AB实现方法。
2、学习和掌握连续时间系统系统函数的定义及复频域分析方法。
3、掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法1、拉普拉斯变换连续时间信号XQ)的拉普拉斯变换定义为拉普拉斯变换定义为X(S)=Γx(t)e-st dt (1)J-‹XJ拉普拉斯反变换定义为x(t)≈-Γr X(s)e s,ds (2)2用J”>在MAT1AB中,可以采用符号数学工具箱的Iap1ace函数和iIap1ace函数进行拉氏变换和反拉氏变换。
1=IaPIaCC(F)符号表达式F的拉氏变换,F中时间变量为t,返回变量为S的结果表达式。
1=Iap1ace(F,t)用t替换结果中的变量s。
F=i1ap1ace(1)以S为变量的符号表达式1的拉氏反变换,返回时间变量为t的结果表达式。
F=iIap1ace(1,x)用X替换结果中的变量t。
除了上述iIap1ace函数,还可以采用部分分式法,求解拉普拉斯逆变换,具体原理如下:当X(S)为有理分式时,它可以表示为两个多项式之比:X(S)=祟=…+"。
...................... ⑶D(S)a N s+即_科+…+劭式(3)可以用部分分式法展成一下形式X(S)=/一+/一+...+—^ (4)♦Pi s-p2s-p N通过查常用拉普拉斯变换对,可以由式(1-2)求得拉普拉斯逆变换。
利用MAT1AB的residue函数可以将I(S)展成式(1-2)所示的部分分式展开式,该函数的调用格式为:[r,p,k]=residuc(b,a)其中b、a为分子和分母多项式系数向量,r、p、k分别为上述展开式中的部分分式系数、极点和直项多项式系数。
2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换HG)=Γh(t)e-s1dt (5)J-OO此外,连续时间系统的系统函数还可以由系统输入和系统输出信号的拉氏变换之比得到H(S)=Y(S)ZX(S) (6)单位冲激响应反映了系统的固有性质,而"($)从复频域反映了系统的固有性质。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。