浅谈车联网技术在电动车领域的应用
- 格式:doc
- 大小:14.50 KB
- 文档页数:3
探讨智能网联汽车技术发展现状及前景
随着人工智能技术的不断进步,智能网联汽车已经成为了汽车行业发展的趋势。
智能
网联汽车是指将车载设备与互联网连接起来,用人工智能技术实现车辆自动驾驶、交通管
理和信息导航等功能的一种新型汽车。
目前,智能网联汽车技术已经取得了一定的进展。
一些大型汽车制造商如特斯拉、宝马、奔驰等提出了自动驾驶的概念,智能网联汽车技术已经被应用于城市交通管理、出租
车调度、高速公路交通管理,其发展前景广阔。
智能网联汽车技术的发展趋势有以下几个方面:
1.自动驾驶技术的发展。
目前,自动驾驶技术已经取得了突破性进展。
未来,自动驾
驶技术将成为智能网联汽车的核心技术,成为车辆安全的重要保障。
2.智能交通管理的应用。
通过智能网联汽车技术,可以实现车辆之间的实时通信和数
据共享,提高车辆行驶效率和安全性。
同时,智能交通管理技术也可以提高交通拥堵的控
制能力。
3.智能化服务的发展。
智能网联汽车技术可以实现车辆对驾驶者和乘客的行为、语言、情感等信息的识别和处理,从而提供更加智能化的服务,改善用户的使用体验。
4.物联网技术的应用。
智能网联汽车将与物联网技术结合,实现车辆与其他设备的互通,改变驾驶体验和出行方式,提高旅游、消费等方面的利用率。
总之,智能网联汽车技术是未来汽车发展的方向,其发展前景广阔。
随着人工智能技
术的不断进步,智能网联汽车的安全性、智能化程度、交通管理和物联网应用等方面将得
到不断提升。
同时,智能网联汽车技术的发展,也将推动汽车行业的转型升级,形成新的
产业生态。
车联网技术的发展与前景简介车联网作为信息技术的一项重要应用,在汽车领域逐渐得到广泛应用。
通过无线通讯技术、车载设备和云计算等技术手段,汽车自身得以实现联网,促进车辆和人的互联互通,早已超越传统的交通工具概念,成为一种新型的机器终端。
本文将围绕车联网技术的发展和前景这一主题展开阐述。
一、车联网技术的发展历程车联网技术的发展历程可以追溯到上世纪七八十年代,当时全球互联网刚刚开始崛起,美国汽车制造商便开始了自动驾驶车辆的研究,并开发出能够通过计算机控制实现驾驶的智能车。
该车搭载着各种传感器和计算机系统,可以根据地图信息和实时路况进行自主导航行驶,成为当时最先进的自动驾驶车辆之一。
随着无线通讯技术、车载设备和云计算等技术的逐步成熟,车联网技术也随之迅速发展。
2012年,车联网应用初现,人工智能和语音控制成为重要的技术支撑。
2014年,苹果公司发布了CarPlay系统,让车辆用户可以用Swift语言控制汽车上的各种功能,推动了车载操作系统的发展。
2018年,自动驾驶科技大佬特斯拉的Model S成功自动驾驶完成了从洛杉矶到纽约的旅程,显示出自动驾驶技术的潜力和未来发展方向。
二、车联网技术的应用场景车联网技术的应用场景非常广泛,基本可以覆盖汽车行业中的所有领域。
以下是几个常见的应用场景:1.自动驾驶:以无人驾驶为代表的自动驾驶技术,是车联网技术的重要分支之一,可以实现自主导航、实时路况监测等功能。
2.智能交通:通过车联网技术的支持,道路交通管理、车辆流量控制、智能路灯等各种场景的智能化操作得以实现。
3.车辆安全:车联网技术可将车辆与人员互联互通,使车辆自身获取数据实时监测车辆状态,诊断故障,减少事故发生的概率,保障人员安全。
4.车辆电子商务:车联网技术为汽车电子商务提供了强有力的支撑,从汽车线上购买到线下取车及售后,整个流程涵盖了消费者所需的所有环节。
三、车联网技术的未来前景车联网技术与人工智能、5G等众多新兴技术已经开始渗透到我们的生活中,未来车联网技术有望带来以下几个方面的发展:1.车辆共享:车辆共享业务已经逐渐成为热门话题,车联网技术的发展将进一步推动共享出行模式的普及。
第1篇随着科技的飞速发展,汽车产业正在经历一场前所未有的变革。
智能车联网作为汽车产业的重要组成部分,已经成为推动汽车行业转型升级的关键力量。
本文将详细探讨智能车联网解决方案,从技术原理、应用场景、实施步骤以及未来发展趋势等方面进行全面分析。
一、技术原理1. 通信技术智能车联网解决方案的核心是通信技术,主要包括无线通信、有线通信和卫星通信。
无线通信技术包括4G、5G、Wi-Fi等,有线通信技术包括以太网、光纤等,卫星通信技术则通过卫星信号实现全球范围内的通信。
2. 网络技术智能车联网解决方案的网络技术主要包括车联网专用网络、移动互联网、物联网等。
车联网专用网络主要负责车与车、车与路、车与云之间的通信,移动互联网负责为用户提供互联网服务,物联网则将各种传感器、控制器等设备连接起来,实现信息共享。
3. 数据处理与分析智能车联网解决方案的数据处理与分析技术主要包括大数据、云计算、人工智能等。
通过对海量数据的采集、存储、处理和分析,实现智能决策、预测和优化。
二、应用场景1. 智能驾驶智能驾驶是智能车联网解决方案的重要应用场景之一,主要包括自动泊车、自适应巡航、车道保持、自动紧急制动等功能。
通过车联网技术,实现车辆与周边环境的实时交互,提高驾驶安全性和舒适性。
2. 车联网服务车联网服务是智能车联网解决方案的另一大应用场景,主要包括远程诊断、远程控制、车载娱乐、车联网保险等。
通过车联网技术,为用户提供更加便捷、高效的服务。
3. 车路协同车路协同是智能车联网解决方案的关键应用场景,通过车辆与道路基础设施之间的信息交互,实现交通流的优化、交通事故的预防等。
主要包括道路信息发布、交通信号控制、紧急事件处理等功能。
4. 车联网平台车联网平台是智能车联网解决方案的核心,通过整合各类资源,为用户提供一站式服务。
主要包括数据采集、数据处理、应用开发、运营管理等。
三、实施步骤1. 技术选型根据实际需求,选择合适的通信技术、网络技术、数据处理与分析技术等,为智能车联网解决方案提供技术保障。
车联网的毕业论文车联网的毕业论文随着科技的不断发展,车联网已经成为了一个热门的话题。
车联网是指通过无线通信技术将车辆与互联网连接起来,实现车辆之间、车辆与交通基础设施之间的信息交互和数据共享。
在这个快节奏的社会中,车联网的出现为人们的出行提供了更多的便利和安全。
因此,我决定以车联网为研究对象,撰写一篇关于车联网的毕业论文。
首先,我将介绍车联网的概念和发展历程。
车联网是近年来兴起的一个概念,它的发展离不开科技的进步和互联网的普及。
从最初的车载导航系统,到现在的智能驾驶辅助系统,车联网已经取得了长足的发展。
我将详细介绍车联网的定义、特点以及相关的技术和应用领域。
接下来,我将探讨车联网对出行安全的影响。
车联网通过实时获取车辆和道路信息,可以提供实时的交通状况和路况信息,帮助驾驶员选择最佳的行驶路线,减少事故的发生。
同时,车联网还可以通过智能驾驶辅助系统提供驾驶员的行为分析和预警,帮助驾驶员避免疲劳驾驶和交通违法行为。
我将通过相关的案例和数据来支持这一观点,并提出进一步的研究方向。
然后,我将讨论车联网对交通拥堵的缓解作用。
交通拥堵是现代城市面临的一个严重问题,而车联网可以通过实时的交通信息和导航系统提供最佳的行驶路线,减少交通拥堵。
此外,车联网还可以通过智能交通管理系统,对交通信号进行优化调整,提高交通流量的效率。
我将通过对国内外相关研究成果的分析,探讨车联网在交通拥堵缓解方面的应用前景。
最后,我将探讨车联网的未来发展趋势。
随着人工智能和大数据技术的发展,车联网将会进一步提升。
未来的车辆将具备更强的自主驾驶能力,可以通过人工智能系统实现自动驾驶。
同时,车联网还可以通过大数据分析,提供更加个性化和智能化的出行服务。
我将通过对相关研究和发展趋势的分析,展望车联网未来的发展方向。
通过以上的研究,我相信我的毕业论文将为车联网的研究和应用提供有价值的参考。
车联网作为一个新兴的领域,有着广阔的发展前景。
我将通过深入研究和论证,为车联网的发展做出自己的贡献。
车联网的发展及其应用近年来,随着物联网技术的飞速发展,车联网也逐渐成为汽车产业中的热门话题。
那么什么是车联网呢?车联网简单来说就是把汽车与互联网连接起来,让汽车具备了信息化、智能化的特征。
在车联网的应用过程中,信息技术如云计算、大数据、人工智能等技术也被广泛应用,为汽车制造商带来了新的商业机会。
一、车联网技术的发展现状车联网技术已经逐渐成为主流,并在汽车产业中得到了广泛的应用。
目前,国际上对车联网的研究主要集中在三个方面:首先是车与车之间的通信;其次是车与基础设施之间的通信,包括与交通管理中心、道路标志以及照明设施之间的通信;最后是车内的通信,包括车内互联网、车载导航、智能驾驶等。
车联网技术的发展可以分为三个阶段:第一个阶段是通过无线通信与卫星技术,为车辆提供信息服务;第二个阶段是增加车与车之间的通信,通过车对车之间的协作,提高交通的安全性和效率;第三个阶段是增加车与道路基础设施之间的通信,以实现更为高效和智能的交通管理。
目前,全球各大车企都已经开始加速布局车联网技术,并在行业内形成了一定的竞争格局。
其中,美国、欧洲等发达国家的车辆已经开始加装车联网芯片,中国市场也在迅速增长中。
二、车联网应用的现状和前景1. 智能驾驶随着自动驾驶技术的不断提升,智能驾驶已成为车联网技术的重要应用之一。
在中国市场,由于庞大的城市化进程和交通拥堵问题,自动驾驶技术的商业应用潜力巨大。
各主要车企都在加紧研发自动驾驶技术,通过智能传感器、激光雷达、视觉系统等技术实现对车辆周围环境的实时监控和识别,从而实现车辆自动驾驶。
2. 车联网服务车联网技术也为车主提供了更加舒适、便捷的服务。
通过车联网技术,车辆可自动获取实时路况信息、维修保养信息、天气信息等,以便驾驶者做出更好的驾驶决策。
此外,车联网技术还为车主提供了远程控制、语音控制、智能停车等便捷服务。
3. 节能减排车联网技术也可以实现对车辆的能源消耗进行监测,从而降低排放和节能。
车联网技术的研究现状和未来发展趋势随着科技的发展,车联网技术正在成为汽车行业的重要发展方向。
车联网技术是指通过互联网连接车辆、人、设备和云服务,实现车辆信息交换和智能化驾驶。
这项技术不仅可以提高交通安全性,降低能耗和污染,还可以带来更多方便和舒适的驾驶体验。
本文将介绍车联网技术的研究现状和未来发展趋势。
一、车联网技术研究现状车联网技术的研究目前已经达到了相当成熟的程度,在以下几个方面有明显的发展:1. 智能驾驶技术随着人工智能技术的飞速发展,智能驾驶技术也变得越来越成熟。
目前市面上出现了一些自动驾驶汽车,它们能够自主实现车辆的控制、感知和导航等功能。
未来,人工智能技术将进一步优化智能驾驶系统,使其更加精准、智能化。
2. 物联网技术车联网技术和物联网技术是紧密相关的。
车联网技术是将车辆与互联网相连,而物联网技术则是将所有的物品与互联网相连。
两者的结合可以实现更加丰富的应用场景。
例如,智能交通系统利用物联网技术来收集路况、车流量等信息,并将这些信息传输给车辆,提高驾驶效率和安全性。
而智能房屋系统则可以将车辆与房屋设备相连,实现更加智能化的生活体验。
3. 5G技术5G技术的商用已经开始,它将带来更加快速和畅通的网络体验。
5G技术对于车联网技术的发展也有着重要的意义,可以提供更加快速、稳定和高质量的车载通信服务。
4. 车辆感知技术车辆的感知技术是车联网技术中的重要组成部分,它包括车辆跟踪、车辆目标检测、车辆轨迹预测等功能。
通过这些技术,车辆可以更加精准地感知周围环境,实现更加智能化的驾驶体验。
二、车联网技术未来发展趋势随着技术的发展,车联网技术未来也将出现新的趋势和应用场景:1. 智能化共享出行随着城市交通压力的不断增加,共享出行成为了一种新型的出行方式。
智能化车联网技术可以为共享出行提供更加精准、高效的服务,例如通过预测用户需求来推送最优路线、提高车辆使用效率等。
2. 无人驾驶技术的推广目前,无人驾驶汽车仍处于早期阶段,未来将迎来更加广泛的应用场景。
责任编辑:王莹汽车的电动化、智能化、网联化何芳 (英飞凌汽车电子事业部大中华区营销总监)1 汽车的电动化、智能化、网联化趋势英飞凌认为,汽车的电动化、智能化、网联化趋势将带动车内半导体含量的大幅增长。
电动汽车日渐流行,ADAS 渗透率稳步提升,用户对舒适性及驾乘体验的追求日益提高,都离不开半导体技术的支持。
而这三方面正是英飞凌汽车半导体业务所关注的核心应用。
1)在汽车电动化方面,核心痛点在于续航能力、动力性能和充电时间。
行驶里程不仅取决于电池的容量和性能,也跟整车系统的能源管理水平密切相关,特别是高性能的电机和电控系统。
这其中,功率半导体是电控系统的核心,主要包括IGBT 和MOSFET 。
硅基IGBT 技术相对比较成熟,市场竞争的重点在于产品性能的稳定性和可靠性。
业界的趋势是定制化模块封装以及双面冷却集成,以进一步提升IGBT 模块的综合性能。
虽然S i C 器件成本较高,但随着成品率和原材料利用率的提高以及SiC 对于整车系统的贡献,SiC MOSFET 的应用将很快在系统成本上取得优势。
保守预计至2025年,碳化硅技术在汽车电子功率器件领域的渗透率将超过20%2)ADAS 和智能网联方面,随着L2+到L3的演进,主要挑战在于法规和车内系统复杂性的增加。
从技术上来讲,在目前常见的三种传感技术中(摄像头、激光雷达和毫米波雷达),激光雷达的综合性能最优。
但无论采用哪种技术路线,都离不开高性能传感器以及传感器融合技术,同时还需要应对功能安全及信息安全等方面的新挑战。
3)在舒适性与用户体验方面,在网联化的驱动下,车身互联及安全性都需要很多新技术,以及很好的产品技术融合。
2 英飞凌的解决方案英飞凌是汽车功率半导体重要的供应商,在IGBT 和SiC MOSFET 方面有着深厚的技术积累和坚实的市场地位。
英飞凌在SiC 技术领域拥有25年的发展经验,针对多种新能源汽车系统已推出广泛的SiC 解决方案以及全方位的车规级产品系列,包括CoolSiC™车用肖特基二极管,CoolSiC™车用MOSFET ,全SiC 模组的HybridPACK™ Drive 等。
《车联网系统架构及其关键技术研究》篇一一、引言随着科技的不断进步和人们生活水平的不断提高,车联网(Internet of Vehicles,IoV)已成为当今科技发展的重要方向之一。
车联网通过实现车辆与车辆、车辆与基础设施、车辆与行人之间的信息交互,为智能交通系统提供了强大的技术支持。
本文将详细探讨车联网系统架构及其关键技术研究,以期为相关领域的研究和应用提供参考。
二、车联网系统架构车联网系统架构主要包括感知层、网络层和应用层三个部分。
1. 感知层感知层是车联网系统的最底层,主要负责对车辆、道路、交通等环境信息的感知和采集。
这一层通过传感器、摄像头、雷达等设备,实时获取车辆周围的环境信息,包括道路状况、交通信号、行人动态等。
此外,还包括对车辆自身状态信息的感知,如车速、油耗、轮胎压力等。
2. 网络层网络层是车联网系统的核心部分,主要负责将感知层采集的信息进行传输和处理。
这一层通过无线通信技术(如4G/5G网络、Wi-Fi等)实现车辆与车辆、车辆与基础设施之间的信息交互。
同时,网络层还需要对传输的数据进行加密和安全处理,保障信息传输的可靠性和安全性。
3. 应用层应用层是车联网系统的最上层,主要负责将网络层处理后的信息提供给用户使用。
这一层包括智能导航、自动驾驶、交通管理等功能,可以根据用户需求进行定制化开发。
此外,应用层还可以对车联网系统进行远程监控和管理,提高系统的可靠性和稳定性。
三、关键技术研究车联网系统的关键技术包括传感器技术、无线通信技术、云计算技术等。
1. 传感器技术传感器技术是车联网系统的重要组成部分,主要负责对车辆和环境信息的感知和采集。
目前,常见的传感器包括GPS、激光雷达、摄像头等。
随着传感器技术的不断发展,其精度和可靠性得到了极大的提高,为车联网系统的实时感知提供了强有力的支持。
2. 无线通信技术无线通信技术是实现车联网系统信息交互的关键技术。
目前,4G/5G网络和Wi-Fi是常用的无线通信技术。
新能源汽车使用中的无线网络连接技巧随着科技的不断进步,新能源汽车已经成为了人们生活中不可或缺的一部分。
然而,与传统汽车相比,新能源汽车在使用中存在一些独特的问题,其中之一就是无线网络连接。
本文将探讨一些新能源汽车使用中的无线网络连接技巧,帮助车主更好地享受无线网络的便利。
一、选择合适的无线网络供应商在购买新能源汽车之前,车主应该仔细考虑选择一个合适的无线网络供应商。
不同的供应商提供的网络服务质量和覆盖范围可能有所不同,因此车主应该根据自己的需求选择一个能够满足自己需求的供应商。
此外,车主还应该了解供应商的套餐和收费标准,选择一个适合自己的套餐,以避免不必要的费用。
二、了解车辆的无线网络连接方式新能源汽车的无线网络连接方式可能有所不同,一些车辆可能通过内置的Wi-Fi热点提供无线网络连接,而另一些车辆则可能需要通过蓝牙或USB连接手机来实现无线网络连接。
车主应该仔细了解自己车辆的无线网络连接方式,并根据车辆的要求进行设置。
三、保持网络连接的稳定性在使用新能源汽车的无线网络时,车主应该保持网络连接的稳定性。
首先,车主应该确保车辆所处的位置有良好的信号覆盖,以避免网络连接的不稳定。
其次,车主应该定期检查车辆的无线网络设置,确保无线网络连接的稳定性。
如果发现网络连接不稳定,车主可以尝试重新连接网络或重启车辆来解决问题。
四、注意网络安全问题在使用新能源汽车的无线网络时,车主应该注意网络安全问题。
首先,车主应该确保自己的无线网络连接是加密的,以防止他人未经授权地访问自己的网络。
其次,车主应该避免在无信任的网络上进行敏感信息的传输,以防止个人信息被盗取。
此外,车主还应该定期更改无线网络的密码,以增加网络安全性。
五、合理使用无线网络流量在使用新能源汽车的无线网络时,车主应该合理使用无线网络流量。
一些车辆可能有限制的流量套餐,如果超过了流量限制,可能会产生额外的费用。
因此,车主应该避免在无线网络上进行大量的高流量操作,如下载大文件或观看高清视频。
车联网的关键技术及其应用研究摘要:车联网融合了人、车、路、周边环境等相关信息,可以为人们提供综合服务。
是物联网在汽车行业的典型应用。
汽车的互联网驱动下,传统汽车从代步工具到数据终端演变,相关研究表明,在车辆联网应用的初始阶段,可以显著降低能耗和废气排放,缓解城市交通拥堵,显著降低车祸率80%以及30%至70%死亡人数。
关键词:车联网;关键技术;应用前言随着科技的发展,人类的生活方式变得越来越智能化,与此同时,科技也在改变着人们日常出行的交通环境。
通信设备的多样化,使得汽车和公路也日益智能化,在这种大环境下,车联网以及针对车联网的相关应用发展也必然成为趋势。
车联网概念来自于物联网,是由车辆位置、速度和行驶轨迹等各种信息组成的巨大数据交换网络,也是智能城市的标志之一。
近年来,以车载OBD模式的车联网悄然兴起,通过智能手机可以实现娱乐、路况、位置、导航、救援等,同时也可以实现汽车各类服务、防盗、实时车况等功能,极大解决了车主的用车安全问题。
1车联网的定义目前,车联网还没有明确的定义,根据中国物联网校企联盟的定义,车联网是由车辆位置、速度和路线等信息构成的巨大交互网络。
运用各种先进技术,收集、处理和共享大量信息,使车辆、行人、道路和城市网络等相互关联,实现了车与车、车与路、车与人、车与环境的智能协同。
2车联网发展概况2.1车联网市场总体情况据统计,全球2018年车联网的市场规模有望达到390亿欧元,2020年全球市场达到500亿欧元。
而2020年车联网用户将超过4000万,渗透率将超过20%,市场规模将达到2000亿元人民币。
当前车联网的主要业务还是以TSP (TelematicsServiceProvider)业务和智能安全驾驶为主。
前者主要包括远程信息服务(例如车辆管理、交通信息、高精地图)以及生活娱乐服务(例如游戏、视频、车载智能家居等)。
后者则以安全和辅助驾驶、编队行驶、自动驾驶为主。
车联网产业最大的特点就是跨越服务业与制造业两大领域,服务业和制造业相互渗透融合。
物联网技术在汽车智能化中的应用随着科技的不断发展,智能化成为现代社会的一个必然趋势,而物联网技术,作为互联网的一个重要分支,也成为了人们关注的焦点之一。
在这个智能化的时代,汽车行业也不例外。
物联网技术的应用,助推汽车的智能化,不仅提高了汽车的驾驶安全性能,也改善了驾驶体验,极大地方便了人们的出行。
本文将就物联网技术在汽车智能化中的应用进行探讨。
一、车联网技术车联网技术是一种将汽车与互联网相结合的技术,它是物联网技术在汽车行业的应用。
通过将汽车与云计算、大数据、移动互联等技术联系在一起,车联网技术将汽车变得更加智能化,让驾驶体验更加优越。
车联网技术主要包括以下几个方面:1.智能安全技术:利用传感器、摄像头等装置,对驾驶行为进行监控与识别,以保障驾驶安全。
2.车载娱乐技术:通过网络和多媒体技术,将车内变成一个移动影院,为驾乘者提供更加便捷的娱乐体验。
3.智能驾驶技术:车联网技术可以通过自动驾驶、车道偏离预警、盲区预警等多种方式来提高驾驶体验和安全性。
4.车辆保养技术:基于车联网技术的保养服务,可以通过对车辆故障、状态的实时监测和预测,提供保养服务和车辆管理。
智能安全技术作为车联网技术的一项重要应用,是通过车载传感器、摄像头、雷达等设备,对行车路况、车速、驾驶行为进行实时监测和预测,以实现更加主动化的安全控制。
如现在普及的防碰撞技术,在车辆行驶过程中可以通过道路信号、车辆间通讯、传感器等多方面信息,来预判车辆的动作,从而及时发出警报和干预措施,保障驾驶人和车辆的安全。
三、车载娱乐技术车辆不再只是交通工具,同时它也是一处休闲空间。
智能化车辆娱乐系统不仅可以使乘车时间更具乐趣,还可以提高驾乘者的经验。
智能化车载娱乐系统允许乘客控制音乐、视频、泊车等功能。
乘客可通过车内屏幕或通过配对的智能手机连接到雷达、氙气灯、路况检测仪等设备。
四、智能驾驶技术智能驾驶技术主要是通过自动驾驶、车道偏离预警、盲区预警等多种方式来提高驾驶体验和安全性。
车网互动模式的分析及研究摘要当前能源格局正在处于以再生能源为动力,以电动汽车作为交通工具的第三次能源革命之中,基于目前能源格局,国家也提出了2030年碳中和,2060年碳达峰的目标,来促进我国能源的低碳化转型和电动汽车加速发展。
但是电动车数量的急剧增加,会带来巨大且不稳定的用电负荷,给电网带来灾难性的后果,此时我们就需要电动车和电网的互动,达到电动车和电网的良性共同发展的目的。
本文主要分析了车网互动的背景、前景、模式、可行性、应用场景和价值予以分析和研究。
关键词:车网互动、V1G、V2G一、车网互动的背景汽车行业迎来百年来前所未有的革命,电动车的属性也随着变革较传统燃油车发生了变化,除了具有交通的属性,还具备信息、能源等属性。
信息属性是指,电动车作为信息互联的终端,参与未来的能源互联,智慧交通、智慧城市的信息交互。
能源属性是指,电动车可以与电网实现互动,进行调峰、调频与消纳清洁能源等辅助服务,所以车网互动就存在了应用价值。
二、车网互动的前景预计2030年我国新能源乘用车保有量将达6800万辆,若均参与车网互动。
等效功率按照15kW的功率输出或输入计算,理论功率超过100万MW,相当于2019年50个左右北京大小城市的峰时用电负荷,按照火电投资0.4万元/kW计算,相当于投资规模4万亿元火电调峰电厂输出功率。
等效容量按照平均配置60kWh电池,60%的电量参与每日一次的充放电计算,理论容量将达到25亿kWh,相当于2030年日均用电量280亿kWh的9%。
三、车网互动的主要模式车网互动的主要模式主要有两种:智能有序充电(V1G)和双向智能充电(V2G)。
智能有序充电的基本特征,信息双向互动,能量单向调控。
技术经济属性,对电池寿命要求不高,与电网单向能量交互,电量和价值量小,调度计划安排相对简单,解决容量不足和提供“削峰填谷”和辅助服务,削峰能力较弱。
双向智能充电基本特征,信息双向互动,能量双向调控。
V2X车联网技术研究与应用摘要:自动驾驶技术快速发展,C-V2X车路协同已成为车联网主流技术路线并被我国采用。
研究整体技术方案及架构,从终端、边缘、云端三层分析各单元功能及平台作用。
结合中国汽车工程协会标准提出的两阶段应用场景,指出车联网在未来发展过程中面临的挑战。
关键词:C-V2X; OBU;RSU; MEC;V2X平台;典型应用1、自动驾驶技术发展现状自动驾驶在人工智能和汽车产业的飞速发展下已成为业内外关注的焦点,自动驾驶技术代表了未来汽车的发展方向。
依据美国汽车工程师协会(SAE)制定的自动驾驶分级标准,自动驾驶可分为L0~L5共6级。
单车智能的自动驾驶已实现L2、L3级别的自动驾驶,单车智能对感知、决策、控制提出了极高的要求,随着智能等级的提高,技术难度呈指数级上升,成本也显著增加。
V2X车联网技术借助新一代信息通信技术,实现车与人、车与车、车与路以及车与城市基础设施之间的全方位网络连接。
因此车联网技术可以弥补单车智能感知和决策上的不足,对实现高级别自动驾驶具有重要作用。
2、V2X通信标准比较目前,世界上用于V2X通信的主流技术包括专用短程通信(dedicatedshort range communication,DSRC)技术和基于蜂窝移动通信系统的C-V2X (cellular vehicle to everything)技术(包括LTE-V2X和5G NR-V2X)。
DSRC是美国主导的V2X通信协议,虽然产业链相关参与方包括许多车厂在DSRC系统上做了很多研究和测试评估,但其商用进展一直不理想,针对自动驾驶等新应用也没有清晰的技术和标准演进路线。
由我国大唐电信和华为公司参与拟订的3GPP标准LTE-V2X作为面向车路协同的通信综合解决方案,能够在高速移动环境中提供低时延、高可靠、高速率、安全的通信能力,满足车联网多种应用的需求。
并且LTE-V2X能够直接利用蜂窝网络,以及现有的基站和频段,组网成本明显降低。
车联网与智能交通系统技术综述近年来,随着科技的不断进步,车联网和智能交通系统逐渐成为热门话题。
车联网是一种基于互联网的智能交通系统,可以实现车辆之间、车辆和路网之间以及车辆和人之间的高效互动。
而智能交通系统则是一种基于大数据和物联网技术的现代典型交通管理和控制系统,旨在提供更加安全、便捷、高效的出行方式。
本文将探讨车联网和智能交通系统的相关技术及其发展前景。
一、车联网技术车联网技术主要包括车辆通信、定位、感知和控制四个方面。
其中,车辆通信是车联网的关键技术之一,是实现车辆之间互联互通的基础。
通信技术方面,车联网主要采用基于车辆自组网(VANET)的通信技术,将车辆直接连接成一个网络,形成一种点对点的通信方式。
基于车辆自组网的通信技术具有低成本、高效率、低时延和高可靠性等特点,是车联网的重要发展方向。
在定位技术方面,目前车联网主要采用全球定位系统(GPS)和卫星地图技术,通过GPS模块和软件将车辆的位置信息传输到云端,以实现远程监控和管理。
在感知技术方面,车联网利用车载传感器和视频设备等技术,对车辆周围环境进行实时监测和控制。
在控制技术方面,车联网通过车辆控制单元和智能软件系统等技术,对车辆实现远程控制和管理,并为驾驶员提供智能化的驾驶辅助服务。
二、智能交通系统技术智能交通系统技术主要包括道路信息采集、交通流量分析、智能路网控制、交通决策支持和人机交互等方面。
其中,道路信息采集主要采用车牌识别、雷达传感器、视频监控、GPS和车辆控制终端等技术,以实现对道路交通数据的实时采集和处理。
交通流量分析主要采用数据挖掘和机器学习等技术,对采集到的大量数据进行处理和分析,并预测未来交通流量的变化趋势。
在智能路网控制方面,智能交通系统通过交通信号灯、电子警察、车道指示器、路况提示器等技术,对交通系统进行实时控制和调度,并有效优化道路交通流量。
在交通决策支持方面,智能交通系统通过建立交通模型和模拟系统,为政府机构和交通管理部门提供决策支持和预测分析服务。
车联网技术在智能交通系统中的应用自动驾驶、智能导航、远程监控、车辆信息交流等,车联网技术正逐渐渗透到智能交通系统中,为交通管理和驾驶体验带来了革命性的变化。
本文将介绍车联网技术在智能交通系统中的应用,并探讨其对交通安全、能源效应和交通效率的影响。
一、智能交通系统概述智能交通系统(ITS)是运用先进的信息和通信技术,对交通设施、交通管理和用户提供的一种全方位、准确、实时的交通服务系统。
ITS旨在提高交通流动性、安全性、效率和环境可持续性。
二、车联网技术在智能交通系统中的应用1. 自动驾驶技术车联网技术与自动驾驶技术相结合,可以实现全自动驾驶、半自动驾驶和远程驾驶等多种模式。
自动驾驶汽车通过车联网技术能够获取实时路况信息、交通信号灯信息,并与其他车辆进行通信,从而实现交通规划的智能化和车辆自动驾驶的精准控制。
2. 智能导航系统车联网技术使智能导航系统更加智能和个性化。
通过车联网技术,智能导航系统可以实时获取交通状况、道路信息以及用户的偏好,为驾驶者提供最优的路线规划和导航服务。
此外,智能导航系统还可以与其他车辆和交通管理中心进行交互,共同优化交通流量,提高道路效率。
3. 远程监控和管理车联网技术使得车辆和交通基础设施可以实时互联互通,交通管理中心能够通过车联网技术对道路交通进行实时监控和管理。
通过车辆的传感器和摄像头,交通管理中心可以获取车辆位置、速度、行驶轨迹等信息,并可以对道路情况、交通流量进行预测和优化。
4. 车辆信息交流与共享车联网技术实现了车与车之间、车与道路基础设施之间的信息交流与共享。
通过车辆间的通信,驾驶者可以获取即时的路况和交通信息,避免拥堵路段或危险区域。
同时,车辆与交通管理中心的信息交流也可以实现更高效的交通规划和管理,提供更好的驾驶体验和交通服务。
三、车联网技术对智能交通系统的影响1. 提高交通安全性车联网技术可以通过实时获取车辆行驶状况、道路状况和交通信息,提供驾驶辅助功能,预防交通事故的发生。
车联网的发展现状和未来趋势Chapter 1 前言车联网(Connected Cars)简单来说,就是将车辆与互联网相连的一种技术,可以让车辆之间和车辆与周围环境进行信息交互,实现车与车、车与路、车与人的智能化互动。
随着移动互联网和智能交通的不断发展,车联网正处在高速发展的轨道上。
本文将就车联网的现状和未来趋势进行探讨。
Chapter 2 车联网的现状目前车联网产业已经开始呈现出规模化、产业化、平台化三个特征。
2017年全球车联网市场收入达到了737.4亿美元,未来几年市场规模还将不断扩大。
具体来看,当前车联网的现状可以从以下几个方面来进行描述:2.1 基础设施建设加快推动车联网发展的首要条件就是具备完善的网络、通信、数据处理等基础设施保障。
中国在这方面的建设已经迅速跟上了世界发展的步伐。
例如,北京综合交通信息服务平台已经上线并投入使用。
平台上提供了城市内的道路、公共交通、停车场等多种交通信息,为交通出行提供多元化的科技支持。
2.2 整车厂快速布局随着汽车厂商的加入,车联网技术的发展速度也得到了很大提升。
整车厂在车联网技术的相关领域都进行了一系列的布局,如大众集团正在进行V2X技术的研究和开发,并且和大型科技公司签订了战略合作协议;特斯拉汽车公司研发的自动驾驶技术也是不断推陈出新;宝马也在打造包括智能化后视镜、智能语音助手等功能的数字车身。
总之,整车厂的加入会为车联网的发展提供更多的技术与经验支持。
2.3 产业链多样化除整车厂外,车联网技术催生了很多配套产业链,如智能导航、智能停车管理等等,形成了以IT公司、单品供应商和OEM厂商为核心的产业链条。
其中IT公司主要是负责车联网平台的技术支持和开发,单品供应商则负责为整车厂提供车联网相关的零部件以及技术,OEM厂商则负责整车的生产与销售,形成了互相依存、合作发展的良性格局。
Chapter 3 车联网的未来趋势车联网是目前技术发展的热点领域,其未来的发展趋势几乎关乎整个交通出行行业的未来走向。
龙源期刊网 http://www.qikan.com.cn
浅谈车联网技术在电动车领域的应用
作者:王曌倩
来源:《科学与财富》2017年第15期
(华晨汽车工程研究院)
摘 要: 根据我国新能源汽车发展规划,到2020年,我国新能源汽车市场保有量将达到
500 万辆。而飞速发展的电动车具有独特的机电一体化技术,将机械语言和IT语言融合,是
搭载车联网技术的最佳载体,为车联网技术的应用提供了广阔舞台。
关键词: 车联网,大数据
1.车联网的概念和技术
1.1车联网的概念
车以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在
车与X(X:车、路、行人及互联网等)之间,进行无线通讯和信息交换的大系统网络,称为
车联网。车联网是物联网技术在交通系统领域的典型应用,是能实现智能交通管理、智能动态
信息服务和车辆智能化控制的一体化网络。
1.2车联网关键技术
载终端是安装于车辆内,负责监控管理系统的前端设备,与CAN总线相连,可对车辆进
行全方位的掌控。车载终端设备主要由传感器、车机多媒体主机及大屏、外接摄像机、
TBOX、汽车防盗器等各种设备组成。传感器将信号传送到各电控单元,再通过CAN网络或
硬线CODING将整车数据传送到TBOX,同时通过USB接口实现与车机多媒体主机之间的数
据交互,TBOX与云控平台之间通过无线通信网络进行数据通信。
云平台是一个集成车辆的数据汇聚、计算、调度、监控、管理与应用的车辆运行信息平
台,支持虚拟化、安全认证、实时交互、海量存储、OTA远程升级、云计算、云控全域驾驶
等功能,可以实现为ITS、物流、客货运、危特车辆、汽修 汽配、汽车租赁、企事业车辆管
理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等行业的应用服务。
车用通信V2X是一种车辆与人、车、基础设施之间的通信技术。主流的V2X技术包括
3GPP提出的LTE-V蜂窝通信协议及IEEE提出的DSRC(专用短距离通信)协议。DSRC是
一种高效、短距离、小范围的无线通信技术,可以实现图像、语音和数据的双向传输。LTE-V
可将车载雷达等探测系统的信号覆盖范围从数十米、视距范围扩展到数百米以上、非视距范
围,实现相对简单的交通场景下辅助驾驶。
龙源期刊网 http://www.qikan.com.cn
2.车联网在电动车领域的应用
2.1电动货车运输监控
在电动载货车、纯电动厢式运输车、纯电动邮政车等中小型电动货车上,安装载重传感
器、车速传感器及TBOX等电控原件作为智能终端,将传感器采集的载重数据、车速数据、
TBOX采集的经纬度数据上传到车联网云平台,云平台可以记录和监控物流途中装配、卸载货
物的过程信息,定位每一次载重变化时发生的载重差值、位置坐标、动作时长,以及跟踪货物
运输途中的行驶轨迹,并通过V2I技术与不同路段车速检测的交通基础设施进行信息交互。当
货物超重时将超重信息反馈给车主,进一步可以进行超重情况下车速限制,以及超速情况下车
速限制,预防危险驾驶事件的发生。当货物发生丢失时,通过调取云平台的载重及轨迹信息,
定位货物丢失事件的发生时间及位置范围。
2.2电动公交车联网服务
利用公交车客流量大的特点,在电动公交车上安装Wi-Fi车载终端作为智能终端。首先,
车联网系统可以为司机提供交通运输系统的信息共享,提高调度效率。其次,云平台基于地图
及路况信息对公交车到达时间进行预测,结合乘客从手机APP预输入的上车及下车地点及时
间,通过云计算为乘客推送最优的乘车行程安排,并推送延时到达或取消的消息。另外,云平
台可以通过手机APP为乘客推送达到下车站点的提示消息,避免乘客坐过站、下错站。在商
业功能上,可以实现基于地理位置服务(LBS)精准广告推送。更进一步,从推进环保出行方
面考虑,云平台通过认证乘客的唯一身份识别ID,如手机APP注册账号,记录不同乘客使用
电动公交车出行的时长和距离,以积分形式反馈乘客,一季度或一年等时长为节点,根据用户
的低碳积分排名对乘车价格进行一定优惠回馈,或者联合第三方商业,将低碳积分以商场、电
影院、超市、酒店等商业的积分或折扣进行回馈,为电动公交车行业生态链提供更广阔的发展
空间。
3. 电动车车联网应用问题与对策
充电设施资源不均衡、网联化基础设施资源不足、缺少平台化运营产品是目前电动车车联
网应用的主要瓶颈。由于不同地区和城市的充电设施资源差距较大,一线城市充电设施资源丰
富、充电运营商汇集,竞争的环境也从另一方面促进了更新更丰富的电动车车联网产品涌现。
而充电资源匮乏的地区和城市很难开展分时租赁、预约充电等业务的开展。从全国范围来看很
难形成跨地区联动的电动车车联网应用业务平台。并且,我国V2X标准和法规尚未落实,支
持V2X的网联基础设施无法形成统一标准、泛在接入的规模化生产。另外,围绕电动车车联
网充电及租赁业务的运营公司大量涌现、质量参差不齐,电动车车联网产业结构较为单一,缺
乏第三方商业公司的参与。未来,随着国家政策和各项设施的逐步完善,相信车联网将在电动
车领域有非常广阔的发展前景。
4.总结
龙源期刊网 http://www.qikan.com.cn
现阶段车联网在电动车领域的应用还处于初级阶段,政府管理部门、整车厂、电力公司、
标准制定组织及消费者之间尚未形成有效协调机制和多样化的产业链。相信随着V2X标准的
落实、充电站和智能交通设施的建设,电动车车联网的应用将更加普及。