电控空气悬架系统的原理、设置与检修
- 格式:pdf
- 大小:632.20 KB
- 文档页数:3
EMS(电子调节悬架)和空气悬架概述悬架改善乘坐的舒适性和车辆的行驶性能。
ESM(电子调节悬架)和空气悬架用电子控制减振器和气体弹簧的阻尼力以便进一步改善乘坐的舒适和行驶性能。
ESM(电子调节悬架)空气悬架空气悬架使用一个电子控制模块(ECU)来电子控制悬架,该悬架采用应用压缩空气弹性的空气弹簧。
还有空气悬架和电子调节悬架(EMS)组合类型。
空气悬架具有下面的特性:●可以改变阻尼力。
●可以通过调节空气容量来改变弹簧刚度和车高。
●还提供诊断功能和故障自动防护的功能。
特性电子调节悬架(EMS)和空气悬架具有如下特性:1. 方式变换2. 阻尼力和弹簧钢性控制天钩电子调节悬架(EMS)将车辆恒定设置于天钩状态,就获得相应于路况变化的稳定车辆姿态。
在使用这种理论的天钩电子调节悬架(EMS)时,车身的上下运动就被感觉出来,计算机就精细地控制并调节减振器运动。
这种系统就大大地改善了乘坐的舒适性和行驶的稳定性。
在最新车型中,诸如,LS430型,已经把阻尼力控制的半主动控制从天钩控制换成非线性H控制,以便达到更细的控制。
结果是达到极佳的乘坐舒适性。
3. 车高控制提示:取消车身高度控制的方法:●在用千斤顶顶起车辆或用升降机升起车辆之前,确信点火开关处于断开状态。
●如果车辆必须在其发动机运行时升起时,应跨接TDCL的TD和EL端子或者跨接DLC3的OPB和CG端子(数据链路连接器3)以停止空气悬架电子控制模块对车高控制的操纵。
●对于装有高度控制接通/断开开关的车辆,其开关应断开。
结构位置和功能1. 开关2. 传感器3. 电子控制单元(ECU)/执行器诊断和失效保护1. 诊断如果电子调节悬架/空气悬架电子控制模块检测到该系统中有故障时,它就闪烁阻尼方式或车高指示灯,向故障车的驾驶员发出警告。
电子控制模块还储存故障的代码。
●读出DTC可以通过把手提式试验器连接到直接与电子控制模块互通的DLC3上或者通过使DLC3的TC和CG 端子之间短路并观察闪烁的模式来读出DTC。
第9章电控悬架系统9.1 概述车辆行驶在复杂的环境里,即路况(路面不平度等级)、车速以及工况(加速、制动、转向、直线行驶)经常要发生变化。
例如汽车在急速起步或急速加速时会产生“加速后仰”现象,汽车高速行驶紧急制动时会产生“制动点头”现象;汽车在急转弯行驶时会产生“转向侧倾”现象。
上述情况会对汽车的行驶平顺性和操纵稳定性产生不利的影响。
被动悬架由于其结构特点,很难保证汽车的乘坐舒适性和操纵稳定性同时达到最佳。
因此,为解决这一问题产生了根据工况要求保证汽车的性能达到最佳的电控悬架。
电控悬架采用传感器技术、控制技术和机电液一体化技术对汽车的行驶工况进行监测。
由控制计算机根据一定的控制逻辑产生控制指令控制执行元件产生动作,保证汽车具有良好的行驶性能.9.1.1 电控悬架的功能1 调节车身高度。
汽车载荷变化时,电控悬架系统能自动维持车身高度不变,汽车即使在凸凹不平道路上行驶也可保持车身平稳。
2 提高车辆的行驶平顺性和操纵稳定性,抑制车辆姿态的变化(后仰、点头、侧倾) 。
当汽车急速起步或加速行驶时,由于惯性力及驱动力的作用,会使车尾下蹲产生"后仰"现象。
电控悬架能够及时地改变悬架的俯仰角刚度,抑制后仰的发生。
当汽车在高速行驶中紧急制动时,由于惯性力和轮胎与地面摩擦力的作用,会使车头下沉产生制动点头现象。
电控悬架能使汽车在这种工况下车头的下沉量得到抑制。
当汽车急转弯时,由于离心力的作用汽车车身向一侧倾斜,转弯结束后离心力消失。
汽车在这样的工况下会产生汽车车身的横向晃动.电控悬架在这种工况下能够减少车身倾斜的程度、抑制车身横向摇动的产生。
因此,电控悬架在一定程度上能使悬架适应负荷状况、路面不平度和操纵情况的变化.3 提高车轮与地面的附着力,改善汽车制动性能和提高汽车抵抗侧滑能力。
普通汽车在制动时车头向下俯冲,由于前、后轴载荷发生变化,使后轮与地面的附着条件恶化,延长了制动过程。
电控悬架系统可以在制动时使车尾下沉,充分利用车轮与地面的附着条件,加速制动过程,缩短制动距离。
空气悬挂工作原理
空气悬挂工作原理是利用空气压力来支撑车辆的悬挂系统。
具体来说,空气悬挂系统由气囊、空气泵、阀门和传感器等部件组成。
当车辆行驶时,传感器会不断感知到车身的高度和姿态变化,并将这些信息传输给控制模块。
根据传感器的反馈,控制模块会调节空气泵和阀门的工作,以实现气囊的充气和放气。
当车辆需要升高时,控制模块会打开阀门,将空气泵中的压缩空气送入气囊,使其充气膨胀。
相反,当车辆需要降低时,控制模块会关闭阀门,让气囊中的空气逐渐释放,使其缩小。
通过控制气囊的充气和放气,可以实现对车身高度的调节。
空气悬挂系统的优势在于可以根据路况和驾驶需求来调整悬挂的硬度和高度,提供更好的驾驶稳定性和舒适性。
同时,空气悬挂系统还可以根据载荷的变化来自动调整悬挂高度,保持车身平衡,提高悬挂的稳定性和悬挂寿命。
需要注意的是,空气悬挂系统对于空气泄漏和气囊磨损等问题比较敏感,需要定期检查和维护,以确保其正常工作和安全性能。
电控悬架系统常见故障原因电控悬架系统是一种通过电子控制器控制悬架系统工作的汽车悬挂系统。
它通过感知车辆的行驶状况、操纵车辆悬挂系统的工作来实现对车辆悬挂高低调节、硬度调节、悬挂角度调节等功能。
然而,由于其复杂的结构和工作原理,电控悬架系统也会面临一些常见故障。
下面将介绍几种常见的电控悬架系统故障原因。
首先,电子控制单元(ECU)故障是导致电控悬架系统故障的常见原因之一。
ECU 是电控悬架系统的核心部件,负责接收传感器信号、控制执行器工作,同时也接收和解析司机的悬挂调节命令。
如果ECU出现故障,将会导致悬挂系统工作不正常,表现为悬挂高度调节异常、悬挂硬度调节失效等问题。
其次,传感器异常也是导致电控悬架系统故障的原因之一。
电控悬架系统中的传感器主要用于感知车辆的行驶状况和悬挂系统的工作状态。
这些传感器包括高度传感器、加速度传感器、角度传感器等。
如果传感器出现故障,将无法准确感知车辆的行驶状态,进而导致悬挂系统工作不正常。
第三,执行器故障也是导致电控悬架系统故障的重要原因。
执行器是悬挂系统的执行部件,负责根据ECU的控制信号实现悬挂高度、硬度和角度的调节。
如果执行器出现故障,将无法正常工作,导致悬挂系统无法正确调节,从而影响到车辆的悬挂性能和驾驶舒适性。
此外,电控悬架系统还可能因为驱动电源供电异常、电气连接不良、悬挂系统的机械结构故障等原因导致故障。
这些因素可能会影响到电控悬架系统的工作稳定性和可靠性,导致系统不能正常工作。
针对电控悬架系统故障这些原因,可以采取以下解决措施。
首先,定期检查和维护电控悬架系统,保持传感器的灵敏度和执行器的工作状态良好。
其次,及时更换和修复出现故障的电子控制单元、传感器和执行器。
同时,加强对驱动电源的监测和维护,确保电控悬架系统的正常供电。
此外,要保证悬挂系统的机械结构完好,及时修复和更换出现故障的部件。
综上所述,电控悬架系统的常见故障原因包括电子控制单元故障、传感器异常、执行器故障、驱动电源供电异常、电气连接不良以及悬挂系统的机械结构故障等。
空气悬架是一种通过空气泵来调整悬架高度和软硬的汽车悬架系统,它可以根据需要调整汽车的离地距离,提高行驶稳定性。
空气悬架的调整原理主要是通过改变空气弹簧的刚度来改变悬架的硬度,通过改变悬架连杆的长度来改变车身高度。
首先,我们来了解一下空气悬架系统中的空气弹簧。
空气弹簧是一种充满气的弹性体,它可以根据需要压缩和膨胀,从而提供不同的离地距离和硬度。
空气弹簧的刚度可以通过调节空气泵的压力来改变,刚度越大,悬架越硬。
同时,空气弹簧的压缩和膨胀速度也与其结构有关,因此可以通过控制空气泵的速度来调整悬架的反应速度。
在车身高度方面,空气悬架系统可以通过控制气囊和连杆的长度来调整车身高度。
当车辆需要提高离地距离时,空气泵会将空气弹簧中的空气排出,使气囊变小,连杆缩短,从而降低车身高度。
反之,当需要降低车身时,空气泵会将空气弹簧中的空气注入,使气囊膨胀,连杆伸长,从而升高车身。
这种高度的调节可以通过机械或电子控制来实现,可以根据车辆行驶时的状态(如车速、载重、道路条件等)来自动调整车身高度。
在实际应用中,空气悬架系统还可以与减震器、稳定杆等部件配合使用,以提高车辆的行驶稳定性。
减震器可以吸收路面冲击和震动,提高乘坐舒适性,而稳定杆可以增强车辆的抗侧倾和抗倾倒能力,提高行驶稳定性。
当车辆行驶在颠簸的路面上时,空气悬架系统可以自动调整车身高度和刚度,同时减震器和稳定杆也会发挥作用,从而提供更加平稳、舒适的行驶体验。
总之,空气悬架调整软硬的原理主要是通过改变空气弹簧的刚度和控制空气泵的压力来实现的。
同时,空气悬架系统还可以通过控制连杆的长度来调整车身高度,并通过与其他部件的配合使用来提高车辆的行驶稳定性。
这些特点使得空气悬架在高级车辆和特种车辆中得到了广泛应用,并为驾驶员提供了更加平稳、舒适的行驶体验。
空气悬架电控系统的构成及其功能基于分离式常闭电磁阀的电子控制空气悬挂系统,即ECAS是利用控制器通过分离式常闭电磁阀自动调节空气空气弹簧动作的悬挂系统。
介绍了ECAS系统的结构原理,并对其安装、使用和诊断等进行了探讨。
标签:ECAS控制器;分离式常闭电磁阀;传感器TB空气悬架系统系统是以空气弹簧作为弹性元件的悬架总称。
根据控制系统来分可以进一步分为机械式控制空气悬架和电子控制空气悬架系统(Electronically Controlled Air Suspension System,简称ECAS)。
ECAS可以根据车身高度变化量和空气弹簧压力信号,由电子控制单元(ECU)控制气路系统中的电磁阀执行元件,进而调整橡胶空气弹簧内的压缩空气量,悬架刚度和车身高度随之改变,以抑制车辆急加速、制动时产生的俯仰运动和转向时产生的侧倾运动,保持车身姿态平衡。
ECAS能够有效地提高车辆的乘坐舒适性和操纵稳定性。
1ECAS的硬件构成ECAS的硬件构成主要由信号采集、信号传输、信号分析及处理、执行机构四部分组成。
信号采集部分主要由高度传感器和压力传感器组成。
高度传感器安装在车架附近,压力传感器需要安装在尽量靠近橡胶空气弹簧的位置,要求能够准确的测量出空气弹簧的实际压力。
信号传输部分,包含汽车用电线束和手动遥控手柄。
信号分析及处理部分是指ECU,其主要作用将压力传感器和高度传感器输入的压力和车架高度信号,转换为计数,比较输入值与指标值,在出现偏差的情况下估计所需要的控制反应,发出电磁阀的控制信号。
执行机构是指分离式的常闭式电磁阀,外形和安装尺寸与ABS的电磁阀一致,能够实现橡胶空气弹簧的增压、减压、保压。
该类型的电磁阀与国外ECAS 电磁阀相比具有成本低、可靠性高等优点。
2ECAS的功能空气悬架电控系统具有以下功能:高度平衡调节、过载保护、提升桥自动调节功能、牵引帮助、遥控功能、故障自诊断。
2.1高度平衡调节无ECAS系统的车辆车身高度会随着车辆负载的变化而相应的升高或者降低,这样会对车辆的舒适型、操控以及行驶安全造成影响。