2019-2020九年级数学上册圆中计算及综合训练习题(新版)新人教版
- 格式:doc
- 大小:59.86 KB
- 文档页数:3
第2章对称图形圆测试卷(时间:100分钟满分:100分)一、选择题(每题3分,共30分)1.下列说法正确的是( )A.相等的圆心角所对的孤相等B.90°的角所对的弦是直径C.等弧所对的弦相等D.圆的切线垂直于半径2.在⊙O中,AB是弦,圆心到AB的距离为1,若⊙O的半径为2,则弦AB的长为( ) A.5B.25C.3D.253.如图,已知PA切⊙O于A,⊙O的半径为3,OP=5,则切线长PA为( ) A.34B.8 C.4 D.24.设⊙O的半径为R,圆心到点A的距离为d,且R,d分别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是( )A.点A在⊙O内部B.点A在⊙O上C.最A在⊙O外部D.点A不在⊙O上5.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠ABC=70°,则∠BDC的度数为( )A.50°B.40°C.30°D.20°6.已知正三角形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:a:R等于( ) A.1:23:2 B.1:3:2C.1:2:3D.1:3:237.图中实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A.12π m B.18π m C.20π m D.24π m8.如图,将半径为2的圆形纸片,沿半径OA ,OB 将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为 ( ) A .12B .1C .1或3D .12或329.如图,若AB =OA =OB =OC ,则∠ACB 的大小是 ( ) A .40°B .30°C .20°D .35°10.如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ,B ,E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为 ( ) A .9π B .39π C .33322π- D .33223π-二、填空题(每题3分,共24分)11.已知两直角边是5和12的直角三角形,则其内切圆的半径是_______. 12.已知弦AB 的长等于⊙O 的半径倍,则弦AB 所对的圆周角是_______.13.已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是_______. 14.如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8 m ,则排水管内水的最大深度为_______m .第14题 第16题15.在△ABC 中,∠A =50°,若O 为△ABC 的外心,∠BOC =_______;若I 为△ABC 的内心,∠BIC =_______.16.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=_______.17.如图,两个同心圆,大圆半径为5 cm,小圆的半径为3 cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是_______.18.如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C,D两点,则弦CD长的所有可能的整数值有_______个.三、解答题(共46分)19.(8分)如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3 m,弓形的高EF =1 m,现计划安装玻璃,请帮工程师求出»AB所在的圆O的半径r.20.(8分)已知⊙O的直径AB的长为4 cm,C是⊙O上一点,∠BAC=30°,过点C 作⊙O的切线交AB的延长线于点P,求BP的长.21.(8分)如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.22.(10分)如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=6,CO =8.(1)判断△OBC的形状,并证明你的结论;(2)求BC的长;(3)求⊙O的半径OF的长.23.(12分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆ACB弧的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.参考答案1.C 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D11.212.45°或135°13.180°14.0.215.100°115°16.52°17.8<AB≤1018.319.13m820.2(cm).21.(1)60°.(2)略(3)8322.(1)△OBC是直角三角形.(2)10.(3)OF=245 23.(1)略(2)是菱形。
第二十四章圆填空题—2019年中考真题汇编(一)1.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC =100°,∠OCD=35°,那么∠OED=.2.(2019•鄂尔多斯)如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.3.(2019•青海)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.4.(2019•鞍山)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为.5.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.6.(2019•铁岭)如图,点A,B,C在⊙O上,∠A=60°,∠C=70°,OB=9,则的长为.7.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.8.(2019•莱芜区)用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是cm.9.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.10.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.11.(2019•铜仁市)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;12.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.13.(2019•陕西)若正六边形的边长为3,则其较长的一条对角线长为.14.(2019•娄底)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.15.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为.16.(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).17.(2019•包头)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.18.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.19.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是.20.(2019•贵阳)如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA =2,则四叶幸运草的周长是.21.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.22.(2019•鸡西)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上且∠ADC=30°,则∠AOB的度数为.23.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为.24.(2019•河池)如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.25.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.26.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.27.(2019•贺州)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.28.(2019•绥化)用一个圆心角为120°的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为.29.(2019•齐齐哈尔)将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.30.(2019•鸡西)若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.31.(2019•哈尔滨)一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是度.32.(2019•海南)如图,⊙O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角∠BOD的大小为度.33.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E 为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.34.(2019•十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.35.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是.36.(2019•荆门)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.37.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)38.(2019•咸宁)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为(结果保留π).39.(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为.第二十四章圆填空题—2019年中考真题汇编(一)参考答案与试题解析1.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.2.【分析】根据S阴影部分=S扇形OAE﹣S△OAE即可求解.【解答】解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.【点评】本题考查扇形的面积公式,等腰三角形的性质,三角形的面积等知识,解题的关键是学会用分割法求阴影部分的面积.3.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.4.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【解答】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.5.【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.【分析】连接OA,根据等腰三角形的性质求出∠OAC,根据题意和三角形内角和定理求出∠AOB,代入弧长公式计算,得到答案.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=70°,∴∠OAB=∠OAC﹣∠BAC=70°﹣60°=10°,∵OA=OB,∴∠OBA=∠OAB=10°,∴∠AOB=180°﹣10°﹣10°=160°,则的长==8π,故答案为:8π.【点评】本题考查的是弧长的计算、圆周角定理,掌握弧长公式是解题的关键.7.【分析】根据垂径定理得到AD=DC,由等腰三角形的性质得到AB=2OD=2×2=4,得到∠BAE=∠CAE=∠BAC=90°=45°,求得∠ABD=∠ADB=45°,求得AD=AB=4,于是得到DC=AD=4,根据勾股定理即可得到结论.【解答】解:∵OD⊥AC,∴AD=DC,∵BO=CO,∴AB=2OD=2×2=4,∵BC是⊙O的直径,∴∠BAC=90°,∵OE⊥BC,∴∠BOE=∠COE=90°,∴=,∴∠BAE=∠CAE=∠BAC=90°=45°,∵EA⊥BD,∴∠ABD=∠ADB=45°,∴AD=AB=4,∴DC=AD=4,∴AC=8,∴BC===4.故答案为:4.【点评】本题考查了三角形的外接圆与外心,圆周角定理,垂径定理,勾股定理,正确的识别图形是解题的关键.8.【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10【点评】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.9.【分析】根据已知条件得到∠AOB=60°,推出△AOB是等边三角形,得到OA=OB=AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵正六边形ABCDEF内接于⊙O,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∴扇形AOB的面积==,故答案为:.【点评】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是熟练掌握扇形的面积公式.10.【分析】根据垂径定理得到AD=4,由勾股定理得到OD==3,求得OA﹣OD=2,根据弧田面积=(弦×矢+矢2)即可得到结论.【解答】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.11.【分析】直接利用圆内接四边形的性质:外角等于它的内对角得出答案.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°【点评】考查圆内接四边形的外角等于它的内对角.12.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.13.【分析】根据正六边形的性质即可得到结论.【解答】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.14.【分析】利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.【分析】直接利用圆周角定理得出∠BCD=90°,进而得出答案.【解答】解:∵△ABC内接于⊙O,BD是⊙O的直径,∴∠BCD=90°,∵∠CBD=21°,∴∠A=∠D=90°﹣21°=69°.故答案为:69°【点评】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.16.【分析】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=﹣8×6=25π﹣48.故答案为:25π﹣48.【点评】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.17.【分析】连接CD,由圆周角定理得出∠BCD=90°=∠CAB,证明△ABC∽△CBD,得出=,即可得出结果.【解答】解:连接CD,如图:∵BD是⊙O的直径,∴∠BCD=90°=∠CAB,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,∴BC2=AB×BD=4×6=24,∴BC==2;故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定与性质;熟练掌握圆周角定理,证明三角形相似是解题的关键.18.【分析】先根据题意画出图形,再连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,由垂径定理及正方形的性质得出OE=BE=,再由勾股定理即可求解.【解答】解:如图所示,连接OB、OC,过O作OE⊥BC,设此正方形的边长为a,∵OE⊥BC,∴OE=BE=,即a=5.故答案为:5.【点评】本题考查的是正多边形和圆,解答此类问题的关键是根据题意画出图形,利用数形结合求解.19.【分析】根据三角形外角的性质得到∠C=∠ADO﹣∠CAB=65°,根据等腰三角形的性质得到∠AOC =50°,由扇形的面积公式即可得到结论.【解答】解:∵∠ADO=85°,∠CAB=20°,∴∠C=∠ADO﹣∠CAB=65°,∵OA=OC,∴∠OAC=∠C=65°,∴∠AOC=50°,∴阴影部分的扇形OAC面积==,故答案为:.【点评】本题考查了扇形面积的计算,由等腰三角形的性质和三角形的内角和求出∠AOC是解题的关键.20.【分析】由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.【解答】解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB、BC、CD、AD,则四边形ABCD是正方形,连接OB,如图所示:则正方形ABCD的对角线=2OA=4,OA⊥OB,OA=OB=2,∴AB=2,过点O作ON⊥AB于N,则NA=AB=,∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.21.【分析】如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=5,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=OB=5.【解答】解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD=OB=,∴BC=AB=5,如图2,当∠DOB=90°,∴∠BOC=90°,∴△BOC是等腰直角三角形,∴BC=OB=5,综上所述:若△OBD是直角三角形,则弦BC的长为5或5,故答案为:5或5.【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.22.【分析】利用圆周角与圆心角的关系即可求解.【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.【点评】此题考查了圆周角与圆心角定理,熟练掌握圆周角与圆心角的关系是解题关键.23.【分析】利用弧长=圆锥的底面周长这一等量关系可求解.【解答】解:连接AB,过O作OM⊥AB于M,∵∠AOB=120°,OA=OB,∴∠BAO=30°,AM=,∴OA=2,∵=2πr,∴r=故答案是:【点评】本题运用了弧长公式和圆的周长公式,建立准确的等量关系是解题的关键.24.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.【点评】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.25.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.26.【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH =,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.【解答】解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O =3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质和扇形面积公式.27.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n°,根据题意得2π•1=,解得n=90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.28.【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可.【解答】解:设圆锥的母线长为l,根据题意得:=2π×4,解得:l=12,故答案为:12.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.29.【分析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=3,然后根据勾股定理计算出圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=3,所以圆锥的高==4(cm).故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.30.【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可.【解答】解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.【点评】本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长来求出弧长.31.【分析】直接利用弧长公式l=即可求出n的值,计算即可.【解答】解:根据l===11π,解得:n=110,故答案为:110.【点评】本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.32.【分析】根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.【解答】解:∵五边形ABCDE是正五边形,∴∠E=∠A==108°.∵AB、DE与⊙O相切,∴∠OBA=∠ODE=90°,∴∠BOD=(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,故答案为:144.【点评】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.33.【分析】根据切线的性质得出△ABD是直角三角形,DB2=CD•AD,根据勾股定理求得AB,即可求得AE,然后分两种情况求得AP的长即可.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.故答案为4和2.56.【点评】本题考查了切线的性质,勾股定理的应用,垂径定理的应用,平行线的判定和性质,分类讨论是解题的关键.34.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.35.【分析】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,解直角三角形即可得到结论.【解答】解:过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.【点评】本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.36.【分析】过A作AM⊥BC于M,EN⊥BC于N,根据等边三角形的性质得到AM=BC=×2=,求得EN=AM=,根据三角形的面积和扇形的面积公式即可得到结论.【解答】解:过A作AM⊥BC于M,EN⊥BC于N,∵等边三角形ABC的边长为2,∠BAC=∠B=∠ACB=60°,∴AM=BC=×2=,∵AD=AE=1,∴AD=BD,AE=CE,∴EN=AM=,∴图中阴影部分的面积=S△ABC﹣S扇形ADE﹣S△CEF﹣(S△BCD﹣S扇形DCF)=×2×﹣﹣×﹣(×﹣)=+﹣,故答案为:+﹣.【点评】本题考查了扇形的面积的计算,等边三角形的性质,正确的作出辅助线是解题的关键.37.【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.38.【分析】根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.【解答】解:连接OC、BC,作CD⊥AB于点D,∵直径AB=6,点C在半圆上,∠BAC=30°,∴∠ACB=90°,∠COB=60°,∴AC=3,∵∠CDA=90°,∴CD=,∴阴影部分的面积是:=3π﹣,故答案为:3π﹣.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.39.【分析】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD的面积与扇形OBC的面积之和再减去△BDO的面积,本题得以解决.【解答】解:作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.OA=2,∴∠AOD=90°,∠BOC=30°,OA=OB,∴∠OAB=∠OBA=30°,∴OD=OA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF=,∴BD=2,∴阴影部分的面积是:S△AOD+S扇形OBC﹣S△BDO==+π,故答案为:+π.【点评】本题考查扇形面积的计算,解答本题的关键是明确题意,利用数形结合的思想解答.。
人教版(五四制)2019-2020九年级数学上册期中综合复习培优训练题A(含答案)1.抛物线y=x2+2x+3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=﹣2 D.直线x=22.在平面直角坐标系中,二次函数的大致图象如图所示,则下列结论正确的是()A.B.C.D.关于的方程有两个不相等的实数根3.若二次函数y=(m-1)x2+m2-1的图象的顶点在坐标原点,则m的值是( )A.±1 B.1 C.-1 D.24.如图,将一块等腰Rt△ABC的直角顶点C放在⊙O上,绕点C旋转三角形,使边AC经过圆心O,某一时刻,斜边AB在⊙O上截得的线段DE=2cm,且BC=7cm,则OC的长为()A.3cm B.cm C.cm D.cm5.抛物线y=2(x-3)2+1的顶点坐标是()A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)6.下列安全标志图中,是中心对称图形的是()A.B.C.D.7.平面直角坐标系内与点P(﹣1,2)关于原点对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,﹣1)8.如图,线段EF 的长为4,O 是EF 的中点,以OF 为边长做正方形OABC ,连接AE 、CF 交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°止,则点P 运动的路径长为( ).A .2B C .2π D . 9.已知⊙O 的半径为6cm ,当OP=6cm 时,点P 在_________;当OP__________时,点P 在圆内;当OP___________时,点P 不在圆外.10.在Rt △ABC 中,∠C=90°,AC=2cm ,BC=4cm ,若以点C 为圆心,2cm 为半径作圆,则点A 在⊙C____________,点B 在⊙C____________.11.二次函数图象的顶点坐标为________.12.将抛物线y =x 2+4x 向下平移3个单位,所得抛物线的表达式是______________________.13.如图,A ,B ,C 是⊙O 上的三点,若∠BAO =65°,则∠ACB 的度数是_____.14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,最低点离地面0.5米,小明距较近的那棵树0.5米时,头部刚好接触到绳子,则小明的身高为__________米.15.已知二次函数()22322y x x x =---≤≤的最大值是__________16.如图抛物线与x轴分别交于A、B两点,顶点C在y轴负半轴上,也在正方形ADEB 的边上,已知正方形ADEB的边长为2,若正方形FGMN的顶点F、G落在x轴上,顶点M、N落在图中的抛物线上,则正方形FGMN的边长为________.17.旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD=3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)18.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?19.如图,反比例函数kyx的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.20.如图1,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于A(﹣2,0)和B(8,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.21.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.22.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.23.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(-4,0),B(0,3),动点P从点O出发,沿x轴负方向以每秒1个单位的速度运动,同时动点Q从点B出发,沿射线BO方向以每秒2个单位的速度运动,过点P作PC⊥AB于点C,连接PQ,CQ,以PQ,CQ为邻边构造平行四边形PQCD,设点P运动的时间为t秒.(1)当点Q在线段OB上时,用含t的代数式表示PC,AC的长;(2)在运动过程中.①当点D落在x轴上时,求出满足条件的t的值;②若点D落在△ABO内部(不包括边界)时,直接写出t的取值范围;(3)作点Q关于x轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A,P,C三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t的值;若不存在,请说明理由.24.铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.参考答案1.B【解析】分析:先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.详解:∵y=x 2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=-1.故选B .点睛:本题考查了二次函数的性质:对于二次函数y=ax 2+bx+c (a≠0),它的顶点坐标是(-,),对称轴为直线x=-.2.D【解析】试题分析:根据二次函数的性质一一判断即可.:A 、错误.a <0,b >0,c <0.B 、错误..C 、错误.x=1时,y=a+b+c=0.D 、正确.观察图象可知抛物线y=ax 2+bx+c 与直线y=﹣1有两个交点,所以关于x 的方程x 2+bx+c=﹣1有两个不相等的实数根.故选D .考点:二次函数图象与系数的关系;根的判别式;抛物线与x 轴的交点.3.C【解析】由题意得:把(0,0)代入y=(m -1)x²+m²-1,得m²-1=0,解得121,1m m ==- ,因为m-1≠0,所以m≠1,即m= -1.故选C.点睛:本题考查了二次函数图象上点的坐标特征:二次函数y=ax²+bx+c(a、b、c为常数,a≠0)图象上的点的坐标满足其解析式,同时考查了二次函数的定义.4.A【解析】试题分析:过O点作OM⊥AB,∴ME=DM=1cm,设MO=h,CO=DO=x,∵△ABC为等腰直角三角形,AC=BC,∴∠MAO=45°,∴AO=h∵AO=7-x,∴,在Rt△DMO中,h2=x2-1,∴2x2-2=49-14x+x2,解得:x=-17(舍去)或x=3,故选A.考点:垂径定理;勾股定理;等腰直角三角形.二、填空题(本大题共有8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)5.A【解析】试题解析:解:抛物线y=2(x-3)2+1的顶点坐标是(3,1).故应选A.考点:抛物线的顶点点评:本题主要考查了抛物线的顶点.抛物线的顶点坐标是(a,h).6.B【解析】试题分析:A .不是中心对称图形,故此选项不合题意;B .是中心对称图形,故此选项符合题意;C .不是中心对称图形,故此选项不符合题意;D .不是中心对称图形,故此选项不合题意;故选B .考点:中心对称图形.7.A .【解析】试题分析:根据关于原点对称的点的横坐标与纵坐标都互为相反数可得与点P (﹣1,2)关于原点对称的点的坐标是(1,﹣2).故选A .考点:关于原点对称的点的坐标.8.B .【解析】试题分析:如图,连接AC .首先证明∠EPF=135°,推出点P 在与K 为圆心的圆上,点P 的运动轨迹是EPF ,在⊙K 上取一点M ,连接ME 、MF 、EK 、FK ,则∠M=180°﹣∠EPF=45°,推出∠EKF=2∠M=90°,因为EF=4,所以KE=KF=P 运动的路径长=9022180π. 故选:B .考点:轨迹;正方形的性质;旋转的性质.9.圆上<6cm ≤6cm【解析】∵⊙O的半径6cm,∴当OP=6时,点A在⊙O上;当OP<6时点P在圆内;当OP≤6时,点P不在圆外。
人教版(五四制)2019-2020九年级数学上册期中综合复习能力提升训练题4(含答案)1.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列4个结论,其中正确的结论是( )A.abc 0>B.2a b 0-=C.b a c >+D.2b 4ac 0-<2.已知抛物线y =ax 2+bx +c 开口向下,顶点坐标(3,-5),那么该抛物线有( ) A .最小值-5B .最大值-5C .最小值3D .最大值33.如图,一次函数y 1=x+5与二次函数22y ax bx c =++的图象相交于A 、B 两点,则函数y=﹣ax 2+(1﹣b )x+5﹣c 的图象可能为( )A .B .C .D . 4.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( )A .8B .2C .2D .25.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF 的对称中心与原点O重合,点A 在x 轴上,点B 在反比例函数k y x=位于第一象限的图象上,则k 的值为( )A .B .C .D .6.如图,以AD 为直径的半圆经过点E 、B ,点E 、B 是半圆的三等分点,弧 BE 的长为,则图中阴影部分的面积为( )A .B .C .D .7.已知反比例函数y=,点A (m ,y 1),B (m +2,y 2 )是函数图像上两点,且满足,则k 的值为( )A .2B .3C .4D .58.已知抛物线2y ax bx =+和直线y ax b =+在同一坐标系内的图象如图所示,其中正确的是( )A .(A )B .(B )C .(C )D .(D )9.如图,点P 是 外一点,PA 、PB 是的两条切线,A 、B 为切点,OP=2,PA=1,则∠APB 的度数为( )A.B.C.D.10.反比例函数kyx=的图象经过点P(3,﹣4),则这个反比例函数的解析式为()A.12yx=B.12yx=-C.34y=D.4yx=11.已知点A(2,4)与点B(b–1,2a)关于原点对称,则a=___,b=_____.12.把抛物线沿x轴向左平移4个单位,再沿y轴向上平移3个单位后,所得新抛物线相应的函数表达式是______.13.圆锥的底面周长为,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为______.14.如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值为_____.15.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.16.若函数y=3x2的图象与直线y=kx+3的交点为(2,b),则k=_____,b=______. 17.已知⊙O的半径为2,OP=1,则点P与⊙O的位置关系是:点P在⊙O .18.四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=2:1:4,则∠D=_____度.19.抛物线在y=x2-2x-3在x轴上截得的线段长度是________.20.已知⊙O的内接正方形的面积为8,则⊙O的内接正八边形的面积为_____.21.如图,抛物线与轴交于和两点,交轴于点.求此抛物线的解析式.若直线与抛物线交于、两点,与轴交于点,连接,求的面积.22.如图1,在平面直角坐标系xOy中,点A,B坐标分别为(8,4),(0,4),线段CD在于x轴上,CD=3,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E,交OA于点G,连结CE交OA于点F. 设运动时间为t,当E点到达A点时,停止所有运动. (1)求线段CE的长;(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t函数关系式及t的取值范围;(3)如图2,连结DF,1当t取何值时,以C,F,D为顶点的三角形为等腰三角形?2直接写出ΔCDF的外接圆与OA相切时t的值.23.为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径.24.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积.(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q ,是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式,若不存在,请说明理由.25.如图:四边形ABCD 为O 的内接四边形,连接BD AC 、,BD 为O 的直径,DE AC ⊥于点E .(1)如图,求证:BDC ADE ∠=∠;(2)如图,连接OC ,当OC AD ∕∕时,求证:AC BC =;(3)如图,在(2)的条件下,延长DE 交BC 于点F ,连接OF ,2,3FC BF DE == ,求OF 的长.26.已知⊙O 的弦AB 长为10,半径长R 为7,OC 是弦AB 的弦心距,求OC 的长 27.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为 件;(2)当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润.28.某绿色种植基地种植的农产品喜获丰收,此基地将该农产品以每千克5元出售,这样每天可售出1500千克,但由于同类农产品的大量上市,该基地准备降价促销,经调查发现,在本地该农产品若每降价0.2元,每天可多售出100千克.当本地销售单价为()x x 3≥元时,销售量为y 千克.()1请直接写出y 和x 的函数关系式;()2求在本地当销售单价为多少时可以获得最大销售收入?最大销售收入是多少? ()3若该农产品不能在一周内出售,将会因变质而不能出售.依此情况,基地将10000千克该农产品运往外地销售.已知这10000千克农产品运到了外地,并在当天全部售完.外地销售这种农产品的价格比在本地取得最大销售收入时的单价还高()a%a 20≥,而在运输过程中有0.6a%损耗,这样这一天的销售收入为42000元.请计算出a 的值.参考答案1.C .【解析】试题解析:抛物线的开口向下,则a <0;…①抛物线的对称轴为x=1,则-2b a=1,b=-2a ;…② 抛物线交y 轴于正半轴,则c >0;…③抛物线与x 轴有两个不同的交点,则:△=b 2-4ac >0;(故D 错误)由②知:b >0,b+2a=0;(故B 错误)又由①③得:abc <0;(故A 错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故C 正确)故选C .考点:二次函数图象与系数的关系.2.B【解析】由抛物线的开口向下和其顶点坐标为(3,-5),根据抛物线的性质,可以知该抛物线有最大值-5.故选:B .3.A【解析】令y 1=y 2,x +5=ax 2+bx +c ,整理得-ax 2+(1-b )x +5-c =0,由图像分析可得,y 1与y 2有两个交点,一正一负,即方程-ax 2+(1-b )x +5-c =0有两个不相等的实数根,且这两个实数根异号,令y =-ax 2+(1-b )x +5-c ,即此二次函数与x 轴有两个交点,分别交于x 轴的正半轴和负半轴.故选A.点睛:此类问题需将二次函数与x 轴的交点问题转化为一元二次方程根的情况问题. 4.C【解析】解:连接BE .设⊙O 半径为r ,则OA =OD =r ,OC =r ﹣2.∵OD ⊥AB ,∴∠ACO =90°,AC =BC =AB =4.在Rt △ACO 中,由勾股定理得:r 2=42+(r ﹣2)2,解得:r =5,∴AE =2r =10.∵AE为⊙O 的直径,∴∠ABE =90°.由勾股定理得:BE =6.在Rt △ECB 中,EC ===.故选C .点睛:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.5.B【解析】试题解析:连接OB,过B作BG⊥OA于G,∵ABCDEF是正六边形,∴∠AOB=60°,∵OB=OA,∴△AOB是等边三角形,∴OB=OA=AB=6,∵BG⊥OA,∴∠BGO=90°,∴∠OBG=30°,∴OG=12OB=3,由勾股定理得:即B的坐标是(3,),∵B点在反比例函数y=kx上,∴k=3×故选B.6.D【解析】分析:如图,连接OB,过O作OF⊥BD于点F,由于B、E是半圆的三等分点,得∠AOB=60°,由弧BE的长为可得半圆的半径,故可得扇形的面积,进而求得S△BOD,根据S阴影=S半圆-S扇形AOB- S△BOD即可得解.详解:如图,连接OB,过O作OF⊥BD于点F,∵点E、B是半圆的三等分点,弧BE的长为,∴∴OA=2∴在△BOD中,∠BOD=120°,∴∠BOF=60°∴,即:OF=BOcos∠BOF=2×=1∴BF=∴BD=2∴∴ S阴影=S半圆-S扇形AOB- S△BOD==.故选D.点睛:本题主要考查了不规则图形面积的计算.利用S阴影=S半圆-S扇形AOB- S△BOD求解是解题的关键.7.C【解析】分析:将点A(m,y1),B(m+2,y2 )代入反比例函数y=,得出y1、y2与m、k的关系式,再代入,即可求出k的值.详解:∵点A(m,y1),B(m+2,y2 )是函数图像y=上的两点,∴,,∴,,∵,∴,解得.故选C.点睛:本题考查了反比例函数图象上的点的坐标特征.将函数图象上的点代入其解析式,并利用倒数的方法将转化为是解题的关键.8.D【解析】解:A.由二次函数的图象可知a<0,此时直线y=ax+b应经过二、四象限,故A 可排除;B.由二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b应经过一、二、四象限,故B可排除;C.由二次函数的图象可知a>0,此时直线y=ax+b应经过一、三象限,故C可排除;正确的只有D.故选D.点睛:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9.C【解析】【分析】由PA,PB是⊙O的两条切线,A,B为切点,根据切线长定理可知∠APO和∠BPO的关系,PA和PB的关系,进而找出△APO和△BPO的关系,进而求解.【详解】解:∵PA,PB是⊙O的两条切线,A,B为切点,∴∠APO=∠BPO,OA⊥PA,OB⊥PB,PA=PB,∴△APO≌△BPO,∴∠AOP=∠BOP.∵sin∠AOP=,∴∠APO=60°,∴∠APB=120°.故选C.【点睛】本题考查了特殊角的三角函数值,切线长定理及其推论,全等三角形的判定(AAS) 全等三角形的性质,掌握这些是解答本题的关键.10.B【解析】【分析】把已知点的坐标代入函数解析式可求出k值,即得到反比例函数的解析式.【详解】解:∵反比例函数y=kx的图象经过点P(3,-4),∴k=-4×3=-12,∴反比例函数解析式为y= -12x.故选:B.【点睛】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.11.-2 -1【解析】【分析】根据关于原点对称的点坐标特征得到关于a,b的方程,然后求解即可.【详解】解:∵点与点关于原点对称,∴2=1﹣b,4=﹣2a,解得:a=﹣2,b=﹣1.故答案为:﹣2;﹣1.【点睛】本题考点:关于原点对称的坐标特征.12.【解析】【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】把抛物线沿x轴向左平移4个单位得,再沿y轴向上平移3个单位后得.故答案为:.【点睛】本题考查的是抛物线的平移,解答的关键是掌握二次函数的图象的平移规律.13.1.【解析】解:如图,连接AA′,∵底面周长为,∴弧长==,∴n=60°即∠AOA′=60°,∴∠A=60°,∵OA=OA′,∴△AOA′是等边三角形,∴AA′=2,∵PP′是△OAA′的中位线,∴PP′=AA′=1,故答案为:1.14.【解析】如图,连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=8.∴OP=AB=4.又∵⊙O的半径为1,∴PQ=;故答案是:。
答案:能通过.设圆x,3.9^2-(2+3.9-2.4)^2=(x/2)^2,x=3.44证明:延长CE、DF交圆于接CN、DM交于O点,易证:△3.如图,△ABC 内接于⊙O答案:当P在O点时,∵OA=OC∴∠ACP=∠BAC=30∘;当P在B点时,∵圆的直径所对的圆周角为直角,∴∠ACP=90∘;∴30∘⩽x⩽90∘.故答案为:30∘⩽x⩽90∘.10、如图所示,AB =AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE .(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC =6,AB =5,求BE 的长.证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴ED ˆ=BDˆ,∴DE=BD;(2)∵AB=5,BD=12BC=3,∴AD=4,∵AB=AC=5,∴AC⋅BE=CB⋅AD,∴BE=4.8.11、如图11,半圆的直径AB =10,点C 在半圆上,BC=6.(1)求弦AC 的长;(2)若P 为AB 的中点,PE ⊥AB 交AC 于点E ,求PE 的长.解:(1)是的直径,,,而,,;(2),,而公共,,,即,.12、如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:BC2 =BG*BF.证明:∵AB是O的直径,∠ACB=90∘,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.,∴∠F=∠BCD.在△BCG和△BFC中,{∠BCG=∠F∠GBC=∠CBF,∴△BCG∽△BFC.∴BCBF=BGBC.即BC2=BG⋅BF.13、如图,AD 是⊙O 的直径.(1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是,∠B 2的度数是;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2,∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).解:(1)∵垂直于AD的两条弦,把圆周4等分,∴弧、弧、弧、弧的度数都是90度,弧弧,∴弧的度数是45度,,, 故答案为:22.5度,67.5度,(2)∵垂直于AD的三条弦,,把圆周6等分∴弧、弧、弧的度数都是60度,弧弧,∴弧的度数是30度,,故答案为:75度。
圆的基本性质综合测试题满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1.⊙O的半径为5㎝,点A到圆心O的距离OA=3㎝,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定2.在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30°B.45°C.60°D.90°AMB上一点,则∠3.如图,将⊙O 沿弦AB折叠,圆弧恰好经过圆心O,点P 是优弧¼APB 的度数为A.45°B.30°C.75°D.60°4.下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D .对角线互相垂直平分且相等的四边形是正方形5.如图,已知AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为( )A.68°B.88°C.90°D.112°6.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .34B .36C .32D .87.数学课上,老师让学生尺规作图画Rt △ABC ,使斜边AB =c ,BC =a ,小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是( )A .勾股定理B .直径所对的圆周角是直角C .勾股定理的逆定理D . 90°的圆周角所对的弦是直径8.如图,⊙O 为△ABC 的外接圆,∠A = 72°,则∠BCO 的度数为( )D C BAA.15°B.18°C.20°D.28°9.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,»AC,»BC的中点分别是M,N,P,Q,若MP+NQ=14,AC+BC=18,则AB的长为()A.92B.907C.13 D.1610.如图,在直角∠O的内部有一滑动杆AB.当端点A沿直线AO向下滑动时,端点B 会随之自动的沿直线OB向左滑动.如果滑动杆从图中AB处滑动到A B''处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分二、填空题(本题有6小题,每小题5分,共30分)11.如图,已知AB 是⊙O 上,若∠CAB=40°,则∠ABC 的度数为____________.12.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=_______________.13.如图,在⊙O 中,∠OAB =45°,圆心O 到弦AB 的距离OE =2 cm,则弦AB 的长为_____cm . B A E O14. 将量角器按如图所示的方式放置在三角形纸板上,使顶点C 在半圆上,点A 、B 的读数分别为0100、0150 ,则ACB的大小为___________度.[15. 如图,⊙O 的内接四边形ABCD 中,∠A =115°,则∠BOD = °.16. 如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,依次类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是.三、解答题(本题有8小题,共80分)17.(本题8分) 如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(4分)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.(4分)18.(本题8分) 如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2.(1)求作⊙O,使它经过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的图中,求出劣弧»BC的长l.AB C19.(本题8分) 已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45°.(1)求BD 的长;(2)求图中阴影部分的面积.20.(本题8分) 如图,菱形OABC 的顶点A 的坐标为(2,0),60COA ∠=︒,将菱形OABC 绕坐标原点O 逆时针旋转120︒得到菱形ODEF.⑴直接写出点F 的坐标;⑵求线段OB 的长及图中阴影部分的面积.21.(本题10分) 如图,△ABC 在平面直角坐标系内,顶点的坐标分别为A (-1,5),B(-4,1),C (-1,1).将△ABC 绕点A 逆时针旋转90°,得到△AB ′C ′,点B ,C 的对应点分别为点B ′,C ′.(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.AB C22.(本题12分) 如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.23.(本题12分) 已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m - 5,2).(1)是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m 的取值范围;若不存在,请说明理由.(2)当∠AOC 与∠OAB 的平分线的交点Q 在边BC 上时,求m 的值.24.(本题14分) 如图,四边形ABCD 为菱形,对角线AC ,BD 相交于点E .F 是边BA 延长线上一点,连接EF ,以EF 为直径作⊙O ,交边DC 于D ,G 两点,AD 分别与EF ,GF 交于I ,H 两点.(1)求∠FDE 的度数;(2)试判断四边形FACD 的形状,并证明你的结论;(3)当G 为线段DC 的中点时,①求证:DF=FI ;②设AC=2m ,BD=2n ,求⊙O 的面积与菱形ABCD 的面积之比. HIDG C A OE F B参考答案一、选择题1.B 2.D 3.D 4.D 5.B 6.A 7.B 8.B 9.C 10.B二、填空题11. 50°12.74-13.414.2515.13016.3024π三、解答题17.(1)如图1,点O为所求;(2)连接OA,AB,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=12AB=40,设⊙O的半径为r,则OA=r,OD=OC−CD=r−20,在Rt△OAD中,∵OA2=OD2+BD2,∴r2=(r−20)2+402,解得r=50,即所在圆的半径是50m.18.(1)如图所示; A O BC(2)因为AC =1,AB =2,∠ACB =90°,所以∠B =30°,∠A =60°,连结OC ,则∠BOC=120°,OC =OB =1,所以劣弧»BC 的长l =12021803ππ=.19.(1)连结AD ,因为AB 是⊙O 的直径,所以∠C =90°,∠BDA =90°.因为BC =6cm ,AC =8cm ,所以AB =10cm.因为∠ABD =45°,所以ABD ∆是等腰直角三角形,即BD =AD =2522AB =(cm ). (2)连结DO ,因为BD =AD ,∠BDA =90°,所以∠BAD =45°,所以∠BOD =90°.因为直径AB =10cm ,所以OB =OD =5cm.所以OBD BOD S S S ∆=-阴影扇形=22905153602π⨯-⨯=252542π-(2cm ).20.⑴由A 的坐标为(2,0),可得OF=OA=2,∴F(-2,0);⑵如图,连接AC 交OB 于M 点.∵四边形OABC 为菱形,∴OC OA =且AC OB ⊥.∵2OA =,60COA ∠=︒,∴△AOC 为等边三角形,2,3,23AC OM OB ===. ∴()21202322324233602S S B S OC ππ⨯⨯=-=-=-阴影扇形OEB . x yM O E DB C F A21.(1)如图.A B AB′C′(2)B ′(3,2),C ′(3,5).(3)∵AC 旋转角度为90°,旋转半径为AC=4,∴点C 经过的路径长:l=904180π⋅=2π. 22.证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°. ∵∠DCE +∠BCD =180°,∴∠A =∠DCE .∵DC =DE ,∴∠DCE =∠AEB ,∴∠A =∠AEB .(2)∵∠A =∠AEB ,∴△ABE 是等腰三角形.∵EO ⊥CD ,∴CF =DF ,∴EO 是CD 的垂直平分线,∴ED =EC .∵DC =DE ,∴DC =DE =EC ,∴△DCE 是等边三角形,∴∠AEB =60°.∴△ABE 是等边三角形.23.(1)由题意,知:BC ∥OA.以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA=∠OFA=90º.作DG ⊥EF 于G ,连接DE ,则DE =OD =2.5,DG =2,EG =GF ,∴ EG =DE 2-DG 2 =1.5,∴点E(1,2),点F(4,2).∴当⎩⎪⎨⎪⎧m -5≤4,m ≥1,即1≤m ≤9时,边BC 上总存在这样的点P ,使∠OPA =90º.(2)∵BC=5=OA ,BC ∥OA ,∴四边形OABC 是平行四边形.当Q 在边BC 上时,∠OQA =180º-∠QOA -∠QAO=180º-12(∠COA+∠OAB)=90º, ∴点Q 只能是点E 或点F .当Q 在F 点时,∵OF 、AF 分别是∠AOC 与∠OAB 的平分线,BC ∥OA ,∴∠CFO =∠FOA=∠FOC ,∠BFA =∠FAO=∠FAB ,∴CF =OC ,BF =AB ,∵OC =AB ,∴F 是BC 的中点.∵F 点为 (4,2),∴此时m 的值为6.5.当Q 在E 点时,同理可求得此时m 的值为3.5.24.(1)∵EF 为⊙O 的直径,∴∠FDE=90°.(2)四边形FACD 为平行四边形.理由如下:∵ABCD 为菱形,∴ AB ∥CD ,AC ⊥BD ,∴ ∠AEB=90°.又∵∠FDE=90°,∴AC ∥FD .∴四边形FACD 为平行四边形.(3)①如图23-1,连接GE .A F E O D xy2 C B∵在Rt △DEC 中,G 为CD 的中点,∴EG=DG ,∴¼DG=»EG ,∴∠1=∠2. 又∵EF 为⊙O 的直径,∴∠FGE=90°,∴FG ⊥EG . ∵G 为DC 中点,E 为AC 中点,∴GE 为△DAC 的中位线,∴EG ∥AD .∴FG ⊥AD ,∴∠FHD=∠FHI=90°.由△DHF ≌△IHF 或由等角的余角相等,可得,FD=FI . 347896521HI DG CA O E F B(第23-1)②∵菱形ABCD ,∴AE=CE=m ,BE=DE=n , ∵四边形FACD 为平行四边形,∴FD=AC=2m=FI .∵FD ∥AC ,∴∠3=∠8.又∵∠3=∠4=∠7,∴∠7=∠8.∴EI=EA=m .在Rt △FDE 中,FE ²=FD ²+DE ²,∴(3m )²=(2m )²+n ²,解得,n=5m .∴O S ⊙=π232m ⎛⎫ ⎪⎝⎭=94πm ²,ABCD S 菱形=12•2m •2n=2mn=25m ².∴O S ⊙:ABCD S 菱形=94πm ²:25m ²=9540 .。
人教版九年级数学上册《第24章圆》单元培优试题一.选择题(共10小题)1.如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.54°C.36°D.18°2.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.123.如图,AB、AC、BD是⊙O的切线,切点分别是P、C、D.若AB=5,AC=3,则BD的长是()A.4B.3C.2D.14.已知⊙O的半径为2,一点P到圆心O的距离为4,则点P在()A.圆内B.圆上C.圆外D.无法确定5.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.D.7.下列说法正确的是()A.相等的圆心角所对的弧相等B.在同圆中,等弧所对的圆心角相等C.在同圆中,相等的弦所对的弧相等D.相等的弦所对的弧相等8.如图,C是半圆⊙O内一点,直径AB的长为4cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过的区域(图中阴影部分)的面积为()A.πB.πC.4πD.+π9.已知⊙O的半径是一元二次方程x2﹣3x﹣4=0的一个根,圆心O到直线l的距离d=6.则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断10.如图,在半径为6的⊙O中,正六边形ABCDEF与正方形AGDH都内接于⊙O,则图中阴影部分的面积为()A.27﹣9B.18C.54﹣18D.54二.填空题(共8小题)11.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)12.在圆内接四边形ABCD中,∠D﹣∠B=40°,则∠B=度.13.如图,有一座石拱桥,上部拱顶部分是圆弧形,跨度BC=10m,拱高为(10﹣5)m,那么弧BC所在圆的半径等于.14.如图的齿轮有30个齿,每两齿之间的间隔相等,则相邻两齿间的圆心角α等于度.15.如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是.16.在如图所示的网格中,每个小正方形的边长均为1cm,则经过A、B、C三点的弧长是cm (结果保留π).17.若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为.18.如图,⊙I是△ABC的内切圆,与AB、BC、CA分别相切于点D、E、F,若∠DEF=50°,则∠A=.三.解答题(共8小题)19.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA的延长线于E,交半圆于C,且CE=AO,求∠E的度数.20.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处是否会受到噪音影响?若受到影响,求出影响的时间,若不受到影响,请说明理由.21.如图,⊙O的直径AB为5,弦AC为3,∠ABC的平分线交⊙O于点D.(1)求BC的长;(2)求AD的长.22.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为上一动点,求证:PA=PC+PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.23.已知圆锥的底面半径为3,母线长为6,求此圆锥侧面展开图的圆心角.24.如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.25.已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.26.在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为秒,解答下列问题:(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.解:∠BAC=∠BOC=×72°=36°.故选:C.2.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.3.解:∵AC、AP为⊙O的切线,∴AC=AP=3,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB﹣AP=5﹣3=2.故选:C.4.解:∵⊙O的半径分别是2,点P到圆心O的距离为4,∴d>r,∴点P与⊙O的位置关系是:点在圆外.故选:C.5.解:设半径为r,∵扇形的弧长为3π,所含的圆心角为120°,∴=3π,∴r=,故选:C.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD ===3,∴AD =OA +OD =5+3=8,在Rt △ADB 中,由勾股定理得:AB ==4,故选:D . 7.解:A 、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意. B 、正确.C 、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D 、错误.相等的弦所对的弧不一定相等.故选:B .8.解:∵∠BOC =60°,△B ′OC ′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B ′OC ′=60°,△BCO =△B ′C ′O ,∴∠B ′OC =60°,∠C ′B ′O =30°,∴∠B ′OB =120°,∵AB =4cm ,∴OB 21cm ,OC ′=1,∴B ′C ′=,∴S 扇形B ′OB ==π,S 扇形C ′OC ==π,∴阴影部分面积=S 扇形B ′OB +S △B ′C ′O ﹣S △BCO ﹣S 扇形C ′OC =S 扇形B ′OB ﹣S 扇形C ′OC =π﹣π=π;故选:B .9.解:∵x 2﹣3x ﹣4=0,∴x 1=﹣1,x 2=4,∵⊙O 的半径为一元二次方程3x ﹣4=0的根,∴r =,4,∵d >r∴直线l 与⊙O 的位置关系是相离,故选:A .10.解:设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=6×=3,MN=2(6﹣3)=12﹣6,∴FM=(6﹣12+6)=3﹣3,=4×(3﹣3)×3=54﹣18;∴阴影部分的面积=4S△AFM故选:C.二.填空题(共8小题)11.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,但弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确,正确的结论有②③,故答案为:②③.12.解:∵四边形ABCD是圆内接四边形,∴∠B+∠D=180°,又∠D﹣∠B=40°,∴∠B=70°;故答案为:70.13.解:设圆弧所在圆的圆心为O,半径为r,连接OB,过O作OA⊥BC于D交于A,则BD=BC=5,AD=10﹣5,∴OD=r﹣10+5,∵OB2=BD2+OD2,∴r2=52+(r﹣10+5)2,解得:r=10,故答案为:10.14.解:相邻两齿间的圆心角α==12°,故答案为:12.15.解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故答案为:2.16.解:连接BC、AB,作BC与AB的垂直平分线交于点O,点O即为A、B、C所在圆的圆心,则OA2=22+42=20,OA=2可知∠AOC=90°,∴过A、B、C三点的弧:=.故答案为17.解:①当点O在三角形的内部时,如图所示:则∠BAC=∠BOC=35°;②当点O在三角形的外部时,如图所示;则∠BAC=(360°﹣70°)=145°故答案为:35°或145°.18.解:连结ID、IF,如图,∵∠DEF=50°,∵∠DIF=2∠DEF=100°,∵⊙I是△ABC的内切圆,与AB、CA分别相切于点D、F,∴ID⊥AB,IF⊥AC,∴∠ADI=∠AFI=90°,∴∠A+∠DIF=180°,∴∠A=180°﹣100°=80°.故答案为:80°.三.解答题(共8小题)19.解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.20.解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16(秒).21.解:(1)∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,由勾股定理,得(2)∵CD是∠ACB的平分线,∴∠DAB=∠DBA=45°,∵∠ADB=90°,∴△ADB是等腰直角三角形,∴.22.证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠PAC,∴△BEC≌△APC,∴PA=BE=PB+PC.(2分)(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(4分)(3)答:;证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴∴(7分)23.解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180,答:此圆锥侧面展开图的圆心角是180°.24.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.25.解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴=,∴∠ABD=∠CBD=×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.26.解:(1)∵当运动时间为t秒时,PA=t,BQ=2t,∴PB=5﹣t,BQ=2t.∵△PBQ的面积等于4cm2,∴PB•BQ=(5﹣t)•2t.∴(5﹣t)•2t=4.解得:t1=1,t2=4.答:当t为1秒或4秒时,△PBQ的面积等于4cm2;(2)(Ⅰ)由题意可知圆Q与AB、BC不相切.(Ⅱ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.∵∠DAB=90°,∴∠DPQ=90°.∴DP⊥PQ.∴DP为圆Q的切线.(Ⅲ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.解得:t1=﹣15+10,t2=﹣15﹣10(舍去).综上所述可知当t=0或t=﹣15+10时,⊙Q与四边形DPQC的一边相切.。
2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题1.(2019秋•拱墅区校级期末)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.2.(2019秋•柯桥区期末)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E 是BA延长线上一点,∠DAE=105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.3.(2019秋•江干区期末)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2√3.(1)求OD的长;(2)计算阴影部分的面积.4.(2019秋•丽水期末)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.5.(2019秋•奉化区期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.6.(2019秋•义乌市期末)如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.7.(2019秋•义乌市期末)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC关于原点对称的△A′B′C′;(2)将△A′B′C′绕A′顺时针旅转90°画出旅转后得到的△A″B″C″并直接写出此过程中线段A′C′扫过图形的面积(结果保留π).8.(2019秋•鄞州区期末)已知:如图,在半圆O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC的延长线于点D,交弦BC于点E.(1)求证:∠D=∠ABC;(2)记OE=x,OD=y,求y关于x的函数表达式;(3)若OE=CE,求图中阴影部分的面积.9.(2019秋•西湖区期末)如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,求图中劣弧BC的长.10.(2019秋•下城区期末)如图,MB ,MD 是⊙O 的两条弦,点A ,C 分别在MM ̂,MM ̂上,且AB =CD ,M 是MM̂的中点. (1)求证:MB =MD ;(2)过O 作OE ⊥MB 于点E ,当OE =1,MD =4时,求⊙O 的半径.11.(2019秋•温州期末)如图,点A 、B 、C 、D 、E 都在⊙O 上,AC 平分∠BAD ,且AB ∥CE ,求证:MM̂=MM ̂.12.(2019秋•温州期末)如图,已知△ABO 中A (﹣1,3),B (﹣4,0).(1)画出△ABO 绕着原点O 按顺时针方向旋转90°后的图形,记为△A 1B 1O ;(2)求第(1)问中线段AO 旋转时扫过的面积.13.(2019秋•吴兴区期末)如图,已知在矩形ABCD 中,AB =2,BC =2√3.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD .(1)若DQ =√3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与园重叠部分的面积.14.(2019秋•瑞安市期末)如图,Rt △ABC 中,∠C =90°,在BC 上取一点D 使AD =BD ,连结AD ,作△ACD 的外接圆⊙O ,交AB 于点E .(1)求证:AE =BE ;(2)若CD =3,AB =4√5,求AC 的长.15.(2019秋•温州期末)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E两点,过点D 作DH ⊥AC 于点H .(1)求证:BD =CD ;(2)连结OD 若四边形AODE 为菱形,BC =8,求DH 的长.16.(2019春•余姚市期末)如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A ,B ,C 均为格点.在下列各图中画出四边形ABCD ,使点D 也为格点,且四边形ABCD 分别符合下列条件:(1)是中心对称图形(画在图1中).(2)是轴对称图形(画在图2中).(3)既是轴对称图形,又是中心对称图形(画在图3中).17.(2019秋•萧山区期末)如图,在⊙O 中,AB =AC .(1)求证:OA 平分∠BAC .(2)若MM ̂:MM ̂=3:2,试求∠BAC 的度数.18.(2020春•西湖区期末)将一副三角板中的两块直角三角尺的直角顶点C 按照如图①的方式叠放在一起(∠A =30°,∠ABC =60°,∠E =∠EDC =45°),且三角板ACB 的位置保持不动.(1)将三角板DCE 绕点C 按顺时针方向旋转至图②,若∠ACE =60°,求∠DCB 的度数.(2)将三角板DCE 绕点C 按顺时针方向旋转,当旋转到ED ∥AB 时,求∠BCE 的度数(请先在备用图上补全相应的图形).(3)当0°<∠BCE <180°且点E 在直线BC 的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠BCE 所有可能的值;若不存在,请说明理由.19.(2019秋•吴兴区期末)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =8,∠CBD =30°,求图中阴影部分的面积.20.(2019秋•瑞安市期末)如图,Rt △OAB 中,∠OAB =90°,以OA 为半径的⊙O 交BO 于点C ,交BO 延长线于点D .在⊙O 上取一点E ,且MM̂=MM ̂,延长DE 与BA 交于点F . (1)求证:△BDF 是直角三角形;(2)连接AC ,AC =2√10,OC =2BC ,求AF 的长.2019--2020学年浙江省九年级上册数学(浙教版)《圆的基本性质》试题分类——解答题参考答案与试题解析一.解答题(共20小题)1.【答案】见试题解答内容【解答】解:(1)连接AD ,如图1所示:设∠BDC =γ,∠CAD =β,则∠CAB =∠BDC =γ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =β,∴∠DAB =β﹣γ,∵AB 为⊙O 直径,∴∠ADB =90°,∴γ+β=90°,∴β=90°﹣γ,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣γ)=90°﹣90°+γ+γ=2γ,∴∠ABD =2∠BDC ,∴∠BDC =12∠ABD =12α; (2)连接BC ,如图2所示:∵AB 为⊙O 直径,∴∠ACB =90°,即∠BAC +∠ABC =90°,∵CE ⊥AB ,∴∠ACE +∠BAC =90°,∴∠ACE =∠ABC ,∵点C 为弧ABD 中点,∴MM̂=MM ̂, ∴∠ADC =∠CAD =∠ABC =β,∴∠ACE =β;(3)连接OC ,如图3所示:∴∠COB =2∠CAB ,∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD ,∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴MM MM =MM MM =12, ∴BD =2OH =10,∴AB =√MM 2+MM 2=√242+102=26,∴AO =13,∴AH =AO +OH =13+5=18,∵∠EAH =∠BAD ,∠AHE =∠ADB =90°,∴△AHE ∽△ADB ,∴MM MM =MM MM ,即1824=MM 26, ∴AE =392, ∴DE =AD ﹣AE =24−392=92.2.【答案】见试题解答内容【解答】解:(1)∵AB =AC ,∴MM̂=MM ̂, ∴∠ABC =∠ACB ,∵D 为MM̂的中点, ∴MM̂=MM ̂, ∴∠CAD =∠ACD ,∴MM̂=2MM ̂, ∴∠ACB =2∠ACD ,又∵∠DAE =105°,∴∠BCD =105°,∴∠ACD =13×105°=35°,∴∠CAD =35°;(2)∵∠DAE =105°,∠CAD =35°,∴∠BAC =40°,连接OB ,OC ,∴∠BOC =80°,∴弧BC 的长=80M ×4180=16M 5.3.【答案】见试题解答内容【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=12AB=√3,∵点C为OD的中点,∴OC=12OB,∵cos∠COB=MMMM=12,∴∠COB=60°,∴OC=√33BC=√33×√3=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=60×M×22360−12×√3×1=2 3π−√32.4.【答案】见试题解答内容【解答】解:∵∠OBA′=45°,O′P=O′B,∴△O′PB是等腰直角三角形,∴PB=√2BO′=5√2,∴AP=AB﹣BP=10﹣5√2.5.【答案】见试题解答内容【解答】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=√MM′2−MM2=√342−302=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.6.【答案】见试题解答内容【解答】解:(1)∵AB 是⊙O 的直径, ∴∠C =∠ADB =90°,∴∠CAB =90°﹣28°=62°,∵AD 平分∠BAC ,∴∠CAD =12∠CAB =31°, ∴∠CBD =∠CAD =31°;(2)连接OD 交BC 于E ,如图,在Rt △ACB 中,BC =√62−22=4√2, ∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∴MM̂=MM ̂, ∴OD ⊥BC ,∴BE =CE =12BC =2√2,∴OE =12AC =12×2=1, ∴DE =OD ﹣OE =3﹣1=2,在Rt △BDE 中,BD =√22+(2√2)2=2√3, 在Rt △ABD 中,AD =√62−(2√3)2=2√6.7.【答案】见试题解答内容【解答】解:(1)如图,△A ′B ′C ′为所作;(2)如图,△A ″B ″C ″为所作,线段A ′C ′扫过图形的面积=90⋅M ⋅42360=4π,.8.【答案】见试题解答内容【解答】解:(1)∵AB 是直径, ∴∠ACB =90°∴∠A +∠ABC =90°∵DO ⊥AB ,∴∠A +∠D =90°∴∠D =∠ABC .(2)∵OB =OC ,∴∠B =∠OCE ,∴∠OCE =∠D .而∠COE =∠COD ,∴△OCE ∽△ODC ,∴MM MM =MM MM ,即M 3=3M∴y =9M (0<x <3).(3)设∠B =a ,则∠BCO =a ,∵OE =CE ,∴∠EOC =∠BCO =a在△BCO 中,a +a +90°+a =180°, ∴a =30°∴S =3×3√32−30M ⋅32360−√34×32=9√34−34π. 9.【答案】见试题解答内容【解答】解:(1)连接OB ,∵OA ⊥BC ,∴MM̂=MM ̂, ∴∠AOC =∠AOB ,由圆周角定理得,∠AOB =2∠ADB =60°, ∴∠AOC =∠AOB =60°;(2)∵OA ⊥BC ,∴BE =12BC =4,在Rt △BOE 中,∠AOB =60°,∴OB =MM MMM60°=8√33, ∴劣弧BC 的长=120M ×8√33180=16√39π(cm ). 10.【答案】见试题解答内容【解答】(1)证明:∵AB =CD , ∴MM̂=MM ̂, ∵M 是MM̂的中点, ∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴BM =DM .(2)解:如图,连接OM .∵DM =BM =4,OE ⊥BM ,∴EM =BE =2,∵OE =1,∠OEM =90°,∴OM =√MM 2+MM 2=√12+22=√5,∴⊙O 的半径为√5.11.【答案】见试题解答内容【解答】证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵AB ∥CE ,∴∠BAC =∠ACE ,∴∠DAC =∠ACE ,∴MM̂=MM ̂. 12.【答案】见试题解答内容【解答】解:(1)如图所示,△A 1B 1O 即为所求;(2)线段AO 旋转时扫过的面积为:90×M ×(√10)2360=52M . 13.【答案】(1)6√77; (2)83√3.【解答】解:如图:过点P 作PT ⊥BQ 于点T ,∵AB =2,AD =BC =2√3,DQ =√3,∴AQ =√3,在Rt △ABQ 中,根据勾股定理可得:BQ =√7.又∵四边形BPDQ 是平行四边形,∴BP =DQ =√3∵∠AQB =∠TBP ,∠A =∠BTP ,∴△AQB ∽△TPB ,∴MM MM =MM MM , 即√3=√3√7, ∴BT =3√77,∴BE =2BT =6√77. (2)设菱形BPDQ 的边长为x , 则AQ =2√3−x ,在Rt △ABQ 中,根据勾股定理,得AB 2+AQ 2=BQ 2, 即4+(2√3−x )2=x 2,解得x =43√3 由(1)可知: MM M =2√3−MM, ∴BT =2√3−x =2√3−4√33=2√33, ∴BE =43√3,∴点E 、Q 重合, ∴圆P 经过点B 、Q 、D , ∴S 菱形=83√3. 14.【答案】见试题解答内容【解答】解:(1)证明:连结DE ,∵∠C =90°,∴AD 为直径,∴DE ⊥AB ,∵AD =BD ,∴AE =BE ;(2)设BD =x ,∵∠B =∠B ,∠C =∠DEB =90°∴△ABC ~△DBE ,∴MM MM =MM MM , ∴4√5=2√5M +3, ∴x =5.∴AD =BD =5,∴AC =√52−32=4.15.【答案】见试题解答内容【解答】(1)证明:如图,连接AD.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如图,连接OE.∵四边形AODE是菱形,∴OA=OE=AE,∴△AOE是等边三角形,∴∠A=60°,∵AB=AC,∴△ABC是等边三角形,∵OA=OB=BD=CD∴AE=EC,∴CD=CE,∵∠C=60°,∴△EDC是等边三角形,∵DH⊥EC,CD=4,∴DH=CD•sin60°=2√3.16.【答案】见试题解答内容【解答】解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABCD为所作;(2)如图3,四边形ABCD为所作.17.【答案】见试题解答内容【解答】(1)证明:延长半径AO 交⊙O 于D ,∴MMM̂=MMM ̂ ∵AB =AC ,∴MM̂=MM ̂, ∴MM̂=MM ̂, ∴∠BAD =∠CAD ,∴OA 平分∠BAC ;(2)解:∵MM̂:MM ̂=3:2,MM ̂=MM ̂ ∴MM̂=28×360°=90° ∴∠BAC =45°;18.【答案】见试题解答内容【解答】解:(1)如图2中,∵∠ACB =∠ECD =90°,∴∠ECB =∠ACD ,∵∠ACE =60°,∴∠BCE =∠ACD =30°,∴∠BCD =∠BCE +∠ECD =30°+90°=120°;(2)如图2中,当DE ∥AB 时,延长BC 交DE 于M ,∴∠B =∠DMC =60°,∵∠DMC =∠E +∠MCE ,∴∠ECM =15°,∴∠BCE=165°,当D′E′∥AB时,∠E′CB=∠ECM=15°,∴当ED∥AB时,∠BCE的度数为165°或15°;(3)存在.如图,①CD∥AB时,∠BCE=30°,②DE∥BC时,∠BCE=45°,③CE∥AB时,∠BCE=120°,④DE∥AB时,∠BCE=165°,⑤当AC∥DE时,∠BCE=135°综上所述,当∠BCE<180°且点E在直线BC的上方时,这两块三角尺存在一组边互相平行,∠BCE的值为30°或45°或120°或165°或135°.19.【答案】见试题解答内容【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∴S阴=S扇形OAD﹣S△ADO=120⋅M⋅42360−12•4√3×2=16M3−4√320.【答案】见试题解答内容【解答】(1)证明:如图连接EC交OA于H.∵MM̂=MM ̂, ∴OA ⊥EC ,∵CD 是⊙O 的直径,∴∠DEC =90°,∴DF ⊥EC ,∴OA ∥DF ,∵BF 是⊙O 的切线,∴OA ⊥BF ,∴DF ⊥BF ,∴∠F =90°,∴△DFB 是直角三角形.(2)解:∵∠DEC =∠F =90°,∴EC ∥FB ,∴MM MM =MM MM =2,∴OH =2AH ,设AH =m ,则OH =2m ,OC =3m , ∵CH 2=OC 2﹣OH 2=AC 2﹣AH 2,∴9m 2﹣4m 2=40﹣m 2,∴m =2√153(负根已经舍弃), ∴CH =10√33, ∵OA ⊥EC ,∴EH =HC =10√33, ∵∠F =∠F AH =∠AHE =90°,∴四边形AFEH 是矩形,∴AF =EH =10√33.。
备考之圆三大定理突破训练:圆周角定理综合练习一.选择题1.如图,将一块三角板放置在⊙O中,点A、B在圆上,边AC经过圆心O,∠C为直角,∠ABC=60°,P为圆上异于A、B的点,则∠APB的度数为()A.60°B.120°C.30°或150°D.60°或120 2.如图,已知在⊙A中,B、C、D三个点在圆上,且满足∠CBD=2∠BDC.若∠BAC=44°,则∠CAD的度数为()A.68°B.88°C.90°D.112°3.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠BOC的度数是()A.64°B.58°C.32°D.26°4.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=50°,则∠BCD的度数为()A.30°B.35°C.40°D.45°5.如图,已知⊙O的半径为5,弦AB、CD所对的圆心角分别是∠AOB,∠COD,且∠AOB与∠COD互补,弦CD=8,则弦AB的长为()A.6 B.8 C.5D.56.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣67.如图所示,cos∠BAC的大小等于()A.B.C.D.8.如图,AB是半圆O的直径,点C为半圆O上一点,D是的中点,∠DAC=40°,则∠CAB的度数为()A.10°B.15°C.20°D.25°9.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC =1,则⊙O的半径为()A.2 B.C.2﹣D.110.如图,在⊙O内(含边界)放置六个全等的正方形,这些正方形均有两个顶点在圆上,另两个顶点分别紧靠相邻正方形的顶点,则cos∠AOB的值为()A.B.C.D.二.填空题11.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为,CD的长.12.如图,O是半圆的圆心,半径为4.C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.若∠COA=60°,则FG=.13.如图,BD为⊙O的直径,∠A=30°,BC=1.5cm,则⊙O的半径是cm.14.如图,△ABC中,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD为直径的⊙O交BD于E,则线段CE的最小值是.15.如图,AB是⊙O的直径,E是OB的中点,过E点作弦CD⊥AB,G是弧AC上任意一点,连结AG、GD,则∠G=.三.解答题16.如图,AB是⊙O的直径,C,D为圆上AB同侧的两点,=,BA,DC的延长线交于点E,AE=AB(1)求证:EC=2CD(2)延长AC,BD交于点F,求sin∠F的值.17.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.18.如图,在△ABC中,以AB为直径的⊙O分别与AC,BC交于点E,D,且BD=CD.(1)求证:∠B=∠C.(2)过点D作DF⊥OD,过点F作FH⊥AB,若AB=5,CD=,求AH的值.19.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,交BC于点E,延长AE 至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=3,求⊙O和菱形ABFC的面积.20.已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(I)如图①,若∠CBD=36°,求∠BAD的大小;(Ⅱ)如图②,若点E在对角线AC上,且EC=BC,∠EBD=24°,求∠ABE的大小.21.如图,AB为⊙O的直径,点C,D为上的点,且=,延长AD,BC相交于点E,连接OD交AC于点F.(1)求证:△ABC≌△AEC;(2)若OA=3,BC=4,求AD的长.22.如图,AB是圆的直径,点C、D分别在AB两侧的半圆上,AC=BC,点E是BD延长线上一点,且AE∥CD.(1)求证:△ADE是等腰直角三角形.(2)若AB=6,DE=2,请求出CD的长.23.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:BD=CD;(2)若∠BAC=50°,求∠EBC和∠EDC的度数.参考答案一.选择题1.解:连接OB,PA=PB.∵OB=OA,∴∠OBA=∠OAB=30°,∴∠AOB=120°,∴∠P=∠AOB=60°,当点P′在劣弧AB上时,∠AP′B=180°﹣60°=120°,∴∠APB的值为60°或120°,故选:D.2.解:∵∠CBD=2∠BDC,∠CAD=2∠CBD,∠BAC=2∠BDC,∴∠CAD=2∠BAC,而∠BAC=44°,∴∠CAD=88°,故选:B.3.解:∵在⊙O中,OC⊥AB,∴,∵∠ADC=32°,∴∠BOC=2∠ADC=64°,故选:A.4.解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=50°,∴∠DAB=90°﹣50°=40°,∴∠BCD=∠DAB=40°.5.解:解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===6,故选:A.6.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.7.解:如图,在Rt△EFG中,∵∠EGF=90°,FG=2,EG=5,∴EF==,∴cos∠FEG==,∵∠BAC=∠BEC,∴cos∠BAC=cos∠BEC=,故选:A.8.解:连接OD,∵D是的中点,∴,∴AD=CD,∴∠C=∠DAC=40°,∴∠AOD=2∠C=80°,∵OD=OA,∴∠DAO==50°,∴∠BAC=50°﹣40°=10°,故选:A.9.解:∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=AC tan C=2,∴⊙O的半径为,故选:B.10.解:如图,连接FB.由题意:∠MEB=∠FEN=90°,∠MEN=120°,∴∠BEF=360°﹣120°﹣90°﹣90°=60°,∵EB=EF,∴△BEF是等边三角形,∴AB=BF,∴=,∴∠AOB==30°,∴cos∠AOB=,故选:C.二.填空题(共5小题)11.解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.12.解:作GH⊥AB,连接EO.∵EF⊥AB,EG⊥CO,∴∠EFO=∠EGO=90°,∴G、O、F、E四点共圆,所以∠GFH=∠OEG,又∵∠GHF=∠EGO,∴△GHF∽△OGE,∵CD⊥AB,GH⊥AB,∴GH∥CD,∴,又∵CO=EO,∴CD=GF.∵半径为4.∠COA=60°,∴CD=2,∴GF=,故答案为:2.13.解:∵∠A=30°,∴∠D=∠A=30°,∵BD是⊙O的直径,∴∠BCD=90°,∵BC=1.5cm,∴BD=2BC=3cm,∴⊙O的半径是1.5cm,故答案为:1.5.14.解:如图,连接AE,则∠AED=∠BEA=90°,∴点E在以AB为直径的⊙Q上,∵AB=10,∴QA=QB=5,当点Q、E、C三点共线时,QE+CE=CQ(最短),而QE长度不变,故此时CE最小,∵AC=12,∴QC==13,∴CE=QC﹣QE=13﹣5=8,故答案为:8.15.解:连接OD,BD,∵CD⊥AB,E是OB的中点,∴∠OED=90°,2OE=OD,∴∠BOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠B=60°,∴∠G=60°,故答案为:60°.三.解答题(共8小题)16.(1)证明:如图1,连接AC,AD,OD,∵=,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∴=,∵AE=AB,∴AE=2AO,∴EC=2CD;(2)解:如图2,连接AD,∵AB是⊙O的直径,∴AD⊥BF,∵∠CAD=∠BAD,∴AF=AB,∴∠B=∠F,设CD=BD=x,AE=AB=d,则EC=2x,DE=3x,BE=2d,∵∠ACE=∠B,∠E=∠E,∴△EAC∽△EDB,∴=,∴=,∴=,∴=,设BD=k,AB=3k,∴AD==k,∴sin F=sin B===.17.(1)证明:∵AH=AC,AF平分线∠CAH∴∠HAF=∠CAF,AF⊥EC,∴∠HAF+∠ACH=90°∵∠ACB=90°,即∠BCE+∠ACH=90°,∴∠HAF=∠BCE,∵E为的中点,∴,∴∠EBD=∠BCE,∴∠HAF=∠EBD,∴BE∥AF;(2)解:连接OH、CD.∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,AC=6,BC=8,∴AB=,∵AH=AC=6∴BH=AB﹣AH=10﹣6=4,∵∠EBH=∠ECB,∠BEH=∠CEB∴△EBH∽△ECB,∴,EB=2EH,由勾股定理得BE2+EH2=BH2,即(2EH)2+EH2=42,∴EH=.18.证明:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵BD=CD,∴AD是BC的垂直平分线,∴AB=AC,∴∠B=∠C;(2)在Rt△ADB中,AB=5,CD=BD=,∴AD===2,∵∠B=∠C,∠DFC=∠ADB=90°,∴△ADB∽△DFC,∴,∴,∴CF=1,DF=2,∴AF=AC﹣CF=5﹣1=4,过O作OG⊥AC于G,∵∠OGF=∠GFD=∠ODF=90°,∴四边形OGFD是矩形,∴OG=DF=2,∴sin∠FAH=,∴,FH=,Rt△AFH中,AH==.19.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=62﹣x2,解得x=2或﹣9(舍弃)∴AB=9,BD=,=36.∴S菱形ABFC=π•()2=π.∴S⊙O20.解:(Ⅰ)∵BC=CD,∴=,∴∠DBC=∠BAC=∠CAD,∵∠CBD=36°,∴∠BAC=∠CAD=36°,∴∠BA D=36°+36°=72°.(Ⅱ)∵CB=CE,∴∠CBE=∠CEB,∴∠DBE+∠CBD=∠BAE+∠ABE,∵∠CBD=∠BAC,∴∠ABE=∠DBE=24°.21.(1)证明:∵=,∴∠CAE=∠CAB,∵AB是直径,∠ACB=∠ACE=90°,∵AC=AC,∴△ABC≌△AEC(ASA).(2)连接BD交OC于K,作OH⊥BC于H.∵OH⊥BC,∴CH=HB=2,∵OB=3,∴OH==,∵=,∴OC⊥BD,DK=KB,∵•BC•OH=•OC•BK,∴BK=,∴OK==,∵OA=OB,DK=KB,∴AD=2OK=.22.解(1)∵AB是圆的直径,∴∠ACB=∠ADB=90°.又∵AC=BC,∴∠CAB=45°∴∠CDB=∠CAB=45°.∵AE∥CD,∴∠E=∠CDB=45°∴△ADE是等腰直角三角形.(2)过点C作CF⊥BD于F,则△CDF是等腰直角三角形.∵△ADE是等腰直角三角形,∴AD=DE=2,∴在Rt△ADB中,由勾股定理可得BD==8.在等腰直角三角形△ABC中,∵AB=6,∴BC=AC=6.设DF=CF=x,则BF=8﹣x,在Rt△CBF中,由勾股定理可知CF2+BF2=BC2,即x2+(8﹣x)2=62,解得x=4±.∵显然DF>BF,∴x=4+,∴CD=x=2+4.23.(1)证明:连接AD∵AB⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD.(2)∵AB=AC,∠BAC=50°,2019年中考数学备考之圆三大定理突破训练:圆周角定理综合练习题(含解析) 21 / 21 ∴∠ABC =∠C=(180°﹣50°)=65°,∵AB ⊙O 的直径,∴∠AEB =90°,∵∠BAC =50°,∴∠ABE =40°,∴∠EBC =25°,∵四边形ABDE 内接于⊙O ,∴∠BAC +∠BDE =180°,∵∠EDC +∠BDE =180°,∴∠EDC =∠BAC =50°.。
人教版(五四制)2019-2020九年级数学上册期中综合复习基础训练题3(含答案)1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.B.C.D.2.如图,PA、PB是⊙O的切线,A、B为切点,AC是圆的直径,若∠CAB=25°,则∠P的度数为()A.50°B.65°C.25°D.75°3.下列图形中,中心对称图形有( )A.1个B.2个C.3个D.4个4.如果一次函数y=ax+b的图象如图所示,那么反比例函数y=和二次函数y=ax2+bx+c 的图象只可能是()A.B.C.D.5.表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为()A.x=﹣2.1 B.x=﹣2.2 C.x=﹣2.3 D.x=﹣2.46.下列命题中,真命题的个数是()①经过三点一定可以作圆;②平分弦的直径必定垂直于这条弦;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形三边的距离相等.A.4个B.3个C.2个D.1个7.正方形中的顶点在平面坐标系中的坐标为,若将正方形绕着原点按逆时针旋转.则旋转后的点坐标为()A.(-1, 1) B.(1, -1) C.(0, -) D.(-, 0)8.已知函数与轴交与,两点,与轴交与点,则能使是直角三角形的抛物线条数是()A.0 B.1 C.2 D.39.在下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10.抛物线y=ax2-2ax-3的对称轴为()A.直线x=2 B.直线x=-2 C.直线x=1 D.直线x=-111.在温度不变的条件下,一定质量的气体的压强与它的体积成反比例,当时,,则当时,________.12.如图,已知A,B两点均在函数的图象上,OA⊥OB,且AB平行于轴,则线段AB的长为____________.13.如图,AB是⊙O的直径,AC是弦,AC=6,弧BC=2弧AC,若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是_____14.二次函数的图象与轴的交点坐标是________.15.一菱形的面积为12 cm2,它的两条对角线长分别为a cm,b cm,则a与b之间的函数关系式为a=________;这个函数的图象位于第________象限.16.如图,是等边三角形的外接圆,、是上两点,则________度,________度.17.已知抛物线y=ax2+bx+c的顶点M在第二象限,且经过点A(1,0)和点B(0,2).则(1)a 的取值范围是________;(2)若△AMO的面积为△ABO面积的倍时,则a的值为________18.如图,点A是函数图象上一点,连接AO交反比例函数的图象于点B,若,则k______.19.市政府计划建设一水利工程,某运输公司承办了这项工程运送土石方的任务.该运输公司平均每天的工作量(米3天)与完成运送任务所需的时间(天)之间的函数图象如图所示.若该公司确保每天运送土石方米3,则公司完成全部运输任务需________天.20.二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是y1_____y2(填“>”、“<”、“=”)21.如图,抛物线y=-12x2+52x-2与x轴相交于点A、B,与y轴相交于点C.(1)求证:△AOC∽△COB;(2)过点C作CD∥x轴交抛物线于点D.若点P在线段AB上以每秒1个单位的速度由A向B运动,同时点Q在线段CD上也以每秒1个单位的速度由D向C运动,则经过几秒后,PQ=AC.22.已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.23.如图,抛物线y=-x2+5x+n与x轴交于点A(1,0)和点C,与y轴交于点B.(1)求抛物线的解析式;(2)求△ABC的面积;(3)P是y轴上一点,且△P AB是以AB为腰的等腰三角形,试求点P的坐标.24.已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.25.朱先生利用分期付款的形式购买了一套住房,他购买的住房的价格为24万元,交了首付之后每年付款y万元,x年结清余款,y与x的函数关系如图所示,请根据图象所提供的信息,回答下列问题:(1)确定y与x的函数解析式,并求出首付款的数目;(2)朱先生若用10年结清余款,则每年应付多少钱?(3)如果朱先生打算每年付款不超过7000元,那么他至少需要几年才能结清余款?26.如图,正方形中,经顺时针旋转后与重合.旋转中心是点________,旋转了________度;如果,,求:四边形的面积.27.某商场试销一种成本为8元/千克的水果,经试销发现,销量y(千克)与销售单价x(元)符合一次函数y=kx+b,且当x=10时,y=300;当x=13时,y=150.(1)求y(千克)与x(元)(x>8)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?28.已知:如图,在Rt△ABC中,∠ACB=90°,将这个三角形绕点A旋转,使点B落在边BC延长线上的点D处,点C落在点E处.求证:AD垂直平分线段CE.参考答案1.D【解析】解:在Rt△ABC中,∵AC=4,BC=3,∴AB=AD==5.由题意∠EAC=∠DAB=30°,S阴=S扇形ADB+S△ABC﹣S△AED=S扇形ABD==,故选D.2.A【解析】【分析】利用切线长定理可切线的性质得P A=PB,CA⊥P A,则∠P AB=∠PBA,∠CAP=90°,再利用互余计算出∠P AB=65°,然后根据三角形内角和计算∠P的度数.【详解】∵P A、PB是⊙O的切线,A、B为切点,∴P A=PB,CA⊥P A,∴∠P AB=∠PBA,∠CAP=90°,∴∠P AB=90°﹣∠CAB=90°﹣25°=65°,∴∠PBA=65°,∴∠P=180°﹣65°﹣65°=50°.故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.3.B【解析】解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选B.4.D【解析】【分析】根据题意结合一次函数的性质得到a、b、a+b的符号,再根据反比例函数、二次函数图像的相关知识以及性质判断其图像.【详解】由y=ax+b的图像可知,a<0,b>0,且当x等于1时,y<0,即a+b<0.因此y=的图像应该在二、四象限.∵a<0,b>0,﹣>0∴y=ax2+bx+c图像的开口向下,且对称轴在y轴右侧.综上可知D项正确.【点睛】本题主要考查了了反比例函数、二次函数图像与系数的关系以及一次函数的性质,得出a、b、a+b的符号是解答此题的关键.5.C【解析】【分析】根据表格可得:方程2x2﹣2x﹣10=0的一个解应在﹣2.3与﹣2.4之间,再由y的值可得:它的根近似的看作是﹣2.3.【详解】∵当x=﹣2.3时,y=﹣0.11,当x=﹣2.4时,y=0.56,则方程的根﹣2.3<x<﹣2.4.∵|﹣0.11|<|0.56|,∴方程2x2﹣2x﹣10=0的一个近似解为x≈2.3.故选C.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是看y值的变化.6.D【解析】【分析】利用确定圆的条件、三角形的外心的性质、圆周角定理及垂径定理的知识分别判断后即可确定正确的选项.【详解】①经过不在同一直线上的三个点可以作圆,错误;②平分弦(不是直径)的直径垂直于弦,故错误,③同圆或等圆中,相等的圆心角所对的弧相等,正确;④三角形的外心到三角形的三个顶点的距离相等,错误.【点睛】本题考查了确定圆的条件、三角形的外心的性质、圆周角定理及垂径定理,解题的关键是掌握它们进行判断.7.D【解析】【分析】根据旋转中心为原点,旋转方向逆时针,旋转角度135°,作出点A的对称图形A′,求得OA 的长度,也就求得了OA′的长度,可得所求点的坐标.【详解】如图:∵OA==,∴OA′=OA=,∴A′(-,0).故选:D.【点睛】本题考查了由图形旋转得到相应坐标,根据旋转中心,旋转方向及角度得到相应图形是解决本题的关键.8.B【解析】【分析】首先求出抛物线与坐标轴的交点坐标,然后利用勾股定理求出AB和BC的长,再次根据△ABC是直角三角形,利用勾股定理列出n的一元二次方程,求出n的值即可.【详解】令y=(x﹣n)(x﹣3)=0,解得:x=n或x=3.假设3>n,A(3,0),B(n,0),令x=0,y=3n,即C点坐标为(0,3n),根据图形知:CB2=9+9n2,AC2=n2+9n2,AB2=(3﹣n)2,根据题意知△ABC是直角三角形,即BC2+AC2=AB2,整理得:9+9n2+n2+9n2=9﹣6n+n2,18n2+6n=0,解得:n=0或n=﹣.当n=0时,这样的抛物线不满足题意,即n=﹣,所以能使△ABC是直角三角形的抛物线条数是1条.故选B.【点睛】本题主要考查了抛物线与x轴的交点,解答本题的关键是熟练掌握勾股定理的知识,此题是一道比较不错的试题.9.C【解析】A和B是中心对称图形,不是轴对称图形,故不符合题意;C既是轴对称图形又是中心对称图形,故符合题意;D是轴对称图形但不是中心对称图形,故不符合题意;故选C.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形。
※精 品 试 卷※
※推 荐 下 载※
C B
O
12cm
圆中计算及综合训练(习题)
1.
如图,AB 与⊙O 相切于点 B,OA= 2
OA,则劣弧 BC
的弧长为 .
,AB=3,若弦 BC∥
A
6cm
第 1 题图 第 2 题图
2.
一圆锥的主视图如图所示,则该圆锥侧面展开图的圆心角的度数为 .
3.
已知圆锥底面圆的半径为 6 cm,高为 8 cm,则该圆锥的侧面积为 cm2.
4.
如图,把一个半径为 12 cm 的圆形硬纸片等分成三个扇形, 用其中一个扇形制作
成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则该圆锥的底面半径是
cm.
5.
如图,在 Rt△ABC 中,∠C=90°,CA=CB=4.分别以 A,B,
C 为圆心,以 1 AC 为半径画弧,则三条弧与边 AB
所围成的
2
阴影部分的面积是 .
C
A B
6.
已知在△ABC 中,AB=6,AC=8,∠A=90°.把 Rt△ABC 绕直线 AC 旋转一周得到一
个圆锥,其表面积为 S1,把 Rt△ABC 绕直线 AB 旋转一周得到另一个圆锥,其表
面积为 S2,则S1:S2
= .
3
※精 品 试 卷※
※推 荐 下 载※
Q
P
O
D
B
B
O
A
C
7.
如图,在 Rt△ABC 中,∠ABC=90°,AB=3,BC= 3 3 ,P 是
BC 边上的动点.设 BP=x,若能在 AC 边上找到一点 Q
,使
∠BQP=90°,则 x 的取值范围是 .(提示:考虑 90°
的圆周角所对的弦是直径)
A
B C
8.
如图,在△ABC 中,AB=AC,以 AB 为直径的⊙O 交 AC 边于点 D,过点 C 作 CF∥
AB,与过点 B 的切线交于点 F,连接 BD
.
(1)求证:BD=BF;
(2)若 AB=10,CD=4,求 BC 的长.
A
C
F
︵
9.
如图,已知⊙O 的直径 AB=12,弦 AC=10,D 是BC 的中点,
过点 D 作 DE⊥AC,交 AC 的延长线于点 E.
(1)求证:DE 是⊙O 的切线;
(2)求 AE 的长.
D E
※精 品 试 卷※
※推 荐 下 载※
3 5 【参考答案】 1. 3 3 2. 90 3. 60π 4. 4 5. 8-2π 6. 2:3 7. 2 ≤ x 3 8. (1)证明略;(2) BC 4 . 9. (1)证明略;(2)AE=11. 3