当前位置:文档之家› 基于波长调制技术的激光器调制特性研究

基于波长调制技术的激光器调制特性研究

基于波长调制技术的激光器调制特性研究
基于波长调制技术的激光器调制特性研究

Vol 3 9 , No. 9,pp 2 70 2 - 2 707

September ! 019

第39卷,第9期2 0 1 9年9月

光谱学与光谱分析

SpectroscopyandSpectralAnalysis

基于波长调制技术的激光器调制特性研究

张步强1!,许振宇X刘建国X夏晖晖1!范雪丽X聂 伟1!,袁 峰",阚瑞峰1

1.中国科学院安徽光学精密机械研究所环境光学与技术重点实验室,安徽合肥2 30031

2 ?中国科学技术大学,安徽合肥2 300 2 6

摘 要 在流场诊断技术中!可调谐半导体吸收光谱技术(TDLAS)成为主要的诊断技术之一 !其可实现非

接触、原位检测%波长调制(WMS)和直接吸收(DA)是两种最常用的TDLAS 气体传感方法,在目标含量很

低或者极端流场环境下,波长调制技术呈现出更多的优势,检测灵敏度与直接吸收相比可以提高1?2个数 量级%在近红外波长调制技术应用领域,分布反馈式(DFB )半导体激光器成为流场诊断技术的光源选择之 一,无论利用谐波信号(或者归一化谐波信号)的线型拟合,还是选择谐波信号的峰值来反演流场参数,吸收

模型的准确建立均十分重要%在模型建立时!激光器频率-时间响应以及光强-时间响应的准确表示尤为重

要%为解决吸收模型准确建立问题!提出了 一种准确测量激光器调制参数的完整方法!通过实验测量了用于

探测水汽吸收的1 39 2和1 469 nm 激光器的调制特性,研究了分布反馈式激光器的调制参数随调制幅度, 调制频率以及工作温度的变化%根据该方法得到的调制参数,建立吸收模型,测得常温下空气中水汽浓度为 1.97% !直接吸收方法测得浓度为1.99% !验证了该测量方法的准确性%研究表明!调制深度随调制幅度的

增加线性增加!随调制频率的增加非线性单调减小!随工作温度的升高线性增加;激光器的出光强度和频率

同时被调制!强度变化超前频率变化的相位!随调制幅度的变化不明显!随调制频率的增加单调增加!随工

作温度的升高单调减小;归一化一次谐波振幅和二次振幅均随调制幅度的增加而增加!随调制频率的增加 而减小!随工作温度的变化不明显%在吸收光谱应用领域!波长调制技术发挥的作用愈加重要!调制系数与

谐波信号的峰值息息相关!在波长调制技术应用时!选取适当的调制参数!有利于得到合适的谐波信号!可

通过改变调制幅度、调制频率、工作温度得到最优调制系数%研究了近红外分布反馈式半导体激光器的调制

特性!该方法同样适用于不同封装和不同波段激光器调制特性的研究!利于推广吸收光谱技术在各领域的

应用%

关键词 TDLAS ;波长调制;调制深度;调制幅度;DFB ;吸收模型

中图分类号:O433.1

文献标识码:A

DOI : 10. 3964issn.1000-0593(2019)09-2 70 2-06

引言

可调谐半导体激光吸收光谱(tunable diode laser absorp -tion spectroscopy, TDLAS)技术是一种非侵入式光谱测量技

术!具有高选择、高灵敏度、高分辨、信号高保真)12*的特 点;可以同时检测气体的浓度、温度、压强、流速等多参数 流场信息当前被广泛应用在燃烧流场诊断,环境监测,

农业生产等领域45*%其技术主要分为直接吸收(direct absorption, DA)和波长调制(wavelength modulation spec -troscopy, WMS)两种主要技术手段,直接吸收技术主要应用

在吸收较强,所选吸收线相对孤立,受临近干扰吸收比较 弱,信噪比较大的情况对于较弱的吸收,难以获得高的

信噪比;或者在压力升高以后,目标分子本身的展宽变大,

谱线之间相互重叠严重,基线选取困难,非洛伦兹效应变得

严重而波长调制技术对非洛伦兹效应不敏感,由于其本

质是提取快变化特征,对因高压下展宽引起的吸收本底抬升 不敏感, 利于高压流场测量, 该技术更有利于解决这些情况

下的流场参数反演问题其广泛应用在高压燃烧系统(燃

气轮机、内燃机、煤气化炉、爆型燃烧器等91巧检测中%

在波长调制技术中,波长(频率)被调制的同时,强度也 被调制,调制深度(modulation depth)是主要的参数之一%调

制幅度(高频调制信号峰峰值),调制频率和工作温度都对其

产生影响,并且影响频率调制相对强度调制的相位延迟,同

收稿日期:2 018-07-07,修订日期:2 018-11-2 0

基金项目:国家重点研发计划项目(016YFC0 2 01104)资助

作者简介:张步强! 1989年生!中国科学院安徽光学精密机械研究所环境光学与技术重点实验室博士研究生

e-mail : bqzhmg@https://www.doczj.com/doc/c112990577.html,

6-1 固体激光器特性

实验6-1 脉冲固体激光器输出特性研究 固体激光器是指以某些晶体或特种玻璃为工作物质的激光器。目前,世界上找到的能产生激光的固体物质有几十种,但应用比较成熟的只有钇铝石榴石(YAG:Nd3+)红宝石、钕玻璃等。 固体激光器有连续和脉冲两种工作方式。连续激光器能长时间持续输出稳定的激光,功率从几毫瓦到几百瓦,脉冲激光器又可分为单脉冲激光器及重复频率激光器。前者几秒钟发射一个脉冲,后者一秒钟发射几个到几十个脉冲,激光持续时间为毫秒级,功率为千瓦级。 在脉冲激光器上加一个调Q装置就成为巨脉冲激光器,它可以使激光脉冲缩短到纳秒(10-9s)数量级,从而大大提高了脉冲功率(兆瓦数量级)。近年来出现的锁模技术的激光器——锁模激光器,其激光脉冲为皮秒(10-12s),甚至达到飞秒(10-15s)数量级,脉冲功率有很大增加。 固体激光器能输出连续激光或功率高的激光脉冲,从而产生用通常方法难以达到的局部超高温、超高压,因而应用越来越广泛。在工业上用来打钟表钻石和喷丝头上的微孔,切割和焊接难熔金属。在医疗上常用固体激光消除肿瘤以及作手术激光刀等。以固体激光器为核心的激光测距仪和激光雷达广泛用于测量和国防上。科学研究上常用固体激光器作为强光源实现动态全息摄影。大能量的激光器还可以用来引发核聚变、探索受控热核反应等,前景十分广阔。 激光技术的飞速发展和广泛应用使得激光已成为高校中越来越多的学科、专业学习和研究的重要课题。激光器的结构、工作原理,激光的形成条件及其性能和基本参数的检验与测定是非常必要的。 【实验目的】 1、了解脉冲固体激光器的基本结构和基本原理,并练习调整激光器谐振腔,使其输出激光。 2、测定脉冲激光器的输出特性曲线,找出光泵能量阈值,计算出激光器的绝对效率和斜效率。 3、测定激光器输出光束的发散角。 【实验原理】 (一)固体激光器的基本结构和工作原理 激光,其英文为Laser,全名为Light amplification by stimulated emission of radiation,全名译为辐射的受激发光放大。这很好地概括了激光产生的机制。激光器就是根据激光产生的机制而设计的。它由工作物质,泵浦系统和光学谐振腔等部分组成。实验所用Y AG激光器的结构如图6-1-1所示。

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

半导体激光器输出特性的影响因素

半导体激光器输出特性的影响因素 半导体激光器是一类非常重要的激光器,在光通信、光存储等很多领域都有广泛的应用。下面我将探讨半导体激光器的波长、光谱、光功率、激光束的空间分布等四个方面的输出特性,并分析影响这些输出特性的主要因素。 1. 波长 半导体激光器的发射波长是由导带的电子跃迁到价带时所释放出的能量决定的,这个能量近似等于禁带宽度Eg(eV)。 hf=Eg f(Hz)和λ(μm)分别为发射光的频率和波长 且c=3×108m/s ,h=6.628×10?34J ·s ,leV=1.60×10?19J 得 决定半导体激光器输出光波长的主要因素是半导体材料和温度。 不同半导体材料有不同的禁带宽度Eg ,因而有不同的发射波长λ:GaAlAs-GaAs 材料适用于0.85μm 波段,InGaAsP-InP 材料适用于1.3~1.55μm 波段。 温度的升高会使半导体的禁带宽度变小,导致波长变大。 2. 光功率 半导体激光器的输出光功率 其中I 为激光器的驱动电流,P th 为激光器的阈值功率;I th 为激光器的阈值电流;ηd 为外微分量子效率;hf 为光子能量;e 为电子电荷。 hf 、e 为常数,Pth 很小可忽略。由此可知,输出光功率主要取决于驱动电流I 、阈值电流I th 以及外微分量子效率ηd 。驱动电流是可随意调节的,因此这里主要讨论后两者。除此之外,温度也是影响光功率的重要因素。 1)阈值电流 半导体激光器的输出光功率通常用P-I 曲线表示。当外加正向电流达到某一数值时,输出光功率急剧增加,这时将产生激光振荡,这个电流称为阈值电流,用I th 表示。当激励电流II th 时,有源区不仅有粒子数反转,而且达到了谐振条件,受激辐射为主,输出功率急剧增加,发出的是激光,此时P-I 曲线是线性变化的。对于激光器来说,要求阈值电流越小越好。 阈值电流主要与下列影响因素有关: a) 晶体的掺杂浓度越大,阈值电流越小。 b) 谐振腔的损耗越小,阈值电流越小。 c) 与半导体材料结型有关,异质结阈值电流比同质结小得多。 d) 温度越高,阈值电流越大。 2)外微分量子效率 ) (th d th I I e hf P P -+=ηλ c =f

医学中常用的激光器

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分 子激光器以二氧化碳(CO 2)激光器为代表,其他还有氢分子(H 2 ),氮分子(N 2 )和一氧化碳(CO)分子等激光 器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用 方便,是目前最常用的激光器之一,在医学上,CO 2激光器作为手术刀使用日益引起人们的重视。CO 2 激 光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

激光器的种类及性能参数总结

激光器的种类及性能参数总结 半导体激光器——用半导体材料作为工作物质的一类激光器 中文名称: 半导体激光器 英文名称: semiconductor laser 定义1: 用一定的半导体材料作为工作物质来产生激光的器件。 所属学科: 测绘学(一级学科);测绘仪器(二级学科) 定义2: 以半导体材料为工作物质的激光器。 所属学科: 机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 定义3: 一种利用半导体材料PN结制造的激光器。 所属学科: 通信科技(一级学科);光纤传输与接入(二级学科) 半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。 (1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。 (2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。 (3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。 (4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。 (5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~ 10?左右。 (6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。 工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。 准分子激光器——以准分子为工作物质的一类气体激光器件。 中文名称: 准分子激光器 英文名称: excimer laser 定义:

半导体激光器实验

实验19 半导体激光器实验 一、目的 1.理解半导体激光器的工作原理; 2.通过测量半导体激光器工作时的功率、电压、电流,利用这些参数画出P-I 、I-V 曲线,让学生了解半导体的工作特性曲线; 3.学会通过曲线计算半导体激光器的阈值,串联电阻,以及功率效率,外量子效应和外微分效应,并对三者进行比较; 4.内置四套方波信号或者外加信号直接调制激光器,通过调整不同的静态工作点,和输入信号强度大小不同,观察到截至区,线性区,限流区的信号不同响应(信号畸变,线性无畸变),了解调制工作原理。 二、原理 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs )、硫化镉(CdS )、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。 半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。 1.半导体激光器的结构与工作原理 现以砷化镓(GaAs )激光器为例,介绍注入式同质结激光器的工作原理。半导体的能带结构。半导体材料多是晶体结构。当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。价电子所处的能带称价带(对应较低能量)。与价带最近的高能带称导带,能带之间的空域称为禁带。当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。掺杂半导体与p-n 结。没有杂质的纯净半导体,称为本征半导体。如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级 有施主能级的半导体称为n 型半导体;有受主能级的半导体称这p 型半导体。在常温下,热能使n 型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p 型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n 型半导体主要由导带中的电子导电;p 型半导体主要由价带中的空穴导电。 半导体激光器中所用半导体材料,掺杂浓度较大,n 型杂质原子数一般为2~5×1018cm -1;p 型为1~3×1019cm -1。 在一块半导体材料中,从p 型区到n 型区突然变化的区域称为p-n 结。其交界面处将形成一空间电荷区。n 型半导体带中电子要向p 区扩散,而p 型半导体价带中的空穴要向n 区扩散。这样一来,结构附近的n 型区由于是施主而带正电,结区附近的p 型区由于是受主而带负电。在交界面处形成一个由n 区指向p 区的电场,称为自建电场。此电场会阻止电子和空穴的继续扩散(见图19.1)。 p-n 结电注入激发机理。若在形成了p-n 结的半导体材料上加上正向偏压,p 区接正极, 图19.1 自建电场的示意图

Gb激光器各供应商性能比较总结

当前生产40Gbps EML器件的厂商主要有OKI、Cyoptics、MITSUBISHI、Eudyna。其中有三家(OKI、MITSUBISHI、Eudyna)满足XLMD-MSA标准,即是双GPPO高频同轴接口和14个pin脚的蝶形器件。Cyoptics 虽然不满足XLMD MSA但其满足ITU and MSA标准,其的特点是EA偏置可以单独调节,给最后整个模块的调试带来极大的方便。还有其监测电流最小为0.4μA。OKI (JOG-01401)其EA的偏置是和驱动输出在一起,这样给调节带来极大的困难。MITSUBISHI的EA的偏置可以调节但是是与LD偏置在一起调节,想对于OKI来说比较方便,但是调节还是存在一定的困难。在TEC功耗方面OKI (JOG-01401)和Eudyna (HS/ETM5401NF)比较低正常工作时为1.3W,这就为其他器件腾出了更大的功耗容量。激光器的阈值电流多家公司为35mA,其中MITSUBISHI(FU-697SEA-1M1)只有20 mA,但其输出光功率最大可达3 dBm。在驱动内置的三家公司中,OKI (JOG-01401)和Eudyna(HS/ETM5401NF)驱动控制引脚为6pin,MITSUBISHI (FU-697SEA-1M1)为5pin,但其X-Point控制电压绝对值最小,并且没有X-Point控制电压参考电压。在高频输入信号电压方面,差分输入信号的范围为0.2到1Vpp之间,其中Eudyna(HS/ETM5401NF)输入的差分信号最小为0.2to 0.5 Vpp,并且驱动芯片为差分输入,其高频输入电压是单端输入的一半左右。各个厂商的具体参数见下表 小结:1).以上各厂商共同的缺点是驱动前没有DC-BLOCK这就需要在器件外增加额外的设计上,使得模块的密度过高。2).对于我们自己设计来说,最后单独空余一个pin脚来单独控制EML芯片的EA偏置,这样会给以后模块的电路调节带来极大的方便。3).在TEC的选型方面,可以参考上述厂商,选择功耗比较低的,给其他器件腾出了更大的功耗容量,如正常工作时为1.3W。4).驱动IC的控制引脚一般为5到6脚,并且其一般都含有X-Point Control Voltage,driver Supply Voltage ,Output Amplitude Control Voltage(current),Output Bias Control Voltage等引脚。5).在选择驱动IC时最好选择差分输入,这样可以降低高频同轴输入的信号电压。

第二章、激光器输出特性的改善.

第二章、激光器输出特性的改善 在精密测量中,普通激光器输出的激光束,往往不能满足实际要求。比如在激光准直测量中,要求激光束发散角尽可能小,这就要求激光器为单横模(TEM 00)输出;在激光干涉测量中,要求激光频率单色性要好,这就要求激光器单横模、单纵模输出;在地卫测距中,要求激光器输出高脉冲能量窄脉冲宽度(调Q 脉冲输出或锁模脉冲输出)等。这就要求对激光器进行某些改善。下面介绍几种常见的激光输出改善反法。 §1. 激光器输出光束的模式选择 一、 激光器横模选择 在激光谐振腔中,只有衍射损耗的大小与横模的阶次有关,且各横模的衍射损耗相差比较大,所以可以通过改变衍射损耗来实现横模选择。由于高阶横模的衍射损耗很大,所以在不采取措施的情况下,激光器一般工作在低阶横模(TEM 00、TEM 10、TEM 01)。基模(TEM 00)衍射损耗最小,其他高阶横模的衍射损耗随横模阶次的增大而迅速增大。激光器的横模选择就是基于这一原理。最常见的方法就是小孔选模。 小孔选横模示意图如右图。 激光器单基横模TEM 00运转的充分(振荡)条件为: 1)1(00210 00≥-δr r e L G (单程增益大于单程损耗) (2-1-1) 其中---0 00G TEM 00模的小信号增益,r 1、r 2---两反射镜的发射系数,--00δTEM 00模的单 程衍射损耗。 激光器单基横模TEM 00运转的必要条件为:衍射损耗高于基横模TEM 00的横模(其中TEM 10是除TEM 00外所有横模中衍射损耗最小的)不能振荡。故应有: 1)1(10210 10 δ-r r e L G (TEM 10模的单程增益小于单程损耗,不能起振) (2-1-2) 其中--10δTEM 10模的单程损耗。 激光谐振腔的衍射损耗完全由谐振腔参数和菲涅尔数N 来决定。 在共焦腔中,0/121=-==?=R L g g R L ,此时N 不变,0010/δδ最大; 而在共心腔 [] 1)/21(,2/2121-=-======R R g g g L R R R 和平行平面腔 []1/1,2121=∞-==∞===L g g R R R 中,在N 不变情况下, 0010/δδ最小。

半导体激光器主要性能参数定义

半导体激光器 1.P-I 特性及阈值电流 P-I特性揭示了LD输出光功率与注入电流之间的变化规律,因此是LD最重要的特性之一。 典型的激光器P-I曲线 由P-I曲线可知,LD是阈值型器件,随注入电流的不同而经历了几个典型阶段。 ?当注入电流较小时,有源区里不能实现粒子数反转,自发辐射占主导地位,LD发射普通的荧光,光谱很宽,其工作状态类似于一般的发光二极管。 ?随着注入电流的加大,有源区里实现了粒子数反转,受激辐射开始占主导地位,但当注入电流仍小于阈值电流时,谐振腔里的增益还不足以克服损耗,不能在腔内建立起一定模式的振荡,LD发射的仅仅是较强的荧光, 称为“超辐射”状态。

? 只有当注入电流达到阈值以后,才能发射谱线尖锐、模式明确的激光,光 谱突然变窄并出现单峰(或多峰)。 2.激光器线宽 半导体的激光器的线宽是多少?有的用nm 表示,有的用Hz 表示,计算公式是什么?经常会提到激光器的线宽<0.0001 nm 换算成“Hz”是多少赫兹啊? 线宽即为激光某一单独模式的光谱宽度,一般表达形式:nm ,Hz ,cm-1。该参数与激光本身的波长由关系。 例:比如波长为1064nm, 线宽0.1nm ,则换算为Hz 单位: GHz v 5.261065.21.01064101031029 8=?=???=? 3. 边模抑制比(SSR ) 边模抑制比是指在发射光谱中,在规定的输出功率和规定的调制(或 CW )时最高光谱峰值强度与次高光谱峰值强度之比。

边模抑制比示意图 4.振荡腔 HR AR 谐振腔的作用是选择频率一定、方向一致的光作最优先的放大,而把其他频率和方向的光加以抑制。凡不沿谐振腔轴线运动的光子均很快逸出腔外; 沿轴线运动的光子将在腔内继续前进,并经两反射镜的反射不断往返运行产生振荡,运行时不断与受激粒子相遇而产生受激辐射,沿轴线运行的光子将不断增殖,在腔内形成传播方向一致、频率和相位相同的强光束,这就是激光。为把激光引出腔外,可把一面反射镜做成部分透射的,透射部分成为可利用的激光,反射部分留在腔内继续增殖光子。 光学谐振腔的作用有:①提供反馈能量,②选择光波的方向和频率。谐振腔内可能存在的频率和方向称为本征模。两反射镜的曲率半径和间距(腔长)决定了谐振腔对本征模的限制情况。不同类型的谐振腔有不同的模式结构和限模特性。 5.三种类型的QCL 按振荡腔设计的差异,QCL可以分为三大类:

激光器介绍

激光器介绍 WALC4020数控激光切割机 更快、更宽、更厚的钣金切割专家 1、产品简介 更高性能的激光切割系统: WALC4020选择了世界最先进的激光器、切割头。拥有最高质量的部件和最好的结构。如西门子的控制系统和直线驱动系统,STAR的直线导轨。 更先进的结构型式: A.横梁 WALC4020激光切割机采用横梁倒挂结构,此结构有如下优势: 1.与横梁悬臂式相比,横梁的运行速度更高,运行更平稳,可达200米/分。这是因为驱动力的作用点位于横梁的重心,不会产生附加力矩,驱动效率更高,运行更平稳。 2.与小龙门移动式相比,电气控制更简单,系统更可靠。操作更方便。 因此,WALC4020更适用于高速,高功率切割。 B.交换工作台: 采用垂直升降式交换工作台,此型式的交换方式与目前使用的斜升式相比有如下优点: A.提升能力更大,安装更方便。 B.与横梁倒挂结构配合,结构更合理。 C.在切割区内,工作台下的空间更大,以便布置排渣装置及抽风除尘装置。 C.驱动: WALC4020激光切割机的X、Y轴采用了西门子的控制系统和直线驱动系统,与传统电机+滚珠丝杠(齿条)相比,驱动力更大,加速度更高。加速度可达3G,速度最高可达200米/分。而且运行更平稳。 X,Y,Z轴的导轨采用STAR高品质直线导轨,精度更高,运行更平稳。 2、产品特性 WALC4020融合了激光最新技术的应用 一.控制 WALC4020的控制器是SIEMENS 840D。该控制器的界面已经进行了改进,以适合激光切割系统的应用。 二.穿透检测 在打孔时,穿透检测使用传感器来确定光束是不是已经穿透了板材,这样可以得到最高质量的穿透效果,节省时间。

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

半导体激光器的应用与分类

半导体激光器的应用与分类 半导体光发射器是电流注入型半导体PN结光发射器件,具有体积小、重量轻、直接调制、宽带宽,转换效率高、高可靠和易于集成等特点,被广泛应用。按照其发光特性,可分为激光二极管(又称半导体激光器或二极管激光器,Laser Diode,LD),通常光谱宽度不]于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emitting Diode,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent Dmde,SLD),光谱宽度不大于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emiltting,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent SLD),光谱宽度为30~50nm,本节重点介绍几种半导体激光器,钽电容简要介绍超辐射发光二极管。 半导体激光器的分类有多种方法。按波长分:中远红外激光器、近红外激光器、可见光激光器、紫外激光器等;按结构分:双异质结激光器、大光腔激光器、分布反馈激光器、垂直腔面发射激光器;按应用领域分:光通信激光器、光存储激光器、大功率泵浦激光器、引信用脉冲激光器等;按管心组合方式分:单管、阵列(线阵、面阵);按注入电流工作方式分:脉冲、连续、准连续等。 LD主要技术摄技术指标有光功率、中心波长、光谱宽度、阈值电流、工作电流、工作电压、斜率效率和电光转换效率等。 半导体激光器的光功率是指在规定驱动电流条件下输出的光功率,该指标直接与工作电流对应,这体现了半导体激光器的电流驱动特性。如果是连续驱动条件,T491T336M004AT则输出功率就是连续光功率,如果是脉冲驱动条件,输出的光功率可用峰值功率或平均功率来衡量。hymsm%ddz 半导体激光器的中心波长是指激光器所发光谱曲线的中心点所对应的波长,通常用该指标来标称激光器的发光波长。光谱宽度是标志个导体激光器光谱纯度的一个指标,通常用光谱曲线半高度对应的光谱全宽来表示。 半导体激光器的光场是发散的而且是不对称的。在垂直PN结平面方向(快轴方向),发散角较大,通常在20°~45°之间;在平行PN结平面方向(慢轴方向),发散角较小,通常在6°~12°之间。由此可以看出,半导体二极管激光器的光场在空间分布呈椭圆形。

半导体激光器国家标准(二)

半导体激光器国家标准(二) 3.1.32 远场光强分布Far field intensity distribution 在距离远远大于激光光源瑞利长度的接收面上得到的光强分布。 3.1.33 近场光强分布Near field intensity distribution 激光器在输出腔面(AR面)上的光强分布。 3.1.34 近场非线性Near field non-linearity 热应力引起半导体激光器阵列或巴条中各个发光单元在垂直p-n结的方向上发生的位移,导致激光器阵列或巴条近场各个发光单元不在一条直线上,又称为"smile"效应。 3.1.35 偏振Polarization 半导体激光器是利用光波导效应将光场限制在有源区内,使光波沿着有源区层传播,并通过腔面输出,半导体激光器的偏振特性与电场和磁场两个空间变量有关,对于横向电场(TE)偏振光,只存在(Ey,Hx,Hz)三个分量,对于横向磁场(TM)偏振光,只存在(Ex,Ez,Hy)三个分量。半导体激光器偏振特性优劣通常用偏振度来表征,偏振度为两种偏振态的光功率差与光功率和的比值,通常以百分比表示。 3.1.36 热阻Thermal resistance 热量在热流路径上遇到的阻力,反映介质或介质间的传热能力的大小,激光器产生1W 热量所引起的温升大小,单位为℃/W或K/W。 3.1.37 波长-温度漂移Wavelength-temperature shift 半导体激光器稳定工作时,结温每升高1℃所引起的波长变化,单位是nm/K。 3.1.38 斜率效率Slope efficiency 激光器额定光功率的10%和90%对应的光功率差值△P与相应工作电流的差值△I的比值称为斜率效率。 3.1.39 光功率-电流曲线扭折Optical power-current curve kink 光功率-电流曲线上出现的非线性变化的拐点。扭折表征了光功率与工作电流的线性关系的优劣。 3.1.40 光输出饱和Optical output saturation 光输出饱和是指理想的线性响应光输出的跌落,表征激光器光输出效率下降。 3.1.41 FP腔Fabry-Perot cavity 以激光器两平行腔面((高反射面HR或部分反射面PR面))形成的具有光增益反馈作用的谐振腔。 3.1.42 分布反馈半导体激光器DFB distributed feed-back semiconductor laser 分布反馈是指激光器增益区材料具有特殊结构,可以形成周期性光反馈。具有这种结构的半导体激光器称为分布反馈半导体激光器。 3.1.43 分布布拉格反射式半导体激光器DBR Distributed bragg reflector semiconductor laser 分布布拉格反射镜(DBR)又称为光栅反射器,通常设于半导体激光器增益介质外部,对满足布拉格光栅选择条件的波长具有最大的反射率。具有该结构的半导体激光器称为分布布拉格反射式半导体激光器。 3.1.44 直接调制半导体激光器DML Direct modulation semiconductor laser 通过直接调制驱动电流来控制激光器工作方式的半导体激光器称为直接调制半导体激光器。 3.1.45 电吸收调制半导体激光器EML Electro-absorption modulation semiconductor laser 电吸收调制是利用外加电压对半导体材料能带结构的影响从而产生光吸收的原理,对单

半导体激光器的发展及其应用

浅谈半导体激光器及其应用 摘要:近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。 关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。 自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。 一、半导体激光器 半导体激光器是以直接带隙半导体材料构成的 Pn 结或 Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给 Pn 结加正向电压,以使在结平面区域产生受激发射 ,也就是说是个正向偏置的二极管。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁 ,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙 ,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。 半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进 ,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在 21 世纪的信息社会中将取得更大的进展, 发挥更大的作用。 二、半导体激光器的工作原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件 : 1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带 ,因此在半导体中要实现粒子数反转,必须在两个能带区域之间 ,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时 ,便产生受激发射作用。 2、要实际获得相干受激辐射 ,必须使受激辐射在光学谐振腔内得到多次反馈而

相关主题
文本预览