中考数学专题:阅读理解题专题
- 格式:doc
- 大小:34.00 KB
- 文档页数:14
一、选择题1.如果规定[]x 表示不大于x 的最大整数,例如[]2.32=,那么函数[]y x x =-的图象为( )xy xy–1–2–3123–11–1–2–3123–11O OA .B .xyx y –1–2–3123–11–1–2–3123–11O OC .D .答案.A ,解析:根据题中的新定义,分x 为正整数,负整数两种情况进行验证,即可排除B ,C ,D ,故选A. 2.平面直角坐标系中,点P 的坐标为(m ,n ),则向量OP 可以用点P 的坐标表示为OP =(m ,n ),已知1OA =(x 1,y 1),2OA =(x 2,y 2),若x 1·x 2+y 1·y 2=0,则1OA 与2OA 互相垂直.下列四组向量:①1OB =(3,-9),2OB =(1,-13);②1OC =(2,π°),2OC =(12-,-1);③1OD =(cos30°,tan45°),2OD =(sin30°,tan45°); ④1OE =(5+2,2),2OE =(5―2,22). 其中互相垂直的组有( ).A .1组B .2组C .3组D .4组答案:A ,解析:①1OB =(3,-9),2OB =(1,-13);∵3×1+(―9)×(―13)≠0,∴1OB 与2OB 互相不垂直.②1OC =(2,π°),2OC =(12-,-1); ∵2×12-+(―9)×(―1)=0,∴1OC 与2OC 互相垂直. ③1OD =(cos30°,tan45°),2OD =(sin30°,tan45°);∵cos30°·sin30°+tan45°·tan45°≠0,∴1OD 与2OD 互相不垂直. ④1OE =(5+2,2),2OE =(5―2,22). ∵(5+2)×(5―2)+2×22≠0,∴1OE 与2OE 互相不垂直. 故选A.3.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7,为例进行说明:设0.7x =.由0.7=0.7777...可知,10x =7.7777.... 所以10x -x =7,解方程得:x =79,于是,得70.7=9.将0.36写成分数的形式是 .19.114,解析:设0.36=x ,由0.36=0.363636……,可知100x =36.3636……,所以100x -x =36,解方程得x =1149936=.4.阅读理解,a ,b ,c ,d 是实数,我们把符号a b c d 称为2×2行列式,并且规定:a bc d =a ×d -b ×c ,例如32-1-2=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解可以利用利用2×2阶行列式表示为x yD x DD y D⎧⎪=⎨=⎪⎪⎪⎩:其中D =1122a b a b ,D x =1122c b c b ,D y =1122a c a c .问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是A .D =2132-=-7 B .D x =-14 C .D y =27D .方程组的解为23x y ==-⎧⎨⎩8.C ,解析:因为213212x y x y +=⎧⎨-=⎩,所以D =1122a b a b =2132-=2×(-2)-3×1=-7,D x =1122c b c b =11122-=1×(-2)-1×12=-14,D y =1122a c a c =21312=2×12-1×3=21,因为14272137x y D x D D y D -===-===--⎧⎪⎪⎨⎪⎪⎩,所以方程组的解为23x y ==-⎧⎨⎩,所以说法错误的是C ,故选C .二、填空题1. 对于两个非零实数x ,y ,定义一种新的运算:abx y x y*=+.若()112*-=,则()22-*的值是 ▲ . 答案.-1,解析:根据新定义运算,将数值代入公式即可计算,注意符号不要出错即可. 由()11211a b *-=+=-,可得a -b =2, ()22-*=()22112a b a b +-=--=-.2.对于实数a ,b 定义运算“◇” :a ◇b =22,,,.a b a b ab a b ⎧⎪+≥⎨⎪⎩<例如,4◇3,因为4>3,所以4◇3=22435+=.若x ,y 满足方程组48229x y x y -=⎧⎨+=⎩,则x ◇y = . 答案.60 解析:解方程组得:x=5y=12⎧⎨⎩,∵5<12,∴x ◇y =5×12=60.3.若x 为实数, 则[x ]表示不大于x 的最大整数, 例如[1.6] =1,[π] =3, [﹣2.82] =﹣3 等.[x ] +1是大于x 的最小整数, 对任意的实数x 都满足不等式[x ] ≤x <[x ] +1.①利用这个不等式① ,求出满足[x ] =2x ﹣1的所有解, 其所有解为 .答案:1或12解析:把[x ] =2x ﹣1代入不等式[x ] ≤x <[x ] +1,得2111x x x x -≤⎧⎨<2-+⎩,,解不等式组,得0<x ≤1,当x=1时,[x ]= 2x ﹣1=1,解得x=1;当0<x <1时,[x ]= 2x ﹣1=0,解得x= 12,综合起来,满足[x ] =2x ﹣1的所有解是1或12. 4.根据下列材料,解答问题.等比数列求和:概念:对于一列数a 1,a 2,a 3,…,a n ,…(n 为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即21a a =q (常数),那么这一列数a 1,a 2,a 3,…,a n ,…成等比数列,这一常数q 叫做该数列的公比.例:求等比数列1,3,32,33,…,3100的和.解:令S =1+3+32+33+…+3100,则3S =3+32+33+…+3100+3101,因此,3S -S =3101-1,所以S =213101-,即1+3+32+33+…+3100=213101-. 仿照例题,等比数列1,5,52,53,…,52018的和为 .答案:4152019-,解析:令S =1+5+52+53+…+52018,则5S =5+52+53+…+52018+52019,因此,5S -S =52019-1,所以S =4152019-,即1+5+52+53+…+52018=4152019-.5.对于任意大于0的实数x 、y ,满足log 2(x ·y )= log 2x +log 2y ,若log 22=1,则log 216=____________. 答案.4,解析:log 216=log 2(2×8)= log 22 +log 28=1+log 2(2×4)=1+ log 22 +log 24=1+1+ log 2(2×2)=1+1+ log 22 +log 22=1+1+1+1=4.三、解答题 1.知识背景当a >0且x >0时,因为2()a x x-≥0,所以2a x a x -+≥0,从而ax x+≥2a (当x =a 时取等号).设函数y =ax x+(a >0,x >0),由上述结论可知,当x =a 时,该函数有最小值为2a . 应用举例已知函数1y =x (x >0)与函数2y =4x (x >0),则当x =4=2时,12y y +=4x x +有最小值为24=4.解决问题(1)已知函数1y =3x +(x >-3)与函数2y =2(3)9x ++(x >-3),当x 限何值时,21y y 有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?分析:(1)将21y y 表示成9(3)3x x +++,利用“知识背景”求解;(2)列出该设备平均每天的租赁使用成本的代数式24902000.001x x x ++,再转化成4900000.001()200x x++利用“知识背景”求解.解:(1)∵x >-3, ∴3x +>0,∴21y y =2(3)93x x +++=9(3)3x x +++≥92(3)3x x +⨯+.即21y y ≥6. ∴21y y 的最小值6,此时3x +=9=3,解得x =0. (2)设该设备平均每天的租赁使用成本为w . 根据题意,得 w =24902000.001x x x++.∴w =4900000.001()200x x++. ∵x >0,∴w ≥4900000.0012200x x⨯⋅+. 即w ≥201.4.∴w 的最小值为201.4.此时x =490000=700.答:当x 取700时,该设备平均每天的租赁使用成本最低?最低是201.4元.2.阅读下列材料;对数的创始人是苏格兰数学家纳皮尔(j .Napier ,1550年~1617年).纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉 (Euler ,1707年~1783年),才发现指数和对数的联系.对数的定义:一般地,若a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数,记作N a log x =.比如指数式24=16可转化为对数式16log 42=,对数式25log 25=,可转化为52=25 我们根据对数的定义可得到对数的一个性质:N M N M a a a log log )(log +=⋅(a >0,a ≠1,M >0,N >0)理由如下:设m M =a log ,n =N log a ,则m a M =,n a N =,∴nm n a a a N M +=⋅=⋅m,由对数的定义得:)(log a N M n m ⋅=+ 又∵N M a a log log n m +=+, ∴N M N M a a a log log )(log +=⋅ 解决以下问题:(1)将指数式43=64转化成对数式 ; (2)证明log a MN=log a M - log a N (0a >,1a ≠,M >0,N >0);. (3)拓展应用:计算4log 6log 2log 333-+= .思路分析:(1)读懂新定义,明白指数与对数之间的关系与相互转化关系;(2)阅读题目,明确对数的定义、特别是题目中提供的 “根据对数的定义推出的对数的性质:N M N M a a a log log )(log +=⋅”,模仿解决新问题;(3)阅读题目,明确对数的定义、积的对数和商的对数的运算法则,可逐步推出结果. 解: (1)4log 643=;(2)设log a M m =,log a N n =,则m a M =,n a N =, ∴m m n n M a a N a -==,由对数的定义得m -n =log aM N , 又∵m -n =log a M -log a N ,∴log aMN=log a M - log a N (0a >,1a ≠,M >0,N >0). (3)3333326log 2log 6log 4log log 314⨯+-=== .3.阅读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美各国许多著名的建筑,为了取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN =2)第一步,在矩形纸片的一端,利用图①的方法折出一个正方形,然后把纸片展平. 第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平. 第三步,折出内侧矩形的对角线AB ,并把它折到图③中所示的AD 处.第四步,展平纸片,按照所得的D 点折出DE ,使DE ⊥ND ,则图④中就会出现黄金矩形.问题解决:(1)图③中AB = cm (保留根号);(2)如图③,判断四边形BADQ 的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由. 实际操作:(4)结合图④,请在矩形BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽. 思路分析:(1)连接AB ,由折叠的性质,可得AC =2,在Rt △ABC 中,利用勾股定理可求出AB 的长度. (2)先证明四边形BADQ 是平行四边形,再进而证明它是菱形. (3)通过计算,观察图④客户哪个矩形的宽与长的比是,选择其中一个给出证明.(4)的矩形BCDE 中,已知CD =BE =5-1,添加宽,使矩形的宽与长的比是.解答过程:(1)由折叠知,四边形MNCB 是正方形,∴BC =MN =2,AC =1, ∴2222125AB AC BC =+=+=.答案:5(2)∵矩形纸片,∴ ∠BQA =∠QAD ,由折叠,得∠BAQ =∠QAD ,AB =AD , ∴∠BQA =∠BAQ , ∴BQ =AB , ∴BQ =AD . ∵BQ ∥AD ,∴四边形BADQ 是平行四边形, ∵AB =AD ,∴四边形BADQ 是菱形.(3)图④中的黄金矩形有矩形BCDE ,矩形MNDE . 矩形BCDE 是黄金矩形,理由如下: ∵AD =AB =5,AN =AC =1, ∴CD =AD -AC =5-1, 又∵BC =2, ∴512CD BC -=, ∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形GCDH 为正方形,则矩形BGHE 为所要作的黄金矩形.矩形较长的边GH =5-1,宽HE =3-5. 4.阅读材料:已知:如图1,等边△A 1A 2A 3内接于⊙O ,点P 是12A A 上的任意一点,连接PA 1,PA 2,PA 3,可证:PA 1+PA 2=PA 3,从而得到12123PA PA PA PA PA +++=12是定值.(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整:MOA 3A 1A 2P第24题图1证明:如图1,作∠PA 1M =60°,A 1M 交A 2P 的延长线于点M . ∵△A 1A 2A 3是等边三角形, ∴∠A 3A 1A 2=60°. ∴∠A 3A 1P =∠A 2A 1M ,又A 3 A 1=A 2A 1,∠A 1A 3P =∠A 1A 2P , ∴△A 1A 3P ≌△A 1A2M .∴PA 3=MA 2=PA 2+PM =PA 2+PA 1∴12123PA PA PA PA PA +++=12,是定值.(2)延伸:如图2,把(1)中条件“等边△A 1A 2A 3”改为“正方形A 1A 2A 3A 4”,其余条件不变,请问121234PA PA PA PA PA PA ++++还是定值吗?为什么?O A 3A 4A 1A 2P第24题图2(3)拓展:如图3,把(1)中条件“等边△A 1A 2A 3”改为“正五边形A 1A 2A 3A 4 A 5”,其余条件不变,则1212345PA PA PA PA PA PA PA +++++=___________(只写出结果).OA 3A 4A 5A 1A 2P第24题图3参考数据:如图,等腰△ABC 中,若顶角∠A =108°,则BC =152+ AC ;若顶角∠A =36°,则BC =152-+ AC .36°108°36°72°72°36°A ABBC思路分析:(1)阅读材料,得出方框内的内容.先根据全等三角形的性质得PA 3=MA 2,PA 1=MA 1,然后根据全等三角形的判定和性质得PA 1=PM .(2)用类比的方法证得121234PA PA PA PA PA PA ++++还是定值.(3)用类比的方法证得1212345PA PA PA PA PA PA PA +++++还是定值.解答过程:解:(1)方框内的内容为: ∴PA 3=MA 2,PA 1=MA 1, ∵∠PA 1M =60°,∴△PA 1M 是等边三角形. ∴PA 1=PM . (2)是定值.理由:如图2,作∠PA 1M =90°,A 1M 交A 2P 的延长线于点M .NMO A 3A 4A 1A 2P∵A 1A 2A 3A 4是正方形, ∴∠A 4A 1A 2=90°. ∴∠A 4A 1P =∠A 2A 1M ,又A 4 A 1=A 2A 1,∠A 1A 4P =∠A 1A 2P , ∴△A 1A 4P ≌△A 1A 2M . ∴PA 4=MA 2,PA 1=MA 1, ∵∠PA 1M =90°, ∴PM =2PA 1.∴PA 4=MA 2=PA 2+PM =PA 2+2PA 1,作∠PA 2MN =90°,A 2N 交A 1P 的延长线于点MN . 同理可得PA 3=PA 1+2PA 2,∴PA 3+PA 4=(1+2) (PA 1+PA 2)∴121234PA PA PA PA PA PA ++++=12+2=1-22,是定值. (3)1212345PA PA PA PA PA PA PA +++++=13+5=354-,是定值.5.对任意一个四位数n ,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n 为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由; (2)如果一个正整数a 是另一个正整数b 的平方,则称正整数a 是完全平方数.若四位数m 为“极数”,记D (m )=33m,求满足D (m )是完全平方数的所有m . 【思路分析】(1)先根据“极数”的定义,较易写出千位与十位上的数字之和为9且百位与个位上的数字之和为9的四位数三个,答案不唯一;再设n 的千位数字为s ,百位数字为t (1≤s ≤9,0≤t ≤9且s 、t 均为整数),用代数式表示出n ,化简后因式分解,即可证明n 是99的倍数;(2)先求出D (m )=33m,其中m =1000s +100t +10(9-s )+9-t ,化简后得D (m )=33m=3(10s +t +1);再根据D (m )是完全平方数,且10s +t +1是一个两位数,从而10s +t +1=3×22、3×32、3×42、3×52,即10s +t +1=12或27或48或75,于是得到方程组112s t =⎧⎨+=⎩或217s t =⎧⎨+=⎩或418s t =⎧⎨+=⎩或715s t =⎧⎨+=⎩,解方程组即可锁定符合条件的所有m .【解题过程】解:(1)答案不唯一,如5346,1782,9405,等.任意一个“极数”都是99的倍数,理由如下: 设n 的千位数字为s ,百位数字为t (1≤s ≤9,0≤t ≤9且s 、t 均为整数),则n =1000s +100t +10(9-s )+9-t =990s +99t +99=99(10s +t +1),而10s +t +1是整数,故n 是99的倍数.(2)易由(1)设m =1000s +100t +10(9-s )+9-t =990s +99t +99=99(10s +t +1),其中1≤s ≤9,0≤t ≤9且s 、t 均为整数,从而D (m )=33m=3(10s +t +1),而D (m )是完全平方数,故3(10s +t +1)是完全平方数.∵10<10s +t +1<100, ∴30<3(10s +t +1)<300.∴10s +t +1=3×22、3×32、3×42、3×52. ∴(s ,t )=(1,1),(2,6),(4,7),(7,4). ∴m =1188,2673,4752,7425.【知识点】整式的运算 完全平方数 不等式的解法 新定义运算题 二元一次方程的特殊解 6.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:b a b a +=⊗2.例 如.1043243=+⨯=⊗ (1)求)(5-2⊗的值; (2)若,2)(=-⊗y x 且,12-=⊗x y 求x +y 的值. 思路分析:(1)直接运用新定义的运算规则进行计算;(2)根据新定义的运算规则列出两个方程,联立成方程组,解出x 、y 的值,再求出x +y 的值. 解答过程:(1)2⊗(-5)=2×2+(-5)=4-5=-1;(2)由题意,得:2241x y y x -=⎧⎨+=-⎩,解方程组,得:7949x y ⎧=⎪⎪⎨⎪=-⎪⎩,则x +y =7949-=13.7 对于三个数a 、b 、c ,用{},,M a b c 表示这三个数的中位数,用{}max ,,a b c &表示这三个数最大数,例如{}2,1,0M --=-1,{}max 2,1,0--=0,{}max 2,1,a --=(1)1(1)a a a ≥-⎧⎨-<-⎩.解决问题:(1)填空:{}sin 45,cos60,tan 60M ︒︒︒= ,如果{}max 3,53,26x x --=3,则x 的取值范围为 ;(2)如果{}22,2,4M x x ⋅++={}max 2,2,4x x ++,求x 的值; (3)如果{}29,,32M x x -={}2max 9,,32x x -,求x 的值.思路分析:(1)分别求出三个特殊角的三角函数值即可求出中位数,分两种情况:5-3x ≤3与2x-6≤3构造不等式组求解;(2)结合题意运用分类讨论加以求解. 解答过程:(1){}sin45,cos60,tan60M ︒︒︒=21,,322⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭=12, 由题意得,当5-3x ≤3且2x-6≤3时,{}max 3,53,26x x --=3,解得23≤x ≤4.5. (2)∵{}22,2,4M x x ⋅++=4,22,202,0x x x x x +≤-⎧⎪-<<⎨⎪+≥⎩由图可知:{}max 2,2,4x x ++=2,24,2x x x ≤-⎧⎨+>-⎩①若x ≤-2,根据题意得2(x+4)=2,解得x=-3,②若-2<x <0, 根据题意得x+4=2,解得x=-2(不合题意,舍去), ③若x ≥0,根据题意得x+2≠x+4(不合题意,舍去), 所以,满足题意的x 的值为-3.(3){}29,,32M x x -={}2max 9,,32x x -①由图可知,当x <-3时,{}29,,32M x x -=9,{}2max 9,,32x x -=2x ,解得x=±3(不合题意,舍去) ②由图可知,当-3≤x <1时,{}29,,32M x x -=2x ,{}2max 9,,32x x -=9,解得x=-3,③由图可知,当1≤x <2时,{}29,,32M x x -=3x-2,{}2max 9,,32x x -=9,解得x=113(不合题意,舍去),④由图可知,当2≤x <3时,{}29,,32M x x -=2x ,{}2max 9,,32x x -=9,解得x=±3(不合题意,舍去)⑤由图可知,当3≤x <113时,{}29,,32M x x -=9,{}2max 9,,32x x -=2x,解得x=3,⑥由图可知,当113≤x 时,{}29,,32M x x -=3x-2,{}2max 9,,32x x -=2x , 解得x=1,x=2(不合题意,舍去) 所以,满足题意的x 的值为±3.。
阅读理解问题1.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a42.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2= .3.定义新运算“⊗”,,则12⊗(﹣1)= .4.如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D= ,O2F= .(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2= .(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).5.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是.6.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为.7.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.8.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?9.先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同的元素中选取m个元素的排列数记作A n m.A n m=n(n﹣1)(n﹣2)(n﹣3)…(n ﹣m+1)(m≤n)例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为.一般地,从n个不同的元素中取出m个元素的排列数记作A n m,A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣m+1)(m≤n)例:从6个不同的元素选3个元素的组合数为:.问:(1)从某个学习小组8人中选取3人参加活动,有种不同的选法;(2)从7个人中选取4人,排成一列,有种不同的排法.10.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N.小明在探究线段MM′与N′N 的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时,如图1,直线l分别交AD、A′D′、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;(2)当直线l与方形环的邻边相交时,如图2,l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).阅读理解问题参考答案与试题解析1.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4【考点】正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】设等边三角形的边长是a,求出等边三角形的周长,即可求出等边三角形的周率a1;设正方形的边长是x,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b,过F作FQ∥AB交BE于Q,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案.【解答】解:设等边三角形的边长是a,则等边三角形的周率a1==3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a2==2≈2.828,设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=2b,∴正六边形的周率是a3==3,圆的周率是a4==π,∴a4>a3>a2.故选:B.【点评】本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键.2.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2= (a+b)(a+b+c).【考点】因式分解﹣分组分解法.【专题】压轴题;阅读型.【分析】首先进行合理分组,然后运用提公因式法和公式法进行因式分解.【解答】解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).【点评】此题考查了因式分解法,要能够熟练运用分组分解法、提公因式法和完全平方公式.3.定义新运算“⊗”,,则12⊗(﹣1)= 8 .【考点】代数式求值.【专题】压轴题;新定义.【分析】根据已知可将12⊗(﹣1)转换成a﹣4b的形式,然后将a、b的值代入计算即可.【解答】解:12⊗(﹣1)=×12﹣4×(﹣1)=8故答案为:8.【点评】本题主要考查代数式求值的方法:直接将已知代入代数式求值.4.如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D= 2 ,O2F= 1 .(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2= 3 .(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).【考点】四边形综合题.【分析】(1)根据正方形对角线是正方形边长的倍可得正方形的对角线长,除以2即为所求的线段的长;(2)此时中心距为(1)中所求的两条线段的和,若只有一个公共点,则点D与点F重合,由此可得出答案.(3)动手操作可得两个正方形的边长可能没有公共点,有1个公共点,2个公共点,或有无数个公共点,据此找到相应取值范围即可.【解答】解:(1)O1D=2×÷2=2;O2F=×÷2=1.故答案为:2,1;(2)点D、F重合时有一个公共点,O1O2=2+1=3.故答案为:3;(3)两个正方形的边长有两个公共点时,1<O1O2<3;无数个公共点时,O1O2=1;1个公共点时,O1O2=3;无公共点时,O1O2>3或0≤O1O2<1.【点评】考查正方形的动点问题;需掌握正方形的对角线与边长的数量关系;动手操作得到两正方形边长可能的情况是解决本题的主要方法.5.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是15 .【考点】分式方程的应用.【专题】阅读型.【分析】题中给出了调和数的规律,可将x所在的那组调和数代入题中给出的规律里,然后列出方程求解.【解答】解:根据题意,得:.解得:x=15经检验:x=15为原方程的解.故答案为:15.【点评】此题主要考查了分式方程的应用,重点在于弄懂题意,准确地找出题目中所给的调和数的相等关系,这是列方程的依据.6.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为24 .【考点】一元一次不等式的应用.【专题】压轴题.【分析】首先理解“可连数”的概念,再分别考虑个位、十位、百位满足的数,用排列组合的思想求解.【解答】解:个位需要满足:x+(x+1)+(x+2)<10,即x<,x可取0,1,2三个数.十位需要满足:y+y+y<10,即y<,y可取0,1,2,3四个数(假设0n就是n)因为是小于200的“可连数”,故百位需要满足:小于2,则z可取1一个数.则小于200的三位“可连数”共有的个数=4×3×1=12;小于200的二位“可连数”共有的个数=3×3=9;小于200的一位“可连数”共有的个数=3.故小于200的“可连数”共有的个数=12+9+3=24.【点评】解决问题的关键是读懂题意,依题意列出不等式进行求解,还要掌握排列组合的解法.7.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是±3 .【考点】一元一次不等式组的整数解.【专题】压轴题;新定义.【分析】先根据题意列出不等式,根据x的取值范围及x为整数求出x的值,再把x的值代入求出y的值即可.【解答】解:由题意得,1<1×4﹣xy<3,即1<4﹣xy<3,∴,∵x、y均为整数,∴xy为整数,∴xy=2,∴x=±1时,y=±2;x=±2时,y=±1;∴x+y=2+1=3或x+y=﹣2﹣1=﹣3.【点评】此题比较简单,解答此题的关键是根据题意列出不等式,根据x,y均为整数求出x、y的值即可.8.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.9.先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同的元素中选取m个元素的排列数记作A n m.A n m=n(n﹣1)(n﹣2)(n﹣3)…(n ﹣m+1)(m≤n)例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为.一般地,从n个不同的元素中取出m个元素的排列数记作A n m,A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣m+1)(m≤n)例:从6个不同的元素选3个元素的组合数为:.问:(1)从某个学习小组8人中选取3人参加活动,有56 种不同的选法;(2)从7个人中选取4人,排成一列,有840 种不同的排法.【考点】有理数的混合运算.【专题】压轴题;阅读型.【分析】(1)利用组合公式来计算;(2)都要利用排列公式来计算.【解答】解:(1)C83==56(种);(2)A74=7×6×5×4=840(种).【点评】本题为信息题,根据题中所给的排列组合公式求解.10.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N.小明在探究线段MM′与N′N 的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时,如图1,直线l分别交AD、A′D′、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;(2)当直线l与方形环的邻边相交时,如图2,l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).【考点】四边形综合题.【分析】(1)证线段相等,可证线段所在的三角形全等.结合本题,证△MM′E≌△NN′F即可;(2)由于M′E∥CD,则∠EM′M=∠FNN′=α,易证得△FNN′∽△EM′M,那么MM′:NN′=EM′:FN;而EM′=FN′,则比例式可化为: ==tanα,由此可知:当α=45°时,MM′=NN′;当α≠45°时,MM′≠NN′.【解答】解(1)在方形环中,∵M′E⊥AD,N′F⊥BC,AD∥BC,在△MM′E与△NN′F中,,∴△MM′E≌△NN′F(AAS).∴MM′=N′N;(2)法一∵∠NFN′=∠MEM′=90°,∠FNN′=∠EM′M=α,∴△NFN′∽△M′EM,∴=.∵M′E=N′F,∴==tanα(或).①当α=45°时,tan α=1,则MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).法二在方形环中,∠D=90°.∵M′E⊥AD,N′F⊥CD,∴M′E∥DC,N′F=M′E.∴∠MM′E=∠N′NF=α.在Rt△NN′F与Rt△MM′E中,sinα=,cosα=,即=tanα(或).①当α=45°时,MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).【点评】此题主要考查了相似三角形、全等三角形的判定和性质以及解直角三角形的应用等知识.。
2022年中考数学考前知识点补漏最后一练(《阅读理解类问题》专题)1.若定义一种新运算:a (a≥2b),(a<2b).例如:3 1=3-1=2;5 4=5+4-6=3.则函数y=(x+2) (x-1)的图象大致是()2.对于实数a,b,定义一种新运算“ ”为:a b=1a-b2,这里等式右边是实数运算.例如:1 3=11-32=-18,则方程x (-2)=2x-4-1的解是()A.x=4B.x=5C.x=6D.x=73.已知:[x]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=________.4.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式S=a+12b-1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=________.5.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(a,b),那么向量OP →可以表示为OP →=(a,b).如果OA →与OB →互相垂直,OA →=(x 1,y 1),OB →=(x 2,y 2),那么x 1x 2+y 1y 2=0.若OM →与ON →互相垂直,OM →=(sin α,1),ON →=(2,-3),则锐角∠α=________.6.综合实践活动课上,小亮将一张面积为24cm 2,其中一边BC 为8cm 的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为________cm.7.定义:[a,b,c]为二次函数y=ax 2+bx+c(a≠0)的特征数,下面给出特征数为[m,1-m,2-m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y 轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y 随x 的增大而减小.其中所有正确结论的序号是________.8.如图,一个由8个正方形组成的“C”型模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q 都在矩形ABCD 的边上,若8个小正方形的面积均为1,则边AB 的长为________.9.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离.同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为________.三、解答题(48分)。
专题十一阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3 . (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019 =2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019=2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x 2-x +3x +1=x (x +1)-2(x +1)+5x +1=x (x +1)x +1-2(x +1)x +1+5x +1=x -2+5x +1. 这样,分式x 2-x +3x +1就拆分成一个整式x -2与一个分式5x +1的和的形式. 解决问题:(1)将分式x 2+6x -3x -1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________; (2)已知整数x 使分式2x 2+5x -20x -3的值为整数,则满足条件的整数x =________;(3)若关于x 的方程2x 2+(1-2a )x +(4-3a )=0有整数解,求正整数a 的值.解 (1)x +7+4x -1 [解法提示] x 2+6x -3x -1=(x -1)2+8(x -1)+4x -1=x -1+8+4x -1=x +7+4x -1.故结果为x +7+4x -1. (2)2,4,16,-10 [解法提示]2x 2+5x -20x -3=2x 2-6x +11x -33+13x -3 =2x (x -3)+11(x -3)+13x -3=2x +11+13x -3. 要使原式的值为整数,则13x -3为整数,故x =2,4,16,-10. (3)∵2x 2+(1-2a )x +(4-3a )=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎪⎨⎪⎧ x =-1,a =5或⎩⎪⎨⎪⎧ x =-2,a =-10或⎩⎪⎨⎪⎧ x =2,a =2或⎩⎪⎨⎪⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值.解:设2m2+n2=t,则原方程变为(t+1)(t-1)=80,整理得t2-1=80,t2=81,∴t=±9,因为2m2+n2>0,所以2m2+n2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x,y满足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解(1)令2x2+2y2=t,则原方程变为(t+3)(t-3)=27,整理得,t2-9=27,t2=36.t=±6.∵2x2+2y2≥0,∴2x2+2y2=6,∴x2+y2=3.(2)设四个连续正整数为k-1,k,k+1,k+2(k≥2且k为整数).由题得(k-1)k(k+1)(k+2)=11880,∴(k-1)(k+2)k(k+1)=11880,∴(k2+k-2)(k2+k)=11880.令t=k2+k,则(t-2)·t=11880,t2-2t-11880=0,∴t1=110,t2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x-4因式分解的结果为(x+1)(x+2)(x-2),当x=15时,x+1=16,x+2=17,x-2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎪⎨⎪⎧ m -3n =5,n =17,解得⎩⎪⎨⎪⎧m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎪⎨⎪⎧ m =1,n =2或⎩⎪⎨⎪⎧ m =5,n =1,∴a 的值为734或770. 8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a .例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17.(1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎪⎨⎪⎧ a +b =3,a -b =2或⎩⎪⎨⎪⎧a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎪⎨⎪⎧ a +b =15,a -b =3或⎩⎪⎨⎪⎧ a +b =9,a -b =5或⎩⎪⎨⎪⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎪⎨⎪⎧ a =9,b =6或⎩⎪⎨⎪⎧ a =7,b =2或⎩⎪⎨⎪⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎪⎨⎪⎧ a +b =71,a -b =1,解得⎩⎪⎨⎪⎧a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎪⎨⎪⎧ a +b =92,a -b =1或⎩⎪⎨⎪⎧ a +b =46,a -b =2或⎩⎪⎨⎪⎧ a +b =23,a -b =4.解得⎩⎪⎨⎪⎧ a =24,b =22.∴F (t )=1112.③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎪⎨⎪⎧ a +b =24,a -b =1或⎩⎪⎨⎪⎧ a +b =12,a -b =2或⎩⎪⎨⎪⎧ a +b =8,a -b =3或⎩⎪⎨⎪⎧ a +b =6,a -b =4.解得⎩⎪⎨⎪⎧ a =7,b =5或⎩⎪⎨⎪⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15.∴F (t )的最大值为3536.9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到线段AE,连接EC,请写出∠ACE的度数及线段AC,CD,CE之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC中,∠ABC=∠ACB=45°,∠BDC =90°.若BD=3,CD=5,请直接写出AD的长.解(1)①60°②AC=CD+CE[解法提示]由题意,得△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=∠B=60°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠ACE=∠B=60°,BD=CE.∴AC=BC=CD+BD=CD+CE.(2)∠ACE=45°,2AC=CD+CE.理由:由题意,得∠BAC=∠DAE=90°,AB=AC,AD=AE.∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示]过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。
阅读理解型问题(专题4)——合情推理【考点透视】阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题.在阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理, 【典型例题】例1.已知正数a 和b ,有下列命题:(1)a +b =2,ab ≤1; (2)a +b =3,ab ≤23; (3)a +b =6,ab ≤3.根据以上三个命题所提供的规律猜想:若a +b =9,ab ≤ .(2000年北京市东城区中考试题)分析:观察(1)、(2)、(3)中的数字规律:不等号右边的数都是等号右边的数的21,由此可以作出猜想.解:ab ≤29. 说明:本题要求直接通过不完全归纳,总结规律,猜想结论. 例2.例2.(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.①322322=+( );②833833=+( ); ③15441544=+( ); ④24552455=+( ). (2)你判断完以上各题之后,发现了什么规律?请用含有n 的式子将规律表示出来,并注明n 的取值范围: .图4—1AD nB CD 1 D 2D 3E 1 E 2 E 3 E n 图4—2(3)请用数学知识说明你所写式子的正确性.(2000年江苏省常州市中考试题)分析:判断式子①、②、③、④内在的规律时可以发现:①中3=2 2-1;②中8=3 2-1;③中15=4 2-1;④中24=5 2-1.这样就可以统一用含n 的式子表示出来.解:(1)①√;②√;③√;④√.(2)12-+n n n =n 12-n n.其中n 为大于1的自然数. (3)12-+n n n =123-n n =122-⋅n n n =n 12-n n . 说明:本题虽然需要说明所写式子的正确性,但本题主要考查学生的合情推理能力,即用含有n 的式子将规律表示出来.例3.下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是S .按此规律推断,S 和n 的关系式是 .(2000年山西省中考试题)分析:由正三角形每条边的花盆数n 与花盆的总数S 之间的关系,可以看出S 总是比n 的3倍少3. 解:S =3n -3.说明:本题的答案不唯一,其它形式也可以. 例4. 如图4—2所示,在△ABC 中,BC =a ,若D 1、E 1分别是AB 、AC 的中点,则D 1E 1=a 21; 若D 2、E 2分别是D 1B 、E 1C 的中点,则D 2E 2=a a a 43)2(21=+; 若D 3、E 3分别是D 2B 、E 2C 的中点,则D 3E 3=a a a 87)43(21=+;…………若D n 、E n 分别是D 1-n B 、E 1-n C 的中点,则D n E n = (n ≥1,且n 为整数).(2001年山东省济南市中考试题)分析:因为12121=;2221243-=;3321287-=;……,所以D n E n 也可以用含数字2的式子来表示.解:D n E n =11212---n n (n ≥1,且n 为整数).说明:寻找数字规律,应把已给的数写成有规律的一组数.n =2,S =3 n =3,S =6 n =4,S =9例5.问题:你能很快算出19952吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方.任意一个个位数为5的自然数可写成10•n+5,即求(10•n+5)2的值(n为自然数).你试分析n=1,n=2,n=3,…,这些简单情况,从中探索规律,并归纳、猜想出结论(在下面空格内填上你的探索结果).(1)通过计算,探索规律:152=225可写成100×1(1+1)+25,252=625可写成100×2(2+1)+25,352=1225可写成100×3(3+1)+25,452=2025可写成100×4(4+1)+25,……752=5625可写成,852=7225可写成,……(2)从第(1)的结果,归纳、猜想得:(10n+5)2=.(3)根据上面的归纳、猜想,请算出:19952=.(1999年福建省三明市中考试题)分析:在对这些式子进行规律探索的时候,要找出哪些数是不变的,哪些数是随式子的序号变化而逐步变化的.然后就可以用n来表示这些逐步变化的数.解:(1)100×7(7+1)+25;100×8(8+1)+25.(2)100n2+100n+25100n(n+1)+25.(3) 100×199(199+1)+25=3980025.说明:本题不仅要求归纳猜想和探索规律,而且要运用归纳猜想得出的结论解决问题.例6.如图4—3,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P',使得OP·OP'=r 2 ,这种把点P变为点P'的变换叫做反演变换,点P与点P'叫做互为反演点.图4—3 图4—4(1) 如图4—4,⊙O 内外各一点A 和B ,它们的反演点分别为A '和B '.求证:∠A '=∠B ; (2) 如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线l 与⊙O 相交,那么它关于⊙O 的反演图形是( ). (A)一个圆 (B)一条直线 (C)一条线段 (D)两条射线 ②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .(2001年江苏省南京市中考试题)分析:求解本题首先要理解“反演变换”的意义,并理解圆内的点的反演点在圆外,圆上的点的反演点在圆上,圆外的点的反演点在圆内;其次,第(2)题的第①小题,由于直线与圆的交点的反演点是它本身,因此只要在该直线的圆内、圆外部分各取几点,画出反演点,便可推测该直线的反演图形.另外,第(2)题的第②小题,由于直线与圆的切点的反演点是它本身,因此只要在该直线上取几点,画出反演点,便可推测该直线的反演图形.(1)证明:∵A 、B 的反演点分别是A’、B’,∴OA ·OA’=r 2,OB ·OB’=r 2. ∴OA ·OA’=OB ·OB’,即''OA OBOB OA . ∵∠O =∠O ,∴△ABO ∽△B’A’O . ∴∠A’=∠B .. (2)解:①A .②圆;内切.说明:本题主要考查学生通过观察、分析,从特殊的点的研究归纳、推测图形形状的合情推理能力.另外,还可以研究下列问题:如果直线⊙O’与⊙O 相切,那么它关于⊙O 的反演图形是什么?该图形与圆O 的位置关系是是什么?例7.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图4—5中的三角形被一个圆所覆盖,图4—6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (2)边长为1cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (3)长为2cm ,宽为1cm 的矩形被两个半径为r 的圆所覆盖,r 的最小值是 cm , 这两个圆的圆心距是 cm.(2003年江苏省南京市中考试题)图4—5图4—6分析:本题首先要理解图形被圆所覆盖的定义,其次,可以推测正方形、等边三角形被一个半径为r 的圆所覆盖,r 取最小值时,显然这个圆就是正方形、等边三角形的外接圆.而第(3)题可把长为2cm ,宽为1cm 的矩形分割成两个边长为1 cm 的正方形,根据第(1)题,不难得到结论.解:(1)22; (2)33; (3)22,1. 说明:本题的合情推理是建立在空间想象的基础上,并把问题转化为多边形的外接圆问题.另外,还可以研究下列问题:1.如果边长为1cm ,有一个锐角是60°的菱形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?2.如果上低和腰长都是1cm ,下低长是2cm 的梯形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?【习题4】1.观察下列各式,你会发现什么规律?3×5=15,而15=42-1; 5×7=35,而35=62-1;11×13=143,而143=122-1; ……请你猜想到的规律用只含一个字母的式子表示出来: .(2000年山东省济南市中考试题)2.观察下列顺序排列的等式:9×0+1=1, 9×1+2=11, 9×2+3=21, 9×3+4=31, 9×4+5=41, ……猜想:第n 个等式(n 为正整数)应为 .(2003年北京市中考试题)3.观察下列各式: 1×3=12+2×1, 2×4=22+2×2, 3×5=32+2×3,……请你将猜想到的规律用自然数n (n ≥1)表示出来: .(2003年福建省福州市中考试题)4.观察以下等式:1×2=31×1×2×3;1×2+2×3=31×2×3×4;1×2+2×3+3×4=31×3×4×5;1×2+2×3+3×4+4×5=31×4×5×6;……根据以上规律,请你猜测:1×2+2×3+3×4+4×5+…+n ×(n +1)= .(2001年山东省威海市中考试题)5.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …… …… 28 26根据上面的排列规律,则2000应在( ).A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列(2001年湖北省荆州市中考试题)6.细心观察图形4—7,认真分析各式,然后解答问题. 21,21)1(12==+S ; 22,31)2(22==+S ; 23,41)3(32==+S ; ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 1 2+S 2 2+S 3 2+…+S 10 2的值.(2003年山东省烟台市中考试题)7.(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点, 如图4—8,|AB |=|OB |=|b |=|a -b |; 当A 、B 两点都不在原点时,①如图4—9,当点A 、B 都在原点右边时,则 |AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |; ②如图4—10,当点A 、B 都在原点左边时,则O (A ) B图4—8O B A图4—9O A B 图4—10O A 2 A 4A 1 …1 A 5S 3 S 5 S 2S 1 S 41 1 1A 6 A 3…图4—7|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |;③如图4—11,当点A 、B 在原点的两边时,则 |AB |=|OA |+|OB |=|a |+|b |=a +(-b )=|a -b |. 综上,数轴上A 、B 两点之间的距离|AB |=|a -b |.(2)回答相应问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 . ②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 . ③当代数式|x +1|+|x -2|取最小值时,x 相应的取值范围是 .(2002年江苏省南京市中考试题)8.如图4—12,在正方形ABCD 中,E 是AD 的中点,F 是 BA 延长线上一点, AF =21AB . (1)求证:△ABE ≌△ADF . (2)阅读下面材料:如图4—13,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置; 如图4—14,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置; 如图4—15,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置.象这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换. (3)回答下列问题:①在图4—12中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到 △ADF 的位置?答: . ②指出图4—12中线段BE 与DF 之间的关系.答: .(2000年江苏省南京市中考试题)9.在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .某学生研究这一问题时,发现了如下事实.EDCBADCBAEDCA图4—13 图4—14 图4—15FABC D E图4—12OA B a 图4—11图4—16E A B C O D图4—17 B C A D EOB C A 图4—18 D E O C A 图4—19 D F EO①当11121+==AC AE 时,有21232+==AD AO (如图4-16); ②当21131+==AC AE 时,有22242+==AD AO (如图4-17); ③当31141+==AC AE 时,有32252+==AD AO (如图4-18). 在图4-19中,当n AC AE +=11时,参照上述研究结论,请你猜想用n 表示ADAO的一般结论,并给出证明(其中n 是正整数).(2001年河北省中考试题)10.某厂要制造能装250毫升(1毫升=1厘米3 )饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部的厚度都是0.02厘米,顶部厚度是底部厚度的3倍,这是为了防止“呯”的一声打开易拉罐时把整个顶盖撕下来.设一个底面半径是x 厘米的易拉罐的用铝量是y 厘米3. (1)利用用铝量=底圆面积×底部厚度+顶圆面积×顶部厚度+侧面积×侧壁厚度)求y 与x 之间的函数关系式;(2②根据上表推测:要使用铝量y (厘米)的值尽可能小,底面半径x (厘米)的值所在范围是( ).A .1.6≤x ≤2.4B .2.4<x <3.2C .3.2≤x ≤4(2002年江苏省南京市中考试题)11.如图20,正方形ABCD 和正方形EFGH 对角线BD 、FH 都在直线l 上.O 1、O 2 分别是正方形的中心,O 1D =2,O 2F =1,线段O 1O 2的长叫做两个正方形的中心距....当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.(1)当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2 = . (2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程 ).(2003年江苏省徐州市中考试题)图4—20【习题4】1.解:(2n -1)(2n +1)=(2n )2-1. 2.解:9(n -1)+n =10(n -1)+1. 3.解: n (n +2)=n 2 +2n .4.解:1×2+2×3+3×4+4×5+…+n ×(n +1)=31×n ×(n +1)×(n +2).5.解:选C .6.解:(1)2,11)(2nS n n n =+=+. (2)∵OA 1=1,OA 2=2,OA 3=3,…, ∴OA 10=10.(3)S 1 2+S 2 2+S 3 2+…+S 10 2=2)21(+2)22(+2)23(+…+2)210(=41(1+2+3+…+10) =455. 7.解:(1)3,3,4;(2)∣x +1∣,-3或1; (3)-1≤x ≤2. 8.解:(1)证明:在正方形ABCD 中, ∵ AB=AD ,AD ⊥AB , ∴∠BAE =∠DAF =90°.∵AE =21AD ,AF =21AB , ∴AE =AF .∴△ABE ≌△ADF .(3)①答:△ABE 绕点A 逆时针旋转90度到△ADF 的位置. ②答:BE =DF ,且BE ⊥DF .9.解:根据题意,可以猜想:当n AC AE +=11时,有n AD AO +=22成立. 证明:过D 作DF ∥BE 交AC 于点F .∵D 是BC 的中点, ∴F 是EC 的中点. ∵n AC AE +=11, ∴n EC AE 1=. ∴nEF AE 2=.∴nAF AE +=22. ∵DF ∥BE , ∴nAF AE AD AO +==22. 10.解:(1)解:222250202.0302.0xx x x y ππππ⋅+⋅⋅+⋅=·0.02 =xx 102522+π. (2)B .11.解:.(1)2,1. (2)3.(3)①当1<O 1O 2<3时,两个正方形有2个公共点;②当O 1O 2=1时,两个正方形有无数个公共点;③当O 1O 2 <1,或O 1O 2>3时,两个正方形没有公共点.。
中考数学专题复习:阅读理解题【知识梳理】阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.【课前预习】1、计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如(1101)表示二进制数,转换为十进制形式是,那么将二进制(1111)转换为十进制形式是数( )A、8B、15C、20D、302、阅读下面材料并完成填空。
你能比较两个数和的大小吗?为了解决这个问题,先把问题一般化,即比较的大小(n≥1的整数)。
然后,从分析n=1,n=2,n=3,……,从这些简单情形入手,从中发现规律,经过归纳,猜想出结论。
⑴通过计算,比较下列①~③各组两个数的大小(在横线上填“>”“<”或“=” )1 ____2 ②____3 ③____④> ⑤ ⑥ ⑦⑵从第⑴小题的结果经过归纳,可以猜想出的大小关系是______________________________________⑶根据上面归纳猜想得到的一般结论,可以得到____(填“>”、“=”或“<”3、阅读下列材料:FEDCBA(图1) (图2) (图3) (图4)如图1,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置;如图2,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图3,以点A为中心,把△ABC旋转180°,可以变到△AED的位置。
中考冲刺:阅读理解型问题(提高)一、选择题1. (2016•绍兴)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.13262.任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:.例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A.1 B.2 C.3 D.4二、填空题3.阅读下列题目的解题过程:已知a、b、c为△ABC的三边长,且满足,试判断△ABC的形状.解:∵,(A)∴, (B)∴,(C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请写出该错误步骤的代号:________________.(2)错误的原因为:________________________.(3)本题的正确结论为:____________________.4.(2016•高县一模)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED ﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2;④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是__________________.三、解答题5.已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0又∵pq≠1,∴∴1-q-q2=0可变形为的特征所以p与是方程x2-x-1=0的两个不相等的实数根则根据阅读材料所提供的方法,完成下面的解答.已知:2m2-5m-1=0,,且m≠n,求:的值.6. (市北区二模)【阅读材料】完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.【问题探究】完成沿图1的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多少种不同的走法?(1)根据材料中的原理,从A点到M点的走法共有(1+1)=2种.从A点到C点的走法:①从A点先到N点再到C点有1种;②从A点先到M点再到C点有2种,所以共有(1+2)=3种走法.依次下去,请求出从A点出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法,算出如果直接从C点出发到达B点,共有多少种走法?请仿照图2画图说明.【问题深入】(3)在以上探究的问题中,现由于交叉点C道路施工,禁止通行,求从A点出发能顺了到达BB点的走法数?说明你的理由.7.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③.①②③回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组的解;(2)用阴影表示,所围成的区域.8. 我们学习过二次函数图象的平移,如:将二次函数的图象向左平移2个单位长度,再向下平移4个单位长度,所得图象的函数表达式是.类比二次函数图象的平移,我们对反比例函数的图象作类似的变换:(1)将的图象向右平移1个单位长度,所得图象的函数表达式为________,再向上平移1个单位长度,所得图象的函数表达式为________.(2)函数的图象可由的图象向________平移________个单位长度得到;的图象可由哪个反比例函数的图象经过怎样的变换得到?(3)一般地,函数(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?9. “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作轴和轴的平行线,两直线相交于点M ,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:(1)设、,求直线OM对应的函数表达式(用含的代数式表示).(2)分别过点P和R作轴和轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).10. 阅读下列材料:问题:如图1所示,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG,与PC的位置关系及的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD 的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示).答案与解析【答案与解析】一、选择题1.【答案】C;【解析】1×73+3×72+2×7+6=510.2.【答案】B;二、填空题3.【答案】(1)C;(2)错误的原因是由(B)到(C)时,等式两边同时约去了因式,而可能等于0;(3)△ABC是等腰三角形或直角三角形.4.【答案】①②③.【解析】(1)分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm,故①正确;(2)如答图1所示,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,∴sin∠EBC=,故②正确;(3)如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.故③正确;(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=8,NC=2,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.故④错误;故答案为:①②③.三、解答题5.【答案与解析】解:由2m2-5m-1=0知m≠0,∵m≠n,∴得根据的特征∴是方程x2+5x-2=0的两个不相等的实数根∴.6.【答案与解析】解:(1)∵完成从A点到B点必须向北走,或向东走,∴到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和,故使用分类加法计数原理,由此算出从A点到达其余各交叉点的走法数,填表如图1.答:从A点到B点的走法共有35种.(2)如图3,使用分类加法计数原理,算出从C点到B点的走法为6种;(3)方法一:可先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它,即得从A点到B点,但不经过交叉点C的走法数.完成从A点出发经C点到B点这件事可分两步,先从A点到C点,再从C点到B点,使用分类加法计数原理,算出从A点到C点的走法是3种,见图2;见图3,从C点到B点的走法为6种,再运用分步乘法计数原理,得到从A点经C点到B点的走法有3×6=18种.∴从A点到B点但不经过C点的走法数为35﹣18=17种.方法二:如图4:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段,运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数,∴从A点到B点并禁止经过C点的走法数为35﹣18=17种.7.【答案与解析】(1)如图所示,在坐标系中分别作出直线x=-2和直线y=-2x+2,这两条直线的交点是P(-2,6).则是方程组的解.(2)如阴影所示.8.【答案与解析】(1);(2)上,1;可转化为y=,它的图象可由反比例函数的图象先向右平移2个单位长度,再向上平移1个单位长度得到.(3)函数(ab≠0,且a≠b)可转化为.当a>0时,的图象可由反比例函数的图象向左平移a个单位长度,再向上平移1个单位长度得到;当a<0时,的图象可由反比例函数的图象向右平移-a个单位长度,再向上平移1个单位长度得到.9.【答案与解析】(1)设直线OM的函数关系式为.则∴.∴直线OM的函数关系式为.(2)∵的坐标满足,∴点在直线OM上.(或用几何证法,见《九年级上册》教师用书191页)∵四边形PQRM是矩形,∴SP=SQ=SR=SM=PR.∴∠SQR=∠SRQ.∵PR=2OP,∴PS=OP=PR.∴∠POS=∠PSO.∵∠PSQ是△SQR的一个外角,∴∠PSQ=2∠SQR.∴∠POS=2∠SQR.∵QR∥OB,∴∠SOB=∠SQR.∴∠POS=2∠SOB.∴∠SOB=∠AOB.(3)以下方法只要回答一种即可.方法一:利用钝角的一半是锐角,然后利用上述结论把锐角三等分的方法即可.方法二:也可把钝角减去一个直角得一个锐角,然后利用上述结论把锐角三等分后,再将直角利用等边三角形(或其它方法)将其三等分即可.方法三:先将此钝角的补角(锐角)三等分,再作它的余角.10.【答案与解析】(1)线段PG与PC的位置关系是PG⊥PC;.(2)猜想:(1)中的结论没有发生变化.证明:如图所法,延长GP交AD于点H,连接CH,CG.∵P是线段DF的中点,∴FP=DP.由题意可知AD∥FG,∴∠GFP=∠HDP.∵∠GPF=∠HPD,∴△GFP≌△HDP.∴GP=HP,GF=HD.∵四边形ABCD是菱形,∴CD=CB,∠HDC=∠ABC=60°.由∠ABC=∠BEF=60°,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,可得∠GBC=60°.∴∠HDC=∠GBC.∵四边形BEFG是菱形,∴GF=FB.∴HD=GB.∴△HDC≌△GBC.∴CH=CG,∠DCH=∠BCG.∴∠DCH+∠HCB=∠BCG+∠HCB=120°,即∠HCG=120°.∵CH=CG,PH=PG,∴PG⊥PC,∠GCP=∠HCP=60°.∴.(3).。
阅读理解、判断说理型专题训练B总分120分,时间90分钟一、细心填一填(每题3分,共21分)1.(绵阳)我们常用的数是十进制的数,而计算机程序处理中使用的是只有数码0和1的二进制数.这两者可以相互换算,如将二进制1101换算成十进制数应为1×23+1×22+0×21+ 1×20= 13,按此方式,则将十进制数25换算成二进制数应为__________. 2.(内江市)对于正数x ,规定f (x )=x 1x +,例如f (3)=33134=+,f (13)=1131413=+,计算f (12006)+ f (12005)+ f (12004)+ …f (13)+ f (12x )+ f (1)+ f (1)+ f (2)+ f (3)+ … + f ()+ f ()+ f ()= .3.(扬州)放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?” 小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?” 小明思考后回答:“你难不倒我,你现在加工了 千克.”图1 图24.(深圳)人民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21、……这就是著名的斐波那契数列.那么小聪上这9级台阶共有________________种不同方法.5.(嘉兴)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为时间()18工作量(kg )时间()7040工作量(kg )偶数时,结果为kn2(其中k 是使kn2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是_____.6.(内江)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数。
中考数学专题:阅读理解(整除问题)基本知识:用字母表示一个多位数,数的整除的特征,不定方程的整数解。
【基本题1】一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数。
【基本题2】求方程117x的所有正整数解+y3=21【基本题3】求方程22x的所有正整数解。
+y2=3【基本题4】一个整数的末三位数字组成的数与其末三位以前的数字组成的数之间的差是7的倍数时,这个整数可以被7整除吗?请证明你的判断。
【经典例题1】一个三位数是偶数且能能被7整除,求出所有这样的所有三位数【经典例题2】试说明把一个两位数的十位上的数字与个位上的数字互换位置后,所得的新两位数与原两位数的和能被11整除,所得的新两位数与原两位数之差能被哪个质数整除?说明理由。
1.一个三位正整数N,各个数位上的数字互不相同且都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数,所有这些两位数的和等于这个三位数本身,则称这样的三位数N为“公主数”,例如:132,选择百位数字1和十位数字3组成的两位数为13和31,选择百位数字1和个位数字2组成的两位数为12和21,选择十位数字3和个位数字2组成的两位数为32和23。
因为13+31+12+21+32+23=132,所以132是“公主数”。
一个三位正整数,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数为“伯伯数”。
(1)判断123是不是“公主数”?请说明理由。
(2)证明:当一个“伯伯数”xyz是“公主数”时,则x。
z2(3)若一个“伯伯数”与132的和能被13整除,求满足条件的所有“伯伯数”。
2.(巴蜀中学期末考试27题)一个三位正整数M,其各位数字互不相同且都不为0,若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“情谊数”,如:168的“情谊数”为618;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132。
中考数学阅读理解题试题练习题1. 为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为a -2b 、2a +b .例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,1D .1,1 2. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc dad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则x =__________.3. 阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数a 相乘:nn a a a a 记为个⋅.如23=8,此时,3叫做以2为底8的对数,记为()38log 8log 22=即.一般地,若()0,10>≠>=b a a b a n且,则n 叫做以a 为底b 的对数,记为()813.log log 4==如即n b b a a ,则4叫做以3为底81的对数,记为)481log (81log 33=即.问题:(1)计算以下各对数的值: ===64log 16log 4log 222 .(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log 16log 4log 222、、之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分)()0,0,10log log >>≠>=+N M a a N M a a 且(4)根据幂的运算法则:m n mna a a +=⋅以及对数的含义证明上述结论.4. 先阅读下列材料,然后解答问题: 从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.5. 式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-501)12(n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果).6. 定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位。
中考数学专题复习新定义阅读理解题(四)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、解答题1.对于自然数n ,在计算()()12n n n ++++时,各数位都不产生进位,则称这个自然数n 为“纯数”.例如:2020是纯数,因为计算202020212022++时,各数位都不产生进位.任意一个正整数m 都可以表示为:2m a b =(a 、b 均为正整数),在m 的所有表示结果中,当a b -最小时,规定:()2F m ab =,例如:221211223=⨯=⨯,∵11223->-,∵()1212F =.(1)计算()32F 的值,并判断()32F 是否为纯数,说明理由;(2)若()F x 比最大的三位数纯数小310,求x .2.阅读理解:把几个数用大括号括起来,中间用逗号断开,比如:{}3,2,{}2,01--,,我们称之为集合,其中大括号内的数称为该集合的元素.如果一个集合满足:只要其中有一个元素a ,使得23a -+也是这个集合的元素,我们把这样的集合称为自闭集合.例如:集合{}2,9,7-,因为2(2)37-⨯-+=,7恰好是这个集合的元素,所以{}2,9,7-是自闭集合.再如:集合{}1,3-,因为2(1)35-⨯-+=,而5不是这个集合的元素,且2333-⨯+=-,而3-也不是这个集合的元素,所以{}1,3-不是自闭集合(1)判断:集合12,42⎧⎫-⎨⎬⎩⎭, 自闭集合;(选填“是”或“不是”) (2)若集合{}3,x 和集合{}y -都是自闭集合,求x y +的值3.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.参考答案:1.(1)()3216F =;()32F 不是纯数,理由见解析;(2)11或121【解析】【分析】(1)仿照例子计算()32F ,再根据纯数的定义进行判断和说明即可;(2)由纯数的定义求出最大的三位数纯数,进而求得()F x ,再由()2F m ab =求出ab ,求得a b 、后根据2m a b =求出x 即可.【详解】(1)∵222321322842=⨯=⨯=⨯,1322842->->-,∵()3224216F =⨯⨯=,∵计算161718++时,要产生进位,∵()32F 不是纯数;(2)设最大三位数纯数为m ,∵最大的三位数为999,∵12999m m m ++++=,解得:332m =,即最大的三位数纯数为332,∵()F x 比最大的三位数纯数小310,∵()33231022F x =-=,即:222ab =,11ab =,∵a b 、均为正整数,∵111a b ==,或111a b ==,,∵2211111x a b ==⨯=或22111121x a b ==⨯=,∵x 的值为11或121.【点睛】本题考查实数运算的新定义问题,理解题意,将新定义的计算过程转换为常规运算过程是解题关键.2.(1)是;(2)当3x =-,1y =-时,4x y +=-;当0x =,1y =-时,1x y +=-;当1x =,1y =-时,0x y +=【解析】【分析】(1)直接利用自闭集合的定义分析得出答案;(2)直接利用自闭集合的定义分析得出答案.【详解】解(1)∵−2×(−12)+3=4且4是这个集合的元素∵集合12,42⎧⎫-⎨⎬⎩⎭,是自闭集合; 故答案为:是;(2)集合{}3,x 是自闭集合233x ∴-⨯+=,或233x -+=,或23x x -+=3x ∴=-,或0x =,或1x =集合{}y -是自闭集合2()3y y ∴--+=-解得:1y =-∴当3x =-,1y =-时,4x y +=-当0x =,1y =-时,1x y +=-当1x =,1y =-时,0x y +=【点睛】本题主要考查了有理数的运算,解决问题的关键是依据条件集合的定义进行计算. 3.(1)证明见解析;(2)当n =5时,一边长为37的直角三角形另两边的长分别为12,35.【解析】【分析】(1)根据题意只需要证明a 2+b 2=c 2,即可解答(2)根据题意将n =5代入得到a =12 (m 2﹣52),b =5m ,c =12 (m 2+25),再将直角三角形的一边长为37,分别分三种情况代入a =12 (m 2﹣52),b =5m ,c =12 (m 2+25),即可解答【详解】(1)∵a 2+b 2=(2n +1)2+(2n 2+2n )2=4n 2+4n +1+4n 4+8n 3+4n 2=4n 4+8n 3+8n 2+4n +1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∵a2+b2=c2,∵n为正整数,∵a、b、c是一组勾股数;(2)解:∵n=5∵a=12(m2﹣52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∵分三种情况讨论,∵当a=37时,12(m2﹣52)=37,解得m=(不合题意,舍去)∵当y=37时,5m=37,解得m=375(不合题意舍去);∵当z=37时,37=12(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∵m=7,把m=7代入∵∵得,x=12,y=35.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,35.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键。
中考专题(阅读理解题) 姓名 学号1.阅读以下材料:对于三个数a b c ,,,用{}M a b c ,,表示这三个数的平均数,用{}min a b c ,,表示这三个数中最小的数.例如:{}123412333M -++-==,,;{}min 1231-=-,,;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,,解决下列问题:(1)填空:{}min sin30cos 45tan30=,, ;如果{}min 222422x x +-=,,,则x 的取值范围为x ________≤≤_________. (2)①如果{}{}212min 212M x x x x +=+,,,,,求x ;②根据①,你发现了结论“如果{}{}min M a b c a b c =,,,,,那么 (填a b c ,,的大小关系)”.证明你发现的结论;③运用②的结论,填空:若{}{}2222min 2222M x y x y x y x y x y x y +++-=+++-,,,,, 则x y += .(3)在同一直角坐标系中作出函数1y x =+,2(1)y x =-,2y x =-的图象(不需列表描点).通过观察图象,填空:{}2min 1(1)2x x x +--,,的最大值为.2.(05陕西省) 阅读:我们知道,在数轴上,1x =表示一个点.而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图2-4-10可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组13x y =⎧⎨=⎩x在直角坐标系中,1x≤表示一个平面区域,即直线1x=以及它左侧的部分,如图2-4—11;21y x≤+也表示一个平面区域,即直线21y x=+以及它下方的部分,如图2—4—12.回答下列问题:在直角坐标系(图2-4—13)中,(1)用作图象的方法求出方程组222xy x=-⎧⎨=-+⎩的解.(2)用阴影表示222xy xy≥-⎧⎪≤-+⎨⎪≥⎩,所围成的区域.图2-4-12图2-4-11图2-4-10yxOy=2x+1yxO13y=2x+11P(1,3)O x y3。
阅读理解专题阅读理解型问题一般文字表达较长,信息量较大,各种关系错综复杂,往往是先给一个材料,或者介绍一个新的知识点,或者给出针对某一种题目的解法,然后再给合条件出题.解决这类题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含的数学知识、结论,或者提醒的数学规律,或者暗示的解题方法,然后展开联想,如何从题目给定的材料获得新信息、新知识、新方法进展迁移,建模应用,解决题目中提出的问题.一、新定义型例1 对于实数a ,b ,定义运算“*〞:a*b =22()().a ab a b ab b a b ⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2=42-4×2=8.假设x 1,x 2是一元二次方程x 2-5x +6=0的两个根,那么x 1*x 2=_________________.分析:用公式法或者因式分解法求出方程的两个根,然后利用新定义解之.解:可以用公式法求出方程x 2-5x +6=0的两个根是2和3,可能是x 1=2,x 2=3,也可能是x 1=3,x 2=2,根据所给定义运算可知原题有两个答案3或者-3..此题容易无视讨论思想,会少一种情况.评注:此题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考察了学生观察问题,分析问题,解决问题的才能. 跟踪训练:1.假设定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,那么((2,3))g f -等于〔 〕A .〔2,-3〕B .〔-2,3〕C .〔2,3〕D .〔-2,-3〕2.对于实数x,我们规定【x 】表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,假设5104=⎥⎦⎤⎢⎣⎡+x ,那么x 的值可以是〔 〕 A .40 B .45 C .51 D .56二、类比型例2 阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:01-x 3x 2 01x 2-x <,>++等 .那么如何求出它们的解集呢?根据我们学过的有理数除法法那么可知,两数相除,同号得正,异号得负,其字母表达式为:〔1〕假设a >0 ,b >0 ,那么b a >0,假设a <0 ,b <0,那么b a>0; 〔2〕假设a >0 ,b <0 ,那么b a <0 ,假设a <0,b >0 ,那么ba<0.反之,〔1〕假设b a>0,那么⎩⎨⎧⎩⎨⎧;<,<或,>,>0b 0a 0b 0a 〔2〕假设ba<0 ,那么__________或者_____________. 根据上述规律,求不等式 ﹙A ﹚ ,>012x +-x ﹙B ﹚2x 2-3x+2021<2021的解集. 分析:对于〔2〕,根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后解一元一次不等式组即可.对于〔A 〕,据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;对于〔B 〕,将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可. 解:〔2〕假设<0,那么或者故答案为或者;由上述规律可知,不等式﹙A ﹚转化为或者所以x >2或者x <﹣1.不等式﹙B ﹚即为2x 2-3x+1<0.∵2x 2-3x+1=﹙x -1﹚〔2x-1〕,∴2x 2-3x+1<0可化为﹙x -1﹚〔2x-1〕<0.由上述规律可知①10230x x ->⎧⎨-<⎩或者②10230x x -<⎧⎨->⎩解不等式组①,无解, 解不等式组②,得21<x<1. ∴不等式2x 2-3x+2021<2021的解集为21<x<1. 评注:此题本质是一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题关键.例4 阅读材料:关于三角函数还有如下的公式:sin 〔α±β〕=sinαcosβ±cosαsinβ;tan 〔α±β〕=tan tan 1tan tan αβαβ± .利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan〔45°-30°〕=tan 45-tan 301tan 45tan 30︒︒+︒︒=1==根据以上阅读材料,请选择适当的公式解答下面问题 〔1〕计算:sin15°;〔2〕一铁塔是标志性建筑物之一〔图1〕,小草想用所学知识来测量该铁塔的高度,如图2,小草站在与塔底A 相距7米的C 处,测得塔顶的仰角为75°,小草的眼睛离地面的间隔DC ,〕.分析:〔1〕把15°化为〔45°-30°〕以后,再利用公式sin 〔α±β〕=sinαcosβ±cosαsinβ计算,即可求出sin15°的值;〔2〕先根据锐角三角函数的定义求出BE 的长,再根据AB=AE+BE 即可得出结论. 解:﹙1﹚sin15°=sin〔45°-30°〕=sin45°cos30°-232162622-==〔2〕在Rt △BDE 中,∵∠BED=90°,∠BDE=75°,DE=AC=7米, ∴BE=DEtan ∠BDE=DEtan75°. ∵tan75°=tan〔45°+30°〕=tan 45tan 301tan 45tan 30︒+︒-︒︒=31(33)(33)126333(33)(33)1+++==+--3∴BE=7〔333≈27.7〔米〕. 答:乌蒙铁塔的高度约为.评注:此题考察了特殊角的三角函数值和仰角的知识,此题难度中等,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.例5阅读材料:小艳在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=〔1+〕2.擅长考虑的小艳进展了以下探究:设a+b=〔m+n〕2〔其中a,b,m,n均为正整数〕,那么有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小艳就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小艳的方法探究并解决以下问题:〔1〕当a,b,m,n均为正整数时,假设a+b=,用含m,n的式子分别表示a,b,得:a= ,b= ;〔2〕利用所探究的结论,找一组正整数a,b,m,n填空: + =〔 + 〕2;〔3〕假设a+4=,且a,m,n均为正整数,求a的值.分析:〔1〕根据完全平方公式的运算法那么,即可得出a,b的表达式;〔2〕首先确定m,n的正整数值,然后根据〔1〕的结论即可求出a,b的值;〔3〕根据题意,4=2mn,首先确定m,n的值,通过分析m=2,n=1或者者m=1,n=2,然后即可确定a的值.解:〔1〕∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn.〔2〕设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4,2,1,1.〔3〕由题意,得a=m2+3n2,b=2mn.∵4=2mn,且m,n为正整数,∴m=2,n=1或者者m=1,n=2.∴a=22+3×12=7,或者a=12+3×22=13.评注:此题主要考察二次根式的混合运算,完全平方公式,关键在于纯熟运算完全平方公式和二次根式的运算法那么.例6 阅读:大家知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图3-①.观察图①可以得出,直线x=1与直线y=2x+1的交点P 的坐标(1,3)就是方程组⎩⎨⎧=+-=012,1y x x 的解,所以这个方程组的解为⎩⎨⎧==.3,1y x 在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧局部,如图3-②. y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的局部,如图3-③.(5) 图3答复以下问题:(1)在如图3-④所示直角坐标系中,用作图象的方法求出方程组⎩⎨⎧+-=-=22,2x y x 的解;(2)用阴影表示不等式组⎪⎩⎪⎨⎧≥+-≤-≥0,22,2y x y x 所围成的区域.分析:通过阅读材料可知,要解决第(1)小题,只要画出函数x=-2和y=-2x+2的图象,找出它们的交点坐标即可;第(2)小题,该不等式组表示的区域就是直线x=-2及其右侧的局部,直线y=-2x+2及其下方的局部和y=0及其上方的局部所围成的公一共区域.解:〔1〕如图3-⑤所示,在坐标系中分别作出直线x=-2和直线y=-2x+2,观察图象可知,这两条直线的交点是P(-2,6). 所以⎩⎨⎧=-=6,2y x 是方程组⎩⎨⎧+-=-=22,2x y x 的解. 〔2〕如图3-⑤所示.评注:此题给出了一个全新的知识情景,通过阅读材料,可知材料中给出一种解决问题的方法,即方程组的解就是两个函数图象的交点坐标;不等式或者不等式组的解集可以用坐标系中图形区域直观地表示出来,不仅要掌握这种方法,还能在原解答的根底上,用这种方法解决类似的问题.解答这类问题的关键是弄清解题原理,详细分析解题思路,梳理前后的因果关系以及每一步变形的理论根据,然后给出问题的解答.通过该题的解答,我们理解了用函数的图象来解方程组或者不等式组,是解方程组或者不等式组的一种特殊方法. 跟踪训练:3.先阅读理解下面的例题,再按要求解答以下问题:解一元二次不等式x 2-4>0. 解:不等式x 2-4>0可化为 〔x+2〕〔x-2〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得 ①2020x x +>⎧⎨->⎩②2020x x +<⎧⎨-<⎩解不等式组①,得x >2,解不等式组②,得x <-2.∴〔x+2〕〔x-2〕>0的解集为x >2或者x <-2,即一元二次不等式x 2-4>0的解集为x >2或者x <-2.〔1〕一元二次不等式x 2-16>0的解集为 ; 〔2〕分式不等式103x x ->-的解集为 ;材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为23326A =⨯=.一般地,从n 个不同的元素中选取m 个元素的排列数记作mn A .(1)(2)(3)(1)m n A n n n n n m =---⋅⋅⋅-+ 〔m ≤n 〕.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个不同的元素中选取2个元素的组合,组合数为2332321C ⨯==⨯. 例:从6个不同的元素选3个元素的组合数为3665420321C ⨯⨯==⨯⨯.阅读后答复以下问题:〔1〕从5张不同的卡片中选出3张排成一列,有几种不同的排法? 〔2〕从某个学习小组8人中选取3人参加活动,有多少种不同的选法? 答案:1. 解:由题意,得f(2,-3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),应选B . 2 .C3.解:〔1〕不等式x 2-16>0可化为 〔x+4〕〔x-4〕>0,由有理数的乘法法那么“两数相乘,同号得正〞,得①4040x x +>⎧⎨->⎩或者②4040x x +<⎧⎨-<⎩解不等式组①,得x>4,解不等式组②,得x<-4.∴〔x+4〕〔x-4〕>0的解集为x>4或者x<-4,即一元二次不等式x2-16>0的解集为x>4或者x<-4.〔2〕∵13xx->-,∴1030xx->⎧⎨->⎩或者1030xx-<⎧⎨-<⎩解得x>3或者x<1.4.解:〔1〕3554360A=⨯⨯=;〔2〕3887656 321C⨯⨯==⨯⨯.励志赠言经典语录精选句;挥动**,放飞梦想。
阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3. (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019=2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019 =2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x2-x+3x+1=x(x+1)-2(x+1)+5x+1=x(x+1)x+1-2(x+1)x+1+5x+1=x-2+5x+1.这样,分式x2-x+3x+1就拆分成一个整式x-2与一个分式5x+1的和的形式.解决问题:(1)将分式x2+6x-3x-1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;(2)已知整数x使分式2x2+5x-20x-3的值为整数,则满足条件的整数x=________;(3)若关于x的方程2x2+(1-2a)x+(4-3a)=0有整数解,求正整数a的值.解(1)x+7+4x-1[解法提示]x2+6x-3x-1=(x-1)2+8(x-1)+4x-1=x-1+8+4x-1=x+7+4x-1.故结果为x+7+4x-1.(2)2,4,16,-10 [解法提示]2x2+5x-20x-3=2x2-6x+11x-33+13x-3=2x(x-3)+11(x-3)+13x-3=2x+11+13x-3.要使原式的值为整数,则13x-3为整数,故x=2,4,16,-10.(3)∵2x2+(1-2a)x+(4-3a)=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎨⎧ x =-1,a =5或⎩⎨⎧ x =-2,a =-10或⎩⎨⎧ x =2,a =2或⎩⎨⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值. 解:设2m 2+n 2=t ,则原方程变为(t +1)(t -1)=80,整理得t 2-1=80,t 2=81,∴t =±9,因为2m 2+n 2>0,所以2m 2+n 2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x ,y 满足(2x 2+2y 2+3)(2x 2+2y 2-3)=27,求x 2+y 2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解 (1)令2x 2+2y 2=t ,则原方程变为(t +3)(t -3)=27,整理得,t 2-9=27,t 2=36.t =±6.∵2x 2+2y 2≥0,∴2x 2+2y 2=6,∴x 2+y 2=3.(2)设四个连续正整数为k -1,k ,k +1,k +2(k ≥2且k 为整数).由题得(k -1)k (k +1)(k +2)=11880,∴(k -1)(k +2)k (k +1)=11880,∴(k 2+k -2)(k 2+k )=11880.令t =k 2+k ,则(t -2)·t =11880,t 2-2t -11880=0,∴t 1=110,t 2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x-4因式分解的结果为(x +1)(x +2)(x -2),当x =15时,x +1=16,x +2=17,x -2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎨⎧ m -3n =5,n =17,解得⎩⎨⎧ m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎨⎧ m =1,n =2或⎩⎨⎧ m =5,n =1,∴a 的值为734或770.8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17. (1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎨⎧ a +b =3,a -b =2或⎩⎨⎧ a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =15,a -b =3或⎩⎨⎧ a +b =9,a -b =5或⎩⎨⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎨⎧ a =9,b =6或⎩⎨⎧ a =7,b =2或⎩⎨⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =71,a -b =1,解得⎩⎨⎧ a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =92,a -b =1或⎩⎨⎧ a +b =46,a -b =2或⎩⎨⎧ a +b =23,a -b =4. 解得⎩⎨⎧ a =24,b =22.∴F (t )=1112. ③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =24,a -b =1或⎩⎨⎧ a +b =12,a -b =2或⎩⎨⎧ a +b =8,a -b =3或⎩⎨⎧ a +b =6,a -b =4.解得⎩⎨⎧ a =7,b =5或⎩⎨⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15. ∴F (t )的最大值为3536. 9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接EC ,请写出∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC 中,∠ABC =∠ACB =45°,∠BDC =90°.若BD =3,CD =5,请直接写出AD 的长.解 (1)①60° ②AC =CD +CE[解法提示] 由题意,得△ABC 和△ADE 均为等边三角形,∴AB =AC =BC ,AD =AE ,∠BAC =∠DAE =∠B =60°.∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE .∴△BAD ≌△CAE (SAS).∴∠ACE =∠B =60°,BD =CE .∴AC =BC =CD +BD =CD +CE .(2)∠ACE =45°,2AC =CD +CE .理由:由题意,得∠BAC =∠DAE =90°,AB =AC ,AD =AE .∴∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE .∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示] 过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
中考数学专题:阅读理解题专题中考数学专题9 阅读理解题专题【前言】新标以中考题型越越活,阅读理解题出现在数学当中就是最大的一个亮点。
不同以往的单纯“给条”t“求结果”式的题目,阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条出题。
对于这种题说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。
所以如何读懂题以及如何利用题就成为了关键,让我们先看以下的例题。
【例1】请阅读下列材料问题:如图1,在等边三角形AB内有一点P,且PA=2,PB= ,P=1.求∠BP度数的大小和等边三角形AB的边长.李明同学的思路是:将△BP绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′=10°,而∠BP=∠AP′=10°.进而求出等边△AB的边长为.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABD内有一点P,且PA= ,BP= ,P=1.求∠BP度数的大小和正方形ABD的边长.【思路分析】首先仔细阅读材料,问题中小明的做法总结起就是通过旋转固定的角度将已知条放在同一个(组)图形中进行研究。
旋转60度以后BP就成了BP`,P成了P`A,借助等量关系BP`=PP`,于是△APP`就可以计算了至于说为什么是60°,则完全是因为大图形是等边三角形,需要用60度去构造另一个等边三角形。
看完这个,再看所求的问题,几乎是一个一模一样的问题,只不过大图形由三角形变成了正方形。
那么根据题中所给的思路,很自然就会想到将△BP旋转90度看看行不行。
旋转90度之后,成功将P挪了出,于是很自然做AP`延长线,构造出一个直角三角形,于是问题得解。
说实话如果完全不看材料,在正方形内做辅助线,当成一道普通的线段角计算问题也是可以算的。
但是借助材料中已经给出的旋转方法做这道题会非常简单快捷。
大家可以从本题中体会一下领会材料分析方法的重要性所在。
【解析】(1)如图,将△BP绕点B逆时针旋转90°,得△BP′A,则△BP≌△BP′A.∴AP′=P=1,BP=BP′= .连结P P′,在Rt△BP′P中,∵BP=BP′= ,∠PBP′=90°,∴P P′=2,∠BP′P=4°.在△AP′P中,AP′=1,P P′=2,AP= ,∵,即AP′ 2 + PP′ 2 = AP2.∴△AP′P是直角三角形,即∠A P′ P=90°.∴∠AP′B=13°.∴∠BP=∠AP′B=13°.…(2)过点B作BE⊥AP′ 交AP′ 的延长线于点E.∴∠EP′ B=4°∴EP′=BE=1∴AE=2∴在Rt△ABE中,由勾股定理,得AB= .∴∠BP=13°,正方形边长为.【例2】若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:我们把它们称为根与系数关系定理如果设二次函数的图象与x轴的两个交点为利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:请你参考以上定理和结论,解答下列问题:设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形(1)当为等腰直角三角形时,求(2)当为等边三角形时,(3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?【思路分析】本题也是较为常见的类型,即先给出一个定理或结论,然后利用它们去解决一些问题。
题干中给出抛物线与X轴的两交点之间的距离和表达式系数的关系,那么第一问要求取何值时△AB为等腰直角三角形于是我们可以想到直角三角形的性质就是斜边中线等于斜边长的一半斜边中线就是顶点的纵坐标,而斜边恰好就是两交点的距离于是将作为一个整体,列出方程求解第二问也是一样,把握等边三角形底边与中线的比例关系即可第三问则可以直接利用第一问求得的值求出,然后设出平移后的解析式,使其满足第二问的结果即可注意左右平移是不会改变度数的,只需上下即可。
【解析】.⑴解:当为等腰直角三角形时,过作,垂足为,则∵抛物线与轴有两个交点,∴,(不要忘记这一步的论证)∴∵又∵,∵,∴∴(看成一个整体)∴∴…⑵当为等边三角形时,⑶∵,∴.即,∴因为向左或向右平移时,的度数不变,所有只需要将抛物线向上或向下平移使,然后向左或向右平移任意个单位即可.设向上或向下平移后的抛物线解析式为:,∵平移后,∴,∴.∴抛物线向下平移个单位后,向左或向右平移任意个单位都能使的度数由变为【例3】阅读下列材料:小明遇到一个问题:如图1,正方形中,、、、分别是、、和边上靠近、、、的等分点,连结、、、,形成四边形.求四边形与正方形的面积比(用含的代数式表示).小明的做法是:先取,如图2,将绕点顺时针旋转至,再将绕点逆时针旋转至,得到个小正方形,所以四边形与正方形的面积比是;然后取,如图3,将绕点顺时针旋转至,再将绕点逆时针旋转至,得到个小正方形,所以四边形与正方形的面积比是,即;……请你参考小明的做法,解决下列问题:(1)在图4中探究时四边形与正方形的面积比(在图4上画图并直接写出结果);(2)图是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图中画出并指明拼接后的正方形).【思路分析】本题属于典型的那种花10分钟读懂材料画1分钟就可以做出题的类型。
材料给出的方法相当精妙,考生只要认真看过去并且理解透这个思路,那么不光是这道题可以做,以后碰见类似的题目都可以用这种方法。
材料中所给方法就是将周边的四个三角形其中的两个旋转90°,将三角形放在矩形当中去讨论面积。
事实上无论是几等分点,所构造出的四个小三角形△AD,△ABN,△BP,△QD都是全等的,并且都是90度,那么他们旋转以后所对应的就是两个矩形,如图三中的BN`P和`DQ。
而矩形的面积恰好和中间正方形的面积有联系(想想看,是怎样用N等分点去证明面积比例的)于是顺理成当N等于4的时候,去构造一个类似的网格,第一问就出了。
至于第二问和裁剪问题沾点边,完全就是这个技巧方法的逆向思考,重点就在于找出这个多边形是由哪几部分构成。
于是按下图,连接B,截外接矩形为两个全等的直角三角形,然后旋转即可。
说白了,这种带网格的裁剪题,其实最关键的地方就在于网格全是平行线,利用平行线截线段的比例性质去找寻答案。
【解析】四边形与正方形的拼接后的正方形是正方形.面积比是.【例4】阅读:如图1,在和中,, , 、、、四点都在直线上,点与点重合连接、,我们可以借助于和的大小关系证明不等式:()证明过程如下:∵即∴∴解决下列问题:(1)现将△沿直线向右平移,设,且如图2,当时, 利用此图,仿照上述方法,证明不等式:()(2)用四个与全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式请你画出一个示意图,并简要说明理由【思路分析】本题是均值不等式的一种几何证明方法。
材料中的思路就是利用两个共底三角形的面积构建不等式,利用证明。
其中需要把握的几个点就是(b-a)是什么,以及如何通过(b-a)造出。
首先看第一问说要平移△DEF,在平移过程中,DE的长度始终不变,EF 垂直于的关系也始终不变。
那么此时(b-a)代表什么?自然就是BD 和ED之和了。
于是看出值。
接下就是找那两个可以共底的三角形,由于材料所给提示,我们自然想到用BD做这个底,而高自然就是AB和EF。
于是连接AD,△ABD和△BDF的面积就可以引出结果了。
第二问答案不唯一,总之就是先调整出(b-a)可以用什么表达,然后去找b和a分别和这个(b-a)的关系,然后用面积表达出的式子就可以了,大家可以继这个思路多想想。
【解析】(1)证明:连接、延长BA、FE交于点I∵,∴,即∴∴四个直角三角形的面积和,大正方形的面积∵,∴∴【例】阅读下列材料:将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形(要求:无缝隙且不重叠)请你参考以上做法解决以下问题:(1)将图4的平行四边形分割成面积相等的八个三角形;(2)将图的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明【思路分析】这种拼接裁剪题目往往都是结合在阅读理解题中考察,结合网格,对考生的发散思维要求较强。
本题材料中将平行四边形裁减成8份然后重新组成两个平行四边形。
要保证平行就需要这些小四边形的边长都是平行且相等的。
第一问是面积相等,那么直接利用中点这一个重要条去做。
第二问是分割为能重新组成平行四边形的三角形,那么就要想如何利用三角形去构建平行和相等的关系呢?于是可以想到平行四边形的对角线所分的三角形恰好也就满足这种条。
于是从平行四边形的对角线出发,去拆分出8个小三角形。
具体答案有很多种,在此也不再累述。
【总结】这种阅读理解题是近年中考题的新趋势,如果没有材料直接去做的话,往往得不到思路。
但是如果仔细理解材料中所给的内容,那么就会变得非常简单。
这种题的重点不在于考察解题能力,而在于考察分析,理解和应用能力。
专门去找大量的类似题目去做倒也不必,而培养审题,分析的能力才是最重要的。
考生拿到这种题,第一就是要静下心慢慢看,切记不可图方便而草草看完材料就去做题,如果这样往往冥思苦想半天还要回看,浪费了大量时间。
裁剪问题和拼接问题也是经常出现在此类问题当中的,面对这种题要把握好构成那些等量关系的要素,如中点,N等分点等特殊的元素。
综合说只要仔细理解材料中的意图,那么这一部分的分数十分好拿,考生不用太过担心。
第二部分发散思考【思考1】几何模型:条:如下左图,、是直线同旁的两个定点.问题:在直线上确定一点,使的值最小.方法:作点关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为,点在上,,,是上一动点,则的最小值是___________;(3)如图3,,是内一点,,分别是上的动点,则周长的最小值是___________.【思路分析】利用对称性解题的例题。
前两个图形比较简单,利用正方形和圆的对称性就可以了。
第三个虽然是求周长,但是只要将这个题看成是从P点到Q,然后到R再折回的距离最小,当成是那种“将军饮马”题目去做就可以了。
【思考2】直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形,方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形【思路分析】材料的方法中,如果延长中位线,并且由底边顶点做中位线的垂线。