第一章航空发动机燃烧室概述
- 格式:ppt
- 大小:2.48 MB
- 文档页数:35
航空发动机燃烧室设计研发体系0 引言航空发动机被比喻为飞机的“心脏”,而燃烧室可以说是“心脏”的“心脏”。
燃烧室的作用是将化学能(燃油加空气)转化为燃烧产物和剩余的未燃空气的热能(温度升高),燃烧室接受压气机流出的高压空气,并与燃油燃烧产生热能,为涡轮提供均匀混合的高温燃气,由涡轮输出驱动压气机工作所需的功率,这就决定了燃烧室是发动机的“心脏”,也就是飞机“心脏”的“心脏”。
目前,航空发动机燃烧室朝着军用高油气比燃烧室和民用低污染燃烧室方向发展。
在军用燃烧室方面,美国F135 涡扇发动机(装备F35 战斗机)的燃烧室油气比达到0.046,而美国下一步研发的燃烧室油气比要达到0.062。
在民用燃烧室方面,GE 公司研制的双环预混旋流器(Twin Annular Premixing Swirler,TAPS)燃烧室具有很低的污染物排放水平,TAPS Ⅰ(用于GENX 发动机,装备B-787 飞机)和TAPS Ⅱ(用于Leap-1A、Leap-1B和Leap-1C 发动机,装备A320neo、B737Max 和C919 飞机)的NOx 排放分别比CAEP6 标准低36%和50%,近期取得适航证的TAPS Ⅲ(用于GE9X 发动机,装备B777X 飞机)的NOx排放要求比CAEP6标准低75%。
航空发动机衍生燃气轮机燃烧室的发展方向也是低污染,要求在换算为15%氧浓度(质量分数)时,在50%~100%工况内(以后可能会要求25%~100%)的每一工况点,天然气燃料的NOx 排放要低于25×10-6,CO 排放要低于50×10-6;对柴油为燃料的燃气轮机燃烧室,NOx 排放要低于60×10-6,CO 排放要低于100×10-6。
燃气轮机燃烧室的另外一个主要要求要求是长寿命,要求第1 次大修前的寿命为3000~10000 h。
中国航空发动机与燃气轮机的设计研发起步较晚、发展较慢,其燃烧室与国外先进水平差距较大。
cf188发动机说明书CF188发动机说明书第一章介绍本章主要介绍CF188发动机的概述、用途、技术指标和主要特点。
1.1 概述CF188发动机是一款先进的航空发动机,采用了最新的技术和工艺,具有出色的性能和可靠性。
1.2 用途CF188发动机适用于各种型号的军用飞机,包括喷气式和涡轮螺旋桨飞机等。
1.3 技术指标CF188发动机的主要技术指标包括最大推力、燃油消耗率、推力重量比等。
1.4 主要特点CF188发动机具有以下主要特点:- 高效率: 采用先进的燃烧室和涡轮,提高了燃烧效率和推力重量比。
- 低噪音: 通过优化设计和先进的降噪技术,减少了发动机运行时的噪音。
- 可靠性: 采用了先进的故障检测和排除系统,提高了发动机的可靠性和维修性。
第二章结构与工作原理本章主要介绍CF188发动机的结构组成和工作原理。
2.1 发动机结构CF188发动机由压气机、燃烧室、涡轮和喷管等组件组成。
2.2 工作原理CF188发动机的工作原理是通过压气机将空气压缩,然后与燃料混合燃烧,产生高温高压气体驱动涡轮转动,最后由喷管排出高速气流。
第三章维护和维修本章主要介绍CF188发动机的维护和维修方法,包括例行检查、故障排除和零部件更换等。
3.1 例行检查CF188发动机的例行检查包括外观检查、润滑系统检查、燃油系统检查和故障记录等。
3.2 故障排除CF188发动机的故障排除方法包括故障检测、故障诊断和故障排除等。
3.3 零部件更换CF188发动机的常见零部件更换包括涡轮叶片、燃烧室和喷管等。
第四章安全与环保本章主要介绍CF188发动机的安全性能和环保措施。
4.1 安全性能CF188发动机具有可靠的安全性能,采用了多重安全保护措施,包括高温报警、故障自动切断和紧急停机等。
4.2 环保措施CF188发动机符合国际环保标准,采用了先进的减排技术,减少了有害气体和颗粒物的排放。
附件:1: CF188发动机技术参数表2: CF188发动机维护手册3: CF188发动机故障排除流程图法律名词及注释:1:技术指标:指描述产品、设备等技术性能的参数和要求。
航空发动机燃烧室设计与优化第一章:引言航空发动机是飞行器的动力来源,燃烧室是发动机内部最核心的部件之一。
燃烧室的设计和优化对于发动机的性能、燃烧效率和环境影响起着至关重要的作用。
本文将重点探讨航空发动机燃烧室的设计和优化方法。
第二章:燃烧室构造与工作原理2.1 燃烧室的分类与结构燃烧室可以根据其结构和工作方式进行分类。
常见的分类包括缸内燃烧室和缸外燃烧室。
缸内燃烧室即燃料和氧化剂在缸内混合并燃烧,而缸外燃烧室的燃料和氧化剂混合并在喷嘴处点火燃烧。
2.2 燃烧室的工作原理燃烧室是将燃料和氧化剂混合并燃烧产生高温高压气体,驱动涡轮和产生推力。
燃烧室内部的形状和颗粒分布会直接影响混合燃料的燃烧过程。
优化燃烧室设计可以提高燃烧效率,降低发动机的燃料消耗和排放。
第三章:燃烧室设计的要求和挑战3.1 燃烧室的热负荷和热量损失燃烧室内部温度极高,需要经过设计合理的冷却系统来降低热负荷和热量损失。
热量损失会导致发动机的效率下降和部件的损坏,因此燃烧室设计需要考虑良好的散热和冷却效果。
3.2 燃烧室的气动特性燃烧室内部的气动特性直接影响混合燃料和氧化剂的分布和燃烧效率。
燃烧室设计需要考虑气流的均匀性和速度分布,避免过度湍流和压力波动。
第四章:燃烧室设计与优化方法4.1 流场模拟和计算流体力学利用计算流体力学方法可以对燃烧室内部流场进行模拟和分析。
通过优化燃烧室的形状和喷嘴设计,可以改善气流的分布和流动性能,提高燃烧效率。
4.2 燃烧室材料与冷却技术燃烧室的材料选择和冷却技术对于热负荷和热量损失具有重要影响。
使用高温合金和有效的冷却系统可以提高燃烧室的寿命和稳定性。
第五章:燃烧室设计案例分析5.1 燃烧室进口喷嘴形状优化通过改变进口喷嘴的形状,可以改善气流的分布和速度分布,提高燃烧室的效率。
5.2 冷却系统的优化设计优化冷却系统的设计可以提高燃烧室的散热效果和降低热负荷,从而提高发动机的性能和稳定性。
第六章:总结与展望本文探讨了航空发动机燃烧室的设计与优化方法。
航空发动机原理构造第一章、燃气涡轮发动机的工作原理1、燃气涡轮喷气发动机:将燃油燃烧释放的热能转化为机械能的装置。
它既是热机(将燃油化学能转化为热能),又是推进器(将热能转化为机械能)。
冲压式2、发动机涡喷涡轮式涡扇(包含桨扇)涡轴涡桨3、发动机分类依据:氧化剂来源;氧化剂形态;有无压气机4、燃气涡轮喷气发动机(Turbojet Engine):以空气作为工质。
与航空活塞发动机相比这种发动机具有结构简单、重量轻、推力大、推进效率高,而且在很大的飞行速度范围内,发动机的推力随飞行速度的增加而增加。
5、涡轮螺旋桨发动机(Advanced Turbojet-propeller Engine):组成:燃气轮机、螺旋桨、减速器工作原理:空气通过进气道进入压气机;压气机以高速旋转的叶片对空气做功压缩空气,提高空气的压力;高压空气在燃烧室内和燃油混合,燃烧,将化学能转化为热能,形成高温高压的燃气;高温高压的燃气在涡轮内膨胀,推动涡轮旋转输出功去带动压气机和螺旋桨,大量的空气流过旋转的螺旋桨,其速度有一定的增加,使螺旋桨产生相当大的压力;气体流过发动机,产生反作用推力。
优点:综合了涡喷和涡桨的优点,而且在较低的飞行速度下,具有较高的推 进效率,所以它在低压音速飞行时具有较好的经济性。
6、涡轮风扇发动机(Turbofan Engine ):组成:进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压 涡轮、喷管工作原理:工作情况与涡喷发动机相同。
推力来源是风扇和内涵道推力。
涡 轮、燃烧室、尾喷管与涡喷发动机相同,压气机还可以提高发动 机性能。
优点:与涡喷发动机相比,涡扇发动机具有推力大,推进效率高,噪音低等 特点。
7、涡扇发动机有内外连个涵道。
8、涵道比:外涵流量与内涵流量的比值,用符号B 表示。
q q m m 21/B 。
9、涵道比越大,推力越大。
10、直升机主要使用涡轮轴发动机;涡轮风扇发动机主要用于民机;涡轮喷气发 动机主要用于军机。
航空发动机燃烧室机匣的组成及选材分析3.1航空发动机的基本组成发动机是飞机的“心脏”,是推动飞机和整个航空工业蓬勃发展的源动力,20世纪下半叶世界航空动力呈加速发展态势,21世纪航空动力面临新的机遇,它将以更快的速度向前发展,并促使飞机和航空工业出现新的飞跃。
一般而言发动机由点火装置、燃烧室、装药和喷管四部分组成。
3.1.1点火装置发动机点火装置工作的基本要求是: 能保证主装药准确、可靠地点燃、点火延迟时间要短。
它的基本失效模式有发火失效和对发动机点火失效两种。
以往的型号研制经验表明,一般情况下,众多的结构可靠性评估续计变量中,以在规定时间内达到的点火压强为最佳统计变量。
3.1.2燃烧室燃烧室是燃料与空气混合并进行燃烧的地方,燃烧室工作的好坏直接影响发动机的性能,并关系到发动机的安全可靠性。
3.1.3装药一般选取受内压时的壳体应力为统计变量。
发动机药柱分为自由装填式和壳体粘接式两类。
对于自由装填式药柱,强度是足够的,通常不需要进行结构完整性分析。
对于壳体粘接式药柱,特别是内孔形状复杂的药柱,通常存在较严重的药柱强度问题,因为药柱从制造到使用的过程中,其内部会产生各种机械应力。
药柱失效的基本故障或基本机理,决定最终结果造成气体生成速率过低或过高。
在化学和结构两方面的损坏都表现为造成过高的壳体内压。
经验及分析表明,当壳体粘接式药柱受热载荷和工作压强载荷时,工作内压是应研究的主要载荷,以延伸率作为药柱结构可靠性评估的统计变量较为合理;而受加速度载荷和自重载荷时。
以强度作为药柱结构可靠性评估的统计变量较为合理。
上述观点已为多年来发动机的研制实践所证实。
3.1.4喷管航空发动机离心喷嘴主要有喷嘴壳体、旋流器、旋流室和喷口组成。
根据其自身工作条件及环境影响,其材料主要选用马氏体钢材2Cr13、3Cr13和4Cr13三种类型。
一般离心喷嘴有四种类型:单路、双路单室单喷口、双路双室单喷口及双路双室双喷口,分别具有不同的结构设计、性能和用途。
《航空发动机结构分析》课后思考题答案第一章概论1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。
答:2.涡喷、涡扇、军用涡扇分别是在何年代问世的?答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B);涡扇 1960~1962军用涡扇 1966~19673.简述涡轮风扇发动机的基本类型。
答:不带加力,带加力,分排,混排,高涵道比,低涵道比。
4.什么是涵道比?涡扇发动机如何按涵道比分类?答:(一)B/T,外涵与内涵空气流量比;(二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn)5.按前后次序写出带加力的燃气涡轮发动机的主要部件。
答:压气机、燃烧室、涡轮、加力燃烧室、喷管。
6.从发动机结构剖面图上,可以得到哪些结构信息?答:a)发动机类型b)轴数c)压气机级数d)燃烧室类型e)支点位置f)支点类型第二章典型发动机1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指标。
答:涡喷表2.1涡扇表2.3军用涡扇表2.22.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术?答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。
3.ALF502发动机是什么类型的发动机?它有哪些有点?答:ALF502,涡轮风扇。
优点:●单元体设计,易维修●长寿命、低成本●B/T高耗油率低●噪声小,排气中NOx量低于规定第三章压气机1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些?答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂;(二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。