八年级数学上学期期末复习试卷(勾股定理)新人教版
- 格式:docx
- 大小:265.48 KB
- 文档页数:18
勾股定理复习题班级________姓名________一、方程思想1. (1) 在Rt△ABC中,∠C=90°,c=10,a:b=3:4,则a= ,b= .(2) 在Rt△ABC中,∠C=90°,b=24,a:c=15:17,则Rt△ABC面积为.(3) 在Rt△ABC中,∠C=90°,c-a=4,b=16,则a= ,c= .(4) 已知Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是_______.(5) 一个直角三角形的三边为三个连续整数,则它的三边长分别为.(6) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为.二、分类讨论思想x1.已知一直角三角形两边长分别为3和4,则第三边的长为______.2.已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积.三、类比思想1.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3.(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC三边为边向外作三个等边三角形,其面积分别用S1、S2、S3表示,请你、S2、S3之间的关系并加以证明.确定S四、整体思想在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_____.五、数形结合思想1.如图,高速公路的同侧有A、B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1B1之间设一个出口P,使A、B两个村庄到P的距离之和最短,则这个最短距离是多少千米?*2.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB =5,DE =1,BD =8,设CD =x .(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式9)12(422+-++x x 的最小值.六、转化思想有一圆柱形油罐,如图所示,要从A 点环绕油罐建梯子,正好到A 的正上方B 点,问梯子最短需要多少米?(已知:油罐的底面圆的周长是12m ,高AB 是5m )七、其它1.如图1所示,在一个有4×4个小正方形组成的正方形网格中,阴影部分的面积与正方形ABCD 的面积比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 2.如图2所示,在△ABC 中,三边a 、b 、c 的大小关系是( )A 、a <b <cB 、c <a <bC 、c <b <aD 、b <a <c3.如图3所示为一个6×6的网格,在△ABC 、△A ’B ’C ’、△A ’’B ’’C ’’三个三角形中,直角三角形有( )A 、3个B 、2个C 、1个D 以上都不对4.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其 中能构成直角三角形的有____________.(填序号)5.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______. 6.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______, AB 边上的高CD =______. 7.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.8. 如图4,是我国古代著名的“赵爽弦图”的示意图,它是由四全等的直角三角形围成的,若AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图5所示的“数学风车”,则这个风车的外 围周长是__________;9. 如图6,已知正方形ABCD 的面积为1,把它的各边延长一倍 得到新正方形A 1B 1C 1D 1;正方形A 1B 1C 1D 1各边长按原法延长一倍 得到正方形A 2B 2C 2D 2(如图7);以此下去...,则正方形A 4B 4C 4D 4 的面积为 ,正方形A n B n C n D n 的面积为 .图5ABC图4B CPMBCA10. 如图14,D 是BC 边上的点,DC 的长.11、已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.12、 如图15,已知一块四边形草地ABCD ,其中∠A =45°,∠B =∠D =90°,AB =20m ,CD =10m ,求这块草地的面积.13. 如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证:222BC AP BP +=.AB DC 图3CBA DEF14、已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
2024年最新人教版初二数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 22. 已知a > 0,b < 0,则下列各式中正确的是()A. a b > 0B. a b < 0C. a + b > 0D. a + b < 03. 下列哪个图形是平行四边形()A. 边长相等的四边形B. 有一个角是直角的四边形C. 对边平行且相等的四边形D. 对角线互相平分的四边形4. 下列哪个图形是正方形()A. 四边相等的四边形B. 四个角都是直角的四边形C. 对角线互相垂直平分的四边形D. 对角线互相垂直且相等的四边形5. 下列各式中,正确的是()A. a^2 = a aB. a^2 = a + aC. a^3 = a a aD. a^3 = a + a + a二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 任何两个偶数之和都是偶数。
()3. 任何两个奇数之积都是奇数。
()4. 任何两个偶数之积都是偶数。
()5. 任何数乘以1都等于它本身。
()三、填空题5道(每题1分,共5分)1. 两个质数的和是______。
2. 两个偶数的积是______。
3. 两个奇数的积是______。
4. 任何数乘以0都等于______。
5. 任何数除以1都等于______。
四、简答题5道(每题2分,共10分)1. 请简要说明勾股定理的内容。
2. 请简要说明矩形的性质。
3. 请简要说明菱形的性质。
4. 请简要说明正方形的性质。
5. 请简要说明平行四边形的性质。
五、应用题:5道(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个正方形的边长是6cm,求它的面积。
3. 一个平行四边形的底是8cm,高是5cm,求它的面积。
4. 一个三角形的底是10cm,高是6cm,求它的面积。
人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。
2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)一、选择题(本大题共10小题,共30.0分)1.已知等腰三角形的两条边长分别为4和8,则它的周长为()A. 16B. 20C. 16或20D. 142.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是轴对称图形的卡片的概率是()A. 14B. 12C. 34D. 13.若2x 2+1与4x 2−2x−5互为相反数,则x为A. −1或B. 1或C. 1或D. 1或4.10.如图,在ΔABC中,∠ABC的平分线与三角形的外角∠ACE的平分线交于点D,则∠A与∠D的关系为A. ∠A+∠D=90°B. ∠A=2∠DC. 2∠A+∠D=180°D. 以上都不对5.若x2+bx+c=(x+5)(x−3),其中b、c为常数,则点P(b,c)关于y轴对称的点的坐标是()A. (−2,−15)B. (2,15)C. (−2,15)D. (2,−15)6.若2x+3y−2=0,则4x×8y+5的值为()A. 2B. 8C. 7D. 97.如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A. 14B. 12C. 13D. 不能确定8.已知x+1x =4,则x2x4+x2+1=()A. 10B. 15C. 110D. 1159.某车间原计划小时生产一批零件,后来每小时多生产件,用了小时不但完成了任务,而且还多生产件.设原计划每小时生产个零件,则所列方程为()A. B.C. D.10.如图,DB=DC,∠BAC=∠BDC=120°,DM⊥AC,E为BA延长线上的点,∠BAC的角平分线交BC于N,∠ABC的外角平分线交CA的延长线于点P,连接PN交AB于K,连接CK,则下列结论正确的是()①∠ABD=∠ACD;②DA平分∠EAC;③当点A在DB左侧运动时,AC+ABAM为定值;④∠CKN=30°A. ①③④B. ②③④C. ①②④D. ①②③二、填空题(本大题共8小题,共24.0分)11.如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是______.12.因式分解:x2(a−b)+4(b−a)=______.13.由于自然环境的日益恶化,我们赖以生存的空气质量正在悄悄地变化.净化的空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为______g/cm3.14.已知等腰三角形的周长为80,腰长为x,底边长为y.请写出y关于x的函数解析式,并求出定义域______.15.如图所示,已知AB=DC,要得到△ABC≌△DCB,还需加一个条件是______ .(一个即可)16.如图,在面积为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是______ .17.如果二次三项式x2+kx+49是一个整式的平方,则k的值是______.18.若关于x的不等式组{6x+4+a>03x2−1≤x2+2有4个整数解,且关于y的分式方程ay−1−21−y=1的解为正数,则满足条件所有整数a的值之和为______三、计算题(本大题共1小题,共6.0分)19.解分式方程(1)xx−1−31−x=3(2)x−3x−2+1=32−x.四、解答题(本大题共7小题,共60.0分)20.在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.21.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(−2,4),B(−2,1),C(−5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)以原点O为位似中心,在第一象限画出△A1B1C1的位似图形△A2B2C2,相似比为1:2.22. 先化简,再求值:(1−1x+1)÷x 2−xx 2−2x+1,其中x =√2−1.23. 2019年1月重庆潮童时装周在重庆渝北举行了八场走秀,云集了八大国内外潮童品牌,不仅为大家带来了一场品牌走秀盛会,更让人们将目光转移到了00后、10后童模群体身上,开启服装新秀潮流某大型商场抓住这次商机购进A 、B 两款新童装进行试销售该商场用6000元购买A 款童装,用9000元购买B 款童装,且每件A 款童装进价与每件B 款童装进价相同,购买A 款童装的数量比B 款童装的数量少20件,若该商场本次以每件A 款童装按进价加价100元进行销售,每件B 款童装按进价加价60%进行销售,全部销售完. (1)求购进A 、B 两款童装各多少件?(2)春节期间该商场按上次进价又购进与上一次一样数量的A 、B 两款童装,并展开了降价促销活动,在促销期间,该商场将每件A 款童装按进价提高(m +10)%进行销售,每件B 款童装按上次售价降低13m%销售.结果全部销售完后销售利润比上次利润少了3040元,求m 的值.24. 如图,在△ABC 中,AB =AC ,AM 平分∠BAC ,交BC 于点M ,D 为AC 上一点,延长AB 到点E ,使CD =BE ,连接DE ,交BC 于点F ,过点D 作DH//AB ,交BC 于点H ,G 是CH 的中点. (1)求证:DF =EF .(2)试判断GH ,HF ,BC 之间的数量关系,并说明理由.25.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AB=16cm,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向B点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t(s).=______;(1)求:AM=______cm,S△ABDS△ACD(2)求证:在运动过程中,无论t取何值,都有S△AED=2S△DGC;(3)当t取何值时,△DFE与△DMG全等.26.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,−a)(a、b均大于0);(1)连接OD、OC、CD,请判断△OCD的形状为______(不需要证明);(2)连接CO、CB、CA,若CB=1,CO=2,CA=3,求∠OCB的度数;(3)若点E在线段OA上,且AE=2,CE=5,AC=√41,动点P以每秒2个单位的速度从点E出发沿射线EO方向运动,运动时间为t秒,在点P的运动过程中,△APC能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案及解析1.答案:B解析:解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.因为等腰三角形的腰与底边不确定,故以4为底边和腰两种情况考虑:若4为腰,则另外一腰也为4,底边就为8,根据4+4=8,不符合三角形的两边之和大于第三边,即不能构成三角形;若4为底边,腰长为8,符合构成三角形的条件,求出此时三角形的周长即可.此题考查了等腰三角形的性质,以及三条线段构成三角形的条件,利用了分类讨论的数学思想,由等腰三角形的底边与腰长不确定,故分两种情况考虑,同时根据三角形的两边之和大于第三边,舍去不能构成三角形的情况.2.答案:B解析:解:这4个汽车标志中,是轴对称图形的有2个,所以从这4张印有汽车品牌标志图案的卡片中任取一张,是轴对称图形的卡片的概率是24=12,故选:B.根据概率的意义求解即可.本题考查概率公式,轴对称图形,掌握轴对称图形和概率的意义是正确解答的关键.3.答案:B解析:解:根据与互为相反数可以得到+=0化简得:因式分解得:(3x+2)(x−1)=0解得:.故答案为:B.4.答案:B解析:解析:本题考查的是三角形角平分线的定义和三角形外角的性质,属于中等题目,解决问题的关键是根据角平分线的定义及三角形的外角性质可表示出∠A与∠D,从而不难发现两者的数量关系.∵∠ABC的平分线交∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE−∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE−∠ABC=2∠DCE−2∠DBE=2(∠DCE−∠DBE),∴∠A=2∠D.故选B.5.答案:A解析:解:∵x2+bx+c=(x+5)(x−3),∴x2+bx+c=x2+2x−15,∴b=2,c=−15,则点P(2,−15)关于y轴对称的点的坐标是:(−2,−5).故选:A.直接多项式乘法得出b,c的值,再利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.答案:D解析:解:原式=22x+23y+5=22x+3y+5,∵2x+3y=2,∴原式=4+5=9,故选:D.根据幂的运算法则即可求出答案.本题考查整式运算,解题的关键是熟练整式的运算法则,本题属于基础题型.7.答案:A解析:本题考查了正方形的性质,旋转的性质,全等三角形的性质和判定等知识,能推出四边形OMBN的面积等于三角形BOC的面积是解此题的关键.根据正方形的性质得出OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM.解:∵四边形ABCD和四边形OEFG都是正方形,∴OB=OC,∠OBC=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON+∠BOM=∠MOC+∠BOM=90°∴∠BON=∠MOC.在△OBN与△OCM中,{∠OBN=∠OCM OB=OC∠BON=∠COM,∴△OBN≌△OCM(ASA),∴S△OBN=S△OCM,∴S四边形OMBN =S△OBC=14S正方形ABCD=14×1×1=14.故选:A.8.答案:D 解析:本题主要考查分式的值,条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.由x+1x =4得x2+1x2=14,代入原式=1x2+1+1x2计算可得.解:∵x+1x=4,∴x2+2+1x2=16,则x2+1x2=14,∴原式=1x2+1+1x2=114+1=115,故选:D.9.答案:A解析:10.答案:C解析:解:如图,∵∠BAC=∠BDC=120°,∴A,B,C,D四点共圆,DB=DC,作四边形ABCD的外接圆⊙O,∴∠ABD=∠ACD,故①正确,作DN⊥AE于N.∵DM⊥AC,∴∠DMC=∠DNB=90°,∵∠DCM=∠DBN,DC=DB,∴△DMC≌△DNB(AAS),∴DM=DN,BN=CM,∵DN⊥AE,DM⊥AC,∴DA平分∠EAC,故②正确,∵∠DNA=∠DMA=90°,AD=AD,DN=DM,∴AN=AM,∴AC+AB=BN−AN+AM+CM=2CM,∴AC+ABAM =2CMAM≠定值,故③错误,作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.∵∠BAC=120°,AN平分∠BAC,∴∠PAB=∠BAN=60°,∴KG=KH,∵∠KGC=∠KHJ=90°,KJ=KC,KH=KG,∴Rt△KHJ≌Rt△KGC(HL),∴∠HKJ=∠GKC,∴∠CKJ=∠KGH=∠AKG+∠AHK=30°+30°=60°,∵KJ=KC,∴△KJC是等边三角形,∴∠KCJ=∠KJC=∠CKJ=60°,作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.∵BP平分∠ABR,PA平分∠TAB,∴PE=PW,PW=PT,∴PR=PT,∵PR⊥NR,PT⊥NT,∴PN平分∠RNT,∵KH⊥NT,KL⊥NR,∴KL=KH,∵KH=KG,∴KL=KG,∵KL⊥CL,KG⊥CG,∴∠KCG=∠KCL=∠NJK,∵∠KCJ=∠KJC,∴∠NCJ=∠NJC,∴NC=NJ,∵KN=KN,AC=KJ,∴∠NKC=∠NKJ=30°,故④正确.故选:C.①正确.利用圆周角定理证明即可.②正确,构造全等三角形解决问题即可.③错误,作DN⊥AE于N.证明△ADN≌△ADM(HL),推出AN=AM,推出AC+AB=BN−AN+AM+CM=2CM,推出AC+ABAM =2CMAM≠定值.④正确.作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.想办法证明△KCJ是等边三角形,证明△KNC≌△KNJ(SSS)即可解决问题.本题属于三角形综合题,考查了圆周角定理,角平分线的性质定理,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.答案:15°解析:解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.根据共走了120米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.12.答案:(a−b)(x+2)(x−2)解析:解:x2(a−b)+4(b−a)=(a−b)(x2−4)=(a−b)(x+2)(x−2).故答案为:(a−b)(x+2)(x−2).先提取公因式(a−b),再根据平方差公式进行二次分解即可求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.答案:1.24×10−3解析:解:0.00124g/cm3,将它用科学记数表示为1.24×10−3,故答案为:1.24×10−3.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.答案:y=80−2x(20<x<40)解析:解:由题意得:80=2x+y∴可得:y=80−2x,根据三角形两边之和大于第三边,两边之差小于第三边可得:y<2x,2x<80,∴可得20<x<40,故答案为:y=80−2x(20<x<40).根据周长等于三边之和可得出y和x的关系式,再由三边关系可得出x的取值范围.此题主要考查了等腰三角形的性质,根据实际问题列一次函数关系式,根据题意得出正确等量关系是解题关键.15.答案:AC=DB解析:解:添加条件为:AC=DB.在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS).故答案为:AC=DB.可以添加条件,满足SSS或SAS判定定理.本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理.16.答案:2√3解析:解:∵AD是等边三角形的高,∴AD是线段BC的垂直平分线,BD=12BC=12×4=2,∴BE=CE,BF=CF,EF=EF,∴△EBF≌△ECF,∴S阴影=S△ABD,∴AD=AB⋅sin∠ABD=4×√32=2√3,∴S阴影=12BD⋅AD=12×2×2√3=2√3.故答案为:2√3.根据AD是等边三角形的高可知,AD是线段BC的垂直平分线,由线段垂直平分线的性质及三角形全等的判定定理可求出△EBF≌△ECF,故阴影部分的面积等于△ABD的面积,由锐角三角函数的定义可求出AD的长,再由三角形的面积公式即可求解.本题考查的是等边三角形的性质,即等边三角形底边上的高、垂直平分线及顶角的角平分线三线合一.17.答案:±14解析:解:∵二次三项式x2+kx+49是一个整式的平方,∴kx=±2×7x,解得k=±14.故答案为:±14.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.答案:27解析:解:原不等式组的解集为−4−a6<x≤3,有4个整数解,所以−2<−4−a6≤−1解得2≤a<8.原分式方程的解为y=a+3,因为原分式方程的解为正数,所以y>0,即a+3>0,解得a>−3,所以2≤a<8.所以满足条件所有整数a的值之和为2+3+4+5+6+7=27.故答案为27.先解不等式组确定a的取值范围,再解分式方程,解为正数从而确定a的取值范围,即可得所有满足条件的整数a的和.本题考查了不等式组的整数解、分式方程,解决本题的关键是根据不等式组的整数解确定a的取值范围.19.答案:解:(1)去分母得:x+3=3x−3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x−3+x−2=−3,解得:x=1,经检验x=1是分式方程的解.解析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.答案:证明:(1)在Rt△ABE和Rt△CBF中,∵{AE=CFAB=CB,∴Rt△ABE≌Rt△CBF(HL);解:(2)∵在△ABC中,AB=CB,∠ABC=90°,∴∠ACB=∠CAB=45°,∴∠BAE=∠CAE−∠CAB=15°.又由(1)知,Rt△ABE≌Rt△CBF,∴∠BAE=∠BCF=15°,∴∠ACF=∠ACB−∠BCF=30°,即∠ACF的度数是30°.解析:本题考查了全等三角形的判定与性质,等腰三角形的性质有关知识,(1)在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF;(2)由等腰直角三角形的性质易求∠BAE=∠CAE−∠CAB=15°.利用(1)中全等三角形的对应角相等得到∠BAE=∠BCF=15°,则∠ACF=∠ACB−∠BCF=30°.即∠ACF的度数是30°.21.答案:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.解析:(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出答案.本题考查了轴对称变换、位似变换等知识,根据题意得出对应点位置是解题关键.22.答案:解:原式=x+1−1x+1⋅(x−1)2 x(x−1)=x−1x+1,当x=√2−1时,原式=√2−1−1√2−1+1=√2−2√2=1−√2.解析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x−1x+1,然后把x的值代入计算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.答案:解:(1)设购进A款童装x件,则购进B款童装(x+20)件,依题意,得:6000x =9000x+20,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴x+20=60.答:购进A款童装40件,购进B款童装60件.(2)A、B两款童装的进价为6000÷40=150(元).依题意,得:(150+100)×40+150×(1+60%)×60−150[1+(m+10)%]×40−150×(1+ 60%)(1−13m%)×60=3040,整理,得:12m−360=0,解得:m=30.答:m的值为30.解析:(1)设购进A款童装x件,则购进B款童装(x+20)件,根据单价=总价÷数量结合每件A款童装进价与每件B款童装进价相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出A、B两款童装的进价,再由总价=单价×数量结合第二次全部销售完后销售总额比第一次少了3040元,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.答案:证明:(1)∵AB=AC,∴∠C=∠ABC,∵DH//AB,∴∠DHC=∠ABC,∠DHF=∠EBF,∴DH=DC,∵DC=BE,∴DH=BE,在△DHF和△EBF中,{∠DHF=∠EBF ∠DFH=∠EFB DH=BE,∴△DHF≌△EBF(AAS),∴DF=EF.(2)结论:GH+HF=12BC.理由:∵△DGF≌△EBF,∴FH=BF,∵CG=GH,∴GH+FH=12CH+12BH=12(CH+BH)=12BC.解析:(1)欲证明DF=EF,只要证明△DHF≌△EBF即可.(2)结论:GH+HF=12BC.只要证明FH=FB,由CG=GH,由此即可解决问题.本题考查全等三角形的判定和性质、平行线的性质、等腰三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题,中考常考题型.25.答案:10 87解析:(1)解:∵∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,∴DF =DM ,在Rt △ADF 和Rt △ADM 中,{DF =DM AD =AD, ∴Rt △ADF≌Rt △ADM(HL)∴AM =AF =10cm ,S △ABDS △ACD =12×AB×DF 12×AC×DM =1614=87,故答案为:10;87;(2)证明:由题意得,AE =2t ,CG =t ,则S △AED =12×AE ×DF =t ⋅DF ,S △DGC =12×CG ×DM =12t ⋅DM ,∵DF =DM ,∴S △AED =2S △DGC ;(3)解:∵AM =AF =10,∴CM =14−10=4,当点G 在线段CM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即10−2t =4−t ,解得,t =6(不合题意),当点G 在线段AM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即2t −10=t −4,解得,t =6,则当t =6时,△DFE 与△DMG 全等.(1)证明Rt △ADF≌Rt △ADM ,根据全等三角形的性质得到AM =AF =10cm ,根据三角形的面积公式求出S △ABDS △ACD ;(2)分别用t表示出S△AED和2S△DGC,即可证明;(3)分点G在线段CM上、点G在线段AM上两种情况,根据全等三角形的性质列式计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质、三角形的面积计算,掌握角平分线的性质定理、全等三角形的判定定理和性质定理是解题的关键.26.答案:(1)等腰直角三角形;(2)如图2,连接DA.在△OCB与△ODA中,∵{OB=OA∠BOC=∠AOD=90°−∠COA OC=OD,∴△OCB≌△ODA(SAS),∴AD=CB=1,∠OCB=∠ODA.∵OC=OD=2,∴CD=2√2.∵AD2+CD2=1+8=9,AC2=9,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)△APC能成为等腰三角形,如图3,过点C作CF⊥OA于点F,设EF =x ,则CF 2=CE 2−EF 2=52−x 2=25−x 2, 又∵CF 2=AC 2−AF 2=(√41)2−(2+x)2, ∴25−x 2=(√41)2−(2+x)2,解得:x =3,即EF =3,CF =4,①当AP =PC 时,PC =AP =2+2t , ∵AF =5,∴PF =5−(2+2t)=−2t +3,由PF 2+CF 2=PC 2得(3−2t)2+42=(2+2t)2, 解得t =2120;②当AP =AC 时,2+2t =√41,解得t =√41−22;③当AC =PC 时,AP =2AF ,即2+2t =10, 解得t =4;综上,当t =2120或t =√41−22或t =4时,△APC 是等腰三角形. 解析:解:(1)△OCD 是等腰直角三角形,如图1,过C 点、D 点向x 轴、y 轴作垂线,垂足分别为M 、N .∵C(a,b),D(b,−a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠COM+∠MOD=90°,∵OC=OD=√a2+b2,∴△COD是等腰直角三角形,故答案为:等腰直角三角形;(2)见答案;(3)见答案.(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=2√2,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,设EF=x,由勾股定理得CF2=CE2−EF=25−x2,CF2=AC2−AF2=(√41)2−(2+x)2,从而求出x=3,即可知EF=3,CF=4,再分AP=AC、AP=PC、AC=PC分别计算可得.本题是三角形的综合问题,考查了全等三角形、等腰直角三角形的判定与性质,勾股定理,有一定难度.准确作出辅助线是解题的关键.。
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 一个等腰三角形的底边长是12厘米,腰长是8厘米,那么这个三角形的周长是()厘米。
A. 20B. 28C. 36D. 443. 一个正方形的边长是5厘米,那么它的面积是()平方厘米。
A. 10B. 15C. 20D. 254. 在一个等差数列中,首项是2,公差是3,那么第五项是()。
A. 11B. 12C. 13D. 145. 一个圆的半径是4厘米,那么它的周长是()厘米。
A. 8πB. 16πC. 32πD. 64π二、判断题(每题1分,共5分)1. 一个等腰三角形的两个底角相等。
()2. 一个正方形的对角线长度是边长的根号2倍。
()3. 在一个等差数列中,任意两项的差都是公差。
()4. 一个圆的周长是直径的π倍。
()5. 一个等腰三角形的底边长是腰长的两倍。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角都是____度。
2. 一个正方形的面积是边长的____倍。
3. 在一个等差数列中,首项是a,公差是d,那么第n项是____。
4. 一个圆的面积是半径的____倍。
5. 一个等腰三角形的底边长是腰长的____倍。
四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。
2. 简述正方形的性质。
3. 简述等差数列的性质。
4. 简述圆的性质。
5. 简述等腰三角形的判定方法。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是8厘米,求这个三角形的周长。
2. 一个正方形的边长是6厘米,求这个正方形的面积。
3. 在一个等差数列中,首项是2,公差是3,求第五项。
4. 一个圆的半径是5厘米,求这个圆的周长。
5. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。
六、分析题(每题5分,共10分)1. 分析等腰三角形的性质,并说明如何利用这些性质解决实际问题。
20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
八年级初二数学 数学勾股定理试题及答案一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE ,②BD ⊥CE ,③∠ACE +∠DBC=30°,④()2222BE AD AB =+.其中,正确的个数是( ) A .1 B .2 C .3D .4 3.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A .42B .32C .42或32D .37或33 4.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .15.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 6.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .987.如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 、BE 与相交于点G ,以下结论中正确的结论有( )(1)△ABC 是等腰三角形;(2)BF =AC ;(3)BH :BD :BC =1:2:3;(4)GE 2+CE 2=BG 2.A .1个B .2个C .3个D .4个 8.已知x ,y 为正数,且224(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .159.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .200mB .300mC .400mD .500m10.已知三组数据:①2,3,4;②3,4,5;③1,2,5,分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的是( )A .②B .①②C .①③D .②③ 二、填空题11.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.12.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________13.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.14.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.15.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.16.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.17.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.18.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°19.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.三、解答题21.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.22.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.23.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.24.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.26.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=-=-=, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.B解析:B【分析】①由AB=AC ,AD=AE ,利用等式的性质得到夹角相等,利用SAS 得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD=CE ;②由三角形ABD 与三角形ACE 全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD 垂直于CE ;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°; ④由BD 垂直于CE ,在直角三角形BDE 中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,① ∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE ,∵在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===∴△BAD ≌△CAE (SAS ),∴BD=CE ,故①正确;②∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°, ∴∠BDC=90°,∴BD ⊥CE ,故②正确;③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得BE 2=BD 2+DE 2,∵△ADE 为等腰直角三角形,∴AE=AD ,∴DE 2=2AD 2,∴BE 2=BD 2+DE 2=BD 2+2AD 2,在Rt △BDC 中,BD BC <,而BC 2=2AB 2,∴BD 2<2AB 2,∴()2222BE AD AB<+故④错误, 综上,正确的个数为2个.故选:B .【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.3.C解析:C【分析】存在2种情况,△ABC 是锐角三角形和钝角三角形时,高AD 分别在△ABC 的内部和外部【详解】情况一:如下图,△ABC 是锐角三角形∵AD 是高,∴AD ⊥BC∵AB=15,AD=12∴在Rt△ABD 中,BD=9∵AC=13,AD=12∴在Rt△ACD 中,DC=5∴△ABC 的周长为:15+12+9+5=42情况二:如下图,△ABC 是钝角三角形在Rt△ADC 中,AD=12,AC=13,∴DC=5在Rt△ABD 中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC 的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.4.D解析:D【分析】作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C ,此时△ABC 周长最小,根据题意及作图可得出△OAD 是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE 是直角三角形,然后设AB=x ,则OB=3+x ,根据周长最小值可表示出BE=6-x ,最后在Rt △OBE 中,利用勾股定理建立方程求解即可.【详解】解:作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C , 此时△ABC 周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE ,∵△ABC 周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD ⊥OM ,∴△OAD 是等腰直角三角形,∠OAD=45°,由作图可知OM 垂直平分AE ,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.5.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.6.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.7.C解析:C【分析】(1)根据角平分线的定义可得∠ABE =∠CBE ,根据等角的余角相等求出∠A =∠BCA ,再根据等角对等边可得AB =BC ,从而得证;(2)根据三角形的内角和定理求出∠A =∠DFB ,推出BD =DC ,根据AAS 证出△BDF ≌△CDA 即可;(3)根据等腰直角三角形斜边上的中线等于斜边的一半进行解答;(4)由(2)得出BF =AC ,再由BF 平分∠DBC 和BE ⊥AC 通过ASA 证得△ABE ≌△CBE ,即得CE =AE =12AC ,连接CG ,由H 是BC 边的中点和等腰直角三角形△DBC 得出BG =CG ,再由直角△CEG 得出CG 2=CE 2+GE 2,从而得出CE ,GE ,BG 的关系.【详解】 解:(1)∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵CD ⊥AB ,∴∠ABE +∠A =90°,∠CBE +∠ACB =90°,∴∠A =∠BCA ,∴AB =BC ,∴△ABC 是等腰三角形;故(1)正确;(2)∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°﹣45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中==BDF CDA A DFB BD CD ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△BDF ≌△CDA (AAS ),∴BF =AC ;故(2)正确;(3)∵在△BCD 中,∠CDB =90°,∠DBC =45°,∴∠DCB =45°,∴BD =CD ,BCBD .由点H 是BC 的中点,∴DH =BH =CH =12BC , ∴BD,∴BH :BD :BC =BH:2BH =1:2.故(3)错误;(4)由(2)知:BF =AC ,∵BF 平分∠DBC ,∴∠ABE =∠CBE ,又∵BE ⊥AC ,∴∠AEB =∠CEB ,在△ABE 与△CBE 中,==ABE CBE AEB CEB BE BE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABE ≌△CBE (AAS ),∴CE =AE =12AC , ∴CE =12AC =12BF ; 连接CG .∵BD =CD ,H 是BC 边的中点,∴DH 是BC 的中垂线,∴BG =CG ,在Rt △CGE 中有:CG 2=CE 2+GE 2,∴CE 2+GE 2=BG 2.故(4)正确.综上所述,正确的结论由3个.故选C .【点睛】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.8.C解析:C【分析】本题可根据两个非负数相加和为0,则这两个非负数的值均为0解出x 、y 的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【详解】依题意得:2240,30x y -=-=,∴2,3x y ==,斜边长437=+=,所以正方形的面积2(7)7==.故选C .考点:本题综合考查了勾股定理与非负数的性质点评:解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.9.D解析:D【分析】由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC 中,22500AB BC m +=∴CE=AC -AE=200,从B 到E 有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m .故选D .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法. 10.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③()2221+2=5=5 , 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 二、填空题11.5cm【分析】连接AC ',分三种情况进行讨论:画出图形,用勾股定理计算出AC '长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC ',分三种情况讨论:如图1,AB=4,BC '=1+2=3,∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ),如图2,AC=4+2=6,CC '=1∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ),如图3,AD =2,DC '=1+4=5,∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm )∵2937,∴蚂蚁爬行的最短路径长是5cm ,故答案为:5cm .【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.12.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10, ∴10 ;综上可知,这个等腰三角形的底的长度为1010. 【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.13.163【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==, 2243AE BE AB ∴=-=. 在Rt DEC ∆中,30E ∠=︒,43CD =,283CE CD ∴==,2212DE CE CD ∴=-=,∴1443832ABE S ∆=⨯⨯=, 143122432CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.故答案为:163.【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.14.10【分析】先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a +b )2﹣2ab =c 2,∵a+b=35,c=5,∴(35)2﹣2ab=52,∴ab=10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.15.25 8【分析】先根据勾股定理求出AC的长,再根据DE垂直平分AC得出FA的长,根据相似三角形的判定定理得出△AFD∽△CBA,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=2222AB+BC=3+4=5;∵DE垂直平分AC,垂足为F,∴FA=12AC=52,∠AFD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AFD∽△CBA,∴ADAC=FABC,即AD5=2.54,解得AD=258;故答案为258.【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.16.3.【分析】作点B关于AD的对称点B′,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,B′N的长度即为BM+MN的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.【详解】如图,作点B关于AD的对称点B′,由垂线段最短,过点B′作B′N⊥AB于N交AD于M,B′N最短,由轴对称性质,BM=B′M,∴BM+MN=B′M+MN=B′N ,由轴对称的性质,AD 垂直平分BB′,∴AB=AB′,∵∠BAC=60°,∴△ABB′是等边三角形,∵AB=2,∴B′N=2×32=3, 即BM+MN 的最小值是3.故答案为3.【点睛】本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M 、N 的位置是解题的关键,作出图形更形象直观.17.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△DCE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.18.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.19.78. 【解析】 ∵∠C =90°,AB =5,BC =4,∴AC =2254- =3.∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78. 20.3或3或15【分析】根据直角三角形的性质求出BC ,勾股定理求出AB ,根据直角三角形的性质列式计算即可.【详解】解:如图∵∠B=90°,∠A=30°,∴BC=12AC=12×8=4, 由勾股定理得,22228443AC BC -=-=43333AD ∴==当点P 在AC 上时,∠A=30°,AP=2PD ,∴∠ADP=90°,则AD 2+PD 2=AP 2,即(32=(2PD )2-PD 2,解得,PD=3,当点P 在AB 上时,AP=2PD ,3∴3当点P 在BC 上时,AP=2PD ,设PD=x ,则AP=2x ,由勾股定理得,BP 2=PD 2-BD 2=x 2-3,()(222233x x ∴-=-解得,故答案为:3【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.22.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.23.(1)a=8,b=15,c=17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a、b、c的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,∴2881||7(15)a a c b -+-+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40;三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.24.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.25.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为3或5. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤< 当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =22,AB BD x AD ∴====AC ===11422ABC S BC AD ∆=⋅=⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即222444x x x +++=,解得103x =则1020323233ABC S x ∆==⨯= 当2AC AB BC +=时,即222428x x x +++=,解得65x =则612323235ABC S x ∆==⨯= 当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为2033或1235.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.26.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,。
人教版八年级数学上册期末综合检测试卷带答案一、选择题1.下列四个图形中,轴对称图形有( )个.A .1B .2C .3D .42.6月15日,莉莉在网络上查到了小区PM 2.5的平均浓度为0.000038克/立方米,0.000038用科学记数法表示为( ) A .43.810-⨯B .43.810⨯C .53.810-⨯D .53.810⨯3.已知4=m x ,6n x =,则2-m n x 的值为( ) A .10 B .83C .32D .234.若分式12x x +-有意义,则x 的取值范围是( ) A .x ≥2B .x ≠2且x ≠-1C .x ≠2D .x ≠-15.下列因式分解正确的是( ) A .22(1)2x x x x -+=-+ B .329(9)x x x x -=- C .22324(1)a a a -=-++D .2222(1)(1)-=+-x x x6.下列变形中,正确的是( ) A .1-=--a bb aB .0.330.5252a b a ba b a b++=--C .21111a a a -=-+ D .22b bc a ac= 7.如图,AC BC =,下列条件不能判定....△ACD 与△BCD 全等的是( )A .AD BD =B .ACD BCD ∠=∠C .ADC BDC ∠=∠D .点O 是AB 的中点8.若关于x 的方程4233x mx x--=--有增根,则m 的值为( ) A .3B .0C .1D .任意实数9.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .10.如图,在等边△ABC 中,AC =3,点O 在AC 上,且AO =1.点P 是AB 上一点(可移动),连接OP ,以线段OP 为一边作等边△OPD ,且O 、P 、D 三点依次呈逆时针方向,当点D 恰好落在边BC 上时,则AP 的长是( )A .1B .2C .3D .4二、填空题11.若242x x -+的值为零,则x 的值为______.12.点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称,则mn =______. 13.已知114ab-=,则aba b-的值是______. 14.已知3m a =,2n a =,则2m n a -的值为______.15.如图,在ABC ∆中,7AB cm =,5BC cm =,AC 的垂直平分线分别交AB ,AC 于点D ,E ,点F 是DE 上的任意一点,则BCF ∆周长的最小值是________cm .16.已知关于x 的二次三项式29x kx ++ 是完全平方式,则常数k 的值为_____. 17.若14x x+=,则221x x ⎛⎫+ ⎪⎝⎭的值是_________.18.如图,直线PQ 经过Rt △ABC 的直角顶点C ,△ABC 的边上有两个动点D 、E ,点D 以1cm /s 的速度从点A 出发,沿AC →CB 移动到点B ,点E 以3cm /s 的速度从点B 出发,沿BC →CA 移动到点A ,两动点中有一个点到达终点后另一个点继续移动到终点.过点D 、E 分别作DM ⊥PQ ,EN ⊥PQ ,垂足分别为点M 、N ,若AC =6cm ,BC =8cm ,设运动时间为t ,则当t =__________ s 时,以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.三、解答题19.分解因式 (1)224x y ;(2)a 2(x -y )+16(y -x ).20.先化简,再求值:2223111x x x x -⎛⎫-÷ ⎪--⎝⎭,其中x =2021. 21.如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°. (1)求AE 的长度; (2)求∠AED 的度数.22.如图,在ABC 中,C B ∠>∠,AD BC ⊥,AE 平分∠BAC .(1)计算:若30B ∠=︒,60C ∠=°,求∠DAE 的度数; (2)猜想:若50C B ∠-∠=︒,则DAE =∠______; (3)探究:请直接写出∠DAE ,∠C ,∠B 之间的数量关系.23.某服装店老板到厂家选购A 、B 两种品牌的夏季服装,每袋A 品牌服装进价比B 品牌服装每袋进价多25元,若用4000元购进A 种服装的数量是用1500元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别是多少元?(2)若A 品牌服装每套售价为150元,B 品牌服装每套售价为100元,服装店老板决定一次性购进两种服装共100套,两种服装全部售出后,要使总的获利不少于3500元,则最少购进A品牌服装多少套?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释2()++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式a ab b a b分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223++a ab b23a ab b++,并利用你所画的图形面积对22进行因式分解.25.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.(1)填空:∠BOC=度;(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.26.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.【参考答案】一、选择题 2.C 解析:C【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.3.C解析:C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000038=53.810-⨯. 故选:C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B【分析】4=m x 根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:xm =4, 两边平方可得, x 2m =16,∴2-m n x =x 2m ÷xn =16÷683=,故选:B .【点睛】题考查了同底数幂的除法,先利用了幂的乘方得出要求的形式,再利用同底数幂的除法得出答案.5.C解析:C【分析】根据分式有意义的条件:分母不等于0即可得出答案. 【详解】解:∴20x -≠, ∴2x ≠. 故选:C .【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.6.D解析:D【分析】根据因式分解的概念以及方法逐项判断即可.【详解】A 、22(1)2x x x x -+-+=没有变为整式的积的形式,故A 选项错误; B 、32()()(9933)x x x x x x x -=-=+-,故B 选项错误;C 、()222413a a a -+=-+没有变为整式的积的形式,故C 选项错误; D 、22222(1)2(1)(1)x x x x -=-=+-,故D 选项正确, 故选:D .【点睛】本题考查了因式分解的概念,把一个多项式在实数范围内化为几个整式的积,这种式子变形叫做多项式的因式分解,掌握因式分解的概念是解答本题的关键.7.A0c 时,等号右边的式子没有意义,选项错误,不符合题意;A【点睛】此题考查了分式的性质,涉及了平方差公式,解题的关键是熟练掌握分式的有关性质.8.C解析:C【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:∵AC BC =,CD =CD ,∴A 、可以利用边边边判定△ACD 与△BCD 全等,故本选项不符合题意;B、可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意;C、不能判定△ACD与△BCD全等,故本选项符合题意;∠=∠,可以利用边角边判定△ACD与△BCD全D、因为点O是AB的中点,所以ACD BCD等,故本选项不符合题意;故选:C【点睛】本题主要考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理,等腰三角形的性质是解题的关键.9.C解题的关键.10.D边正方形面积,∴4×12ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、∵四个小图形面积和=大正方形面积,∴ab+ b2+ a2+ ab=(a+b)2,∴a2+ 2ab +b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公式是解题关键.11.B解析:B【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解即可.【详解】解:∵△ABC和△ODP都是等边三角形,∴∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP,∴△ODC≌△POA(AAS),∴AP=OC,∴AP=OC=AC﹣AO=2.故选:B.【点睛】此题考查了等边三角形的性质和全等三角形的性质与判定,解决本题的关键是利用全等把所求的线段转移到已知的线段上.二、填空题12.2【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式242xx-+的值为零,∴24x-=0且x+2≠0,即24x-=0且x≠-2,解得:x=2.故答案为:2.【点睛】本题主要考查了分式的值为零的条件,正确掌握相关定义是解题关键. 13.-2【分析】根据关于y 轴对称的点的特点解答即可.【详解】∵点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称, ∴n =-2,m -4=-3m 解得:n =-2,m =1 则mn =-2 故答案为:-2【点睛】此题主要考查了关于y 轴对称的点的特点;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标不变. 14.14-##-0.25【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出4ab=,是解题关键. 【详解】a 法法则是解题的关键.16.12【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称, ∴当点于重合时,即A 、D 、B 三点在一条直线上时,BF+CF解析:12【分析】当F 点于D 重合时,BCF ∆的周长最小,根据垂直平分线的性质,即可求出BCF ∆的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称,∴当F 点于D 重合时,即A 、D 、B 三点在一条直线上时,BF +CF=AB 最小,(如图), ∴BCF ∆的周长为:BCF C BD CD BC ∆,∵DE 是垂直平分线, ∴AD CD =, 又∵7AB cm =,∴7cm BD AD BD CD , ∴7512cm BCFC ∆,故答案为:12.【点睛】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.17.±6【分析】利用完全平方公式的结构特征判断即可. 【详解】解:∵关于x 的二次三项式是完全平方式, ∴;,则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握解析:±6【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵关于x 的二次三项式29x kx ++是完全平方式, ∴()22693x x x ++=+;()22693x x x -+=-, 则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.14【分析】根据即可求得其值.【详解】解:,故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 解析:14 【分析】根据222211x x x x ⎛⎫=+- ⎪⎝⎫ ⎝⎭⎛+⎪⎭即可求得其值. 【详解】解:14x x+=, 221x x ⎛⎫∴+ ⎪⎝⎭ 212x x ⎛⎫=+- ⎪⎝⎭ 242=-=14 故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.19.1或或12【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE=CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在解析:1或72或12 【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE =CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在AC 上,D 在AC 上时,或当E 到达A ,D 在BC 上时,分别讨论.【详解】解:当E 在BC 上,D 在AC 上,即0<t ≤83时,CE =(8-3t )cm ,CD =(6-t )cm ,∵以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.∴CD =CE ,∴8-3t =6-t ,∴t =1s ,当E 在AC 上,D 在AC 上,即83<t <143时,CE =(3t -8)cm ,CD =(6-t )cm ,∴3t -8=6-t ,∴t =72s , 当E 到达A ,D 在BC 上,即143≤t ≤14时,CE =6cm ,CD =(t -6)cm ,∴6=t -6,∴t =12s ,故答案为:1或72或12. 类,分别表示出每种情况下CD 和CE 的长.三、解答题20.(1)(2)(x ﹣y )(a+4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解: =;(2)a2(x ﹣y )+16(解析:(1)(2)(2)x y x y +-(2)(x ﹣y )(a +4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解:224x y =(2)(2)x y x y +-;(2)a 2(x ﹣y )+16(y ﹣x )=a 2(x ﹣y )-16(x ﹣y )=(x ﹣y )(a 2﹣16)=(x ﹣y )(a +4)(a ﹣4).【点睛】题目主要考查利用提公因式法及公式法分解因式,熟练掌握因式分解的方法是解题关键.21.,【分析】先把括号里的通分,再相减,把除法转化为乘法、分解因式,然后约分,最后把x 的值代入化简后的代数式计算即可.【详解】解:当x =2021时,原式.【点睛】本题主要考查了22.(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得; (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,解析:(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得; (2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.23.(1)(2)25°(3)【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD ⊥BC 得∠ADC=9殊到一般,(3)中的结论为一般性结论. 24.(1)A 品牌服装每套进价是100元,B 品牌服装每套进价是75元(2)最少购进A 品牌服装40套【分析】(1)设A 品牌服装每套x 元,则B 品牌服装每袋进价为(x ﹣25)元,由题意:用4000元购进准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2)【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式解析:(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+(2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++26.(1)120;(2)相等,理由见解析;(3)AO=2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF=BO ,证明△FCA ≌△OCB (SAS ),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO =2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF =BO ,证明△FCA ≌△OCB (SAS ),可得结论.(3)证明△AFO ≌△OBR (SAS ),推出OA =OR ,可得结论.【详解】解:(1)如图①中,∵△ABC 是等边三角形,∴AB =BC ,∠A =∠CBD =60°,在△EAB 和△DBC 中,AE BD A CBD AB BC =⎧⎪∠=∠⎨⎪=⎩, ∴△EAB ≌△DBC (SAS ),∴∠ABE =∠BCD ,∴∠BOD =∠BCD +∠CBE =∠ABE +∠CBE =∠CBA =60°,∴∠BOC =180°-60°=120°.故答案为:120.(2)相等.理由:如图②中,∵△FCO ,△ACB 都是等边三角形,∴CF =CO ,CA =CB ,∠FCO =∠ACB =60°,∴∠FCA =∠OCB ,在△FCA 和△OCB 中,CF CO FCA OCB CA CB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCA ≌△OCB (SAS ),∴AF =BO .(3)如图③中,结论:AO =2OG .理由:延长OG 到R ,使得GR =GO ,连接CR ,BR .在△CGO 和△BGR 中,GC GB CGO BGR GO GR =⎧⎪∠=∠⎨⎪=⎩, ∴△CGO ≌△BGR (SAS ),∴CO =BR =OF ,∠GCO =∠GBR ,AF =BO ,∴CO ∥BR ,∵△FCA ≌△OCB ,∴∠AFC =∠BOC =120°,∵∠CFO =∠COF =60°,∴∠AFO =∠COF =60°,∴AF ∥CO ,∴AF ∥BR ,∴∠AFO =∠RBO ,在△AFO 和△OBR 中,AF OB AFO RBO FO BR =⎧⎪∠=∠⎨⎪=⎩, ∴△AFO ≌△OBR (SAS ),∴OA =OR ,∵OR =2OG ,∴OA =2OG .【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H ,证△DEF ≌△BDO ,得出EF =OD =AF ,有EAF OAH OAB 45∠∠∠===︒,得出∠BAE =90°.(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离.再由OAE 30∠=︒,在直角三角形AO N '中,OM ON O N +='即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6∴1126362ABC S =⨯⨯= (2)过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H,∵△BDE 是等腰直角三角形,∴DE=DB, ∠BDE=90°,∴EDF BDO 90∠∠+=︒∵BOD 90∠=︒∴BDO DBO 90∠∠+=︒∴EDF DBO ∠∠=∵EF x ⊥轴,∴DEF BDO ≅∴DF=BO=AO,EF=OD∴AF=EF∴EAF OAH OAB 45∠∠∠===︒∴∠BAE =90°(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长,∵OAE 30∠=︒,OA=6,∴OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.。
一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个B .3个C .4个D .5个3.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .4 4.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .6 5.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( )A .0个B .1个C .2个D .3个6.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+ 8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( ) A .4B .16C .34D .4或349.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( ) A .B .C .D .10.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠B=∠C B .∠A :∠B :∠C=1:3:2 C .a=2,b=3,c=4D .(b+c)(b-c)=a²二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____. 15.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.16.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .17.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.18.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则点BD的长为_____.19.如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,22),点G的斜坐标为(7,﹣22),连接PG,则线段PG的长度是_____.20.已知,在△ABC中,BC=3,∠A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图1,在等腰直角三角形ABC中,动点D在直线AB(点A与点B重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 23.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5 ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题? (2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值. ②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积. 26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由; (3)直接写出ADG ∆的周长.29.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.30.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题. 【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F , 则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长, 即 25cm AF BF A B '+==, 延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=, Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=,∴该圆柱底面周长为:20240cm ⨯=,故选D . 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D 【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案. 【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确; ∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C , ∵∠A+∠B+∠C=180°, ∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确;∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误; ∵222102426+=,则⑥能构成直角三角形,故⑥正确; ∴能构成直角三角形的有5个; 故选择:D. 【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形.3.B解析:B 【分析】过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD. 【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°, ∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt △ADE 中,DE=22112+=,∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE , 又∵AB=AC,∴△BAE ≌△CAD(SAS), ∴CD=BE=3,∠AEB=∠ADC=45°, ∴∠BED=90°,∴在Rt △BED 中, BD=()22223211BE DE +=+=.故选B. 【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.4.D解析:D 【解析】 【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积.【详解】 解:在中 ∵,,∴,∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积.5.C解析:C 【解析】 【分析】根据勾股定理求解即可,注意要确认a 是直角边还是斜边. 【详解】解:当a 是直角三角形的斜边时,22345a =+= ; 当a 为直角三角形的直角边时,22437a -=【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A 的坐标.【详解】2212=5+∴由图可知:点A 所表示的数为: 15-【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.8.D解析:D【解析】试题解析:当3和5都是直角边时,第三边长为:22+=34;35当5是斜边长时,第三边长为:2253-=4.故选D.9.B解析:B【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.10.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题11.210或213或32 【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即45AE =,145DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即55BE =,55DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键.12..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP 的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P 的【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22-=3,则P的坐标是(3,4).54-=22OP OC②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22-=3,PD DM当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.13.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A和C展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,π=厘米,矩形的宽BC=12厘米.∴矩形的长是圆柱的底面周长的一半,即AB=39∴蚂蚁需要爬行最短路程2222=+=+=厘米.12915AC BC AB故答案为:15厘米求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.14.125 【分析】 解方程222225,7a b a b +=-=可求得a=4,b=3,故三角形ABC 是直角三角形,在利用三角形的面积转化得到斜边上的高.【详解】解:∵222225,7a b a b +=-=,将两个方程相加得:2232a =,∵a >0,∴a=4代入得:22425b +=,∵b >0,∴b=3,∵a=3,b=4,c=5满足勾股定理逆定理,∴△ABC 是直角三角形,如下图,∠ACB=90°,CD ⊥AB ,1122ABC S AC BC AB CD =⋅⋅=⋅⋅ , 即:1134522CD ⋅⋅=⋅⋅, 解得:CD=125, 故答案为:125. 【点睛】 本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,一个底乘对应高等于另一个底乘对应高.15.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.16.5【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长=PQ=2222105PD QD +=+=55(cm ),故答案为:55.【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.17.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解.18.485 【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 19.25【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P (1,2),G (7.﹣2),∴OA =1,PA =GM =2,OM =7,AM =6,∵PA ∥GM ,∴∠PAN =∠GMN ,∵∠ANP =∠MNG ,∴△ANP ≌△MNG (AAS ),∴AN =MN =3,PN =NG ,∵∠PAH =45°,∴PH =AH =2,∴HN =1,∴2222215PN PH NH =+=+=∴PG =2PN =5.故答案为5【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.20.522,322++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt△BFC中,CF=221BC BF-=,∴AC=AP+PF+CF=5+22;②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,同理可得,△BFP是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt△BCF中,221BC BF-=,∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD , ∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.23.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN,在Rt△ABC中,AC=4,AB=8,∴2222AB AC=84=45++∵11AB AC=BC AH 22⋅⋅∴85 45∵CA⊥AB,A'M⊥AB,∴CA∥A'M∴∠C=∠A'NH,由对称的性质可得AH=A'H,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.24.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵AE AP ==90EAP ∠=︒,∴22PE AE ==,∴()22227BE +=,解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确; ③在Rt AHB 中,由①知:6EH HB == ∴62AH AE EH =+=, 22222256623AB AH BH =+=+=+⎭⎝⎭,21153222ABD S AB AD AB ∆=⋅==+ ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+,∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.25.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤<当2a c b +=时,则1c k a=≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =22,AB BD x AD ∴====AC ===11422ABC S BC AD ∆=⋅=⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即44x =,解得103x =则103ABC S ∆===当2AC AB BC +=时,即28x =,解得65x =则65ABC S ∆===当2BC AB AC +=时,即42x +=,整理得234120x x ++=,此方程没有实数根综上,ABC ∆.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,。
2015-2016学年山东省枣庄市滕州市鲍沟中学八年级(上)期末数学复习试卷(勾股定理)一、选择题1.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积S 为()cm2.A.54 B.108 C.216 D.2702.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.3,4,5 C.2,3,4 D.1,2,33.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm24.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B5.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5 B.6 C.7 D.256.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7 C.5和7 D.25或77.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定8.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()A.4.8 B.5 C.4 D.9.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AB边和BC边向外作等腰直角三角形AFC 和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.4 B.9 C.18 D.3610.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A的面积是()A.16 B.32 C.34 D.6411.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30 B.50 C.60 D.8012.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A.3.5 B.4 C.4.5 D.5二、填空题13.已知|x﹣12|+|z﹣13|+y2﹣10y+25=0,则以x、y、z为三边的三角形是______三角形.14.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2=______.15.已知直角三角形三边的平方和是32cm2,则其斜边上的中线长为______.16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为______.17.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为______.18.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:______.三、解答题19.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.20.如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.21.两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE 相等,那么点E应该选在距点B多少米处?22.如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了3秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?24.如图将一根15cm长的细木棒放入长宽分别为4cm,3cm和12cm的长方体无盖盒子中,则细木棒露在外面的最短长度是多少?25.如图,学校为美化校园,将形状是直角三角形的﹣园地△ABC,分别以三边AB、BC、CA 为直径向外作半圆,开辟为三个花坛甲、乙、丙,现分给201班同学种花.班长准备让人数相等的两个小组同学负责.为了公平分配任务,她安排一个小组负责花坛甲,另一个小组负责花坛乙和丙.你认为班长的安排合理吗?请说明理由.2015-2016学年山东省枣庄市滕州市鲍沟中学八年级(上)期末数学复习试卷(勾股定理)参考答案与试题解析一、选择题1.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积S 为()cm2.A.54 B.108 C.216 D.270【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.3,4,5 C.2,3,4 D.1,2,3【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵32+42=52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D、∵12+22≠32,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选B.3.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】勾股定理;完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选A.4.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=5:12:13C.a2=b2﹣c2D.∠A=∠C﹣∠B【考点】勾股定理的逆定理;三角形内角和定理.【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设a=5,b=12,c=13,此时a2+b2=132=c2,即a2+b2=c2,故△ABC是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件∠A=∠C﹣∠B,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;故选A.5.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5 B.6 C.7 D.25【考点】勾股定理.【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB==5.故选:A.6.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7 C.5和7 D.25或7【考点】勾股定理.【分析】分两种情况:①当3和4为直角边长时;②4为斜边长时;由勾股定理求出第三边长的平方即可.【解答】解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42﹣32=7;综上所述:第三边长的平方是25或7;故选:D.7.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定【考点】平面展开-最短路径问题.【分析】先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.【解答】解:如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC==2π≈6cm,在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB===10cm.故选:B.8.如图,在△ABC中,有一点P在直线AC上移动,若AB=AC=5,BC=6,则BP的最小值为()A.4.8 B.5 C.4 D.【考点】勾股定理;垂线段最短;等腰三角形的性质.【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,过A 作等腰三角形底边上的高AD,利用三线合一得到D为BC的中点,在直角三角形ADC中,利用勾股定理求出AD的长,进而利用面积法即可求出此时BP的长.【解答】解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD===4,又∵S△ABC=BC•AD=BP•AC,∴BP===4.8.故选:A.9.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AB边和BC边向外作等腰直角三角形AFC 和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.4 B.9 C.18 D.36【考点】勾股定理;等腰直角三角形.【分析】解:由勾股定理求出BC2+AC2=AB2=36,由等腰直角三角形的性质和勾股定理得出BE=CE=BC,AF=FC=AC,得出S1+S2=BE2+AF2=(BC2+AC2),即可得出结果.【解答】解:∵∠ACB=90°,AB=6,∴BC2+AC2=AB2=62=36,∵△BEC和△AFC是等腰直角三角形,∴BE=CE=BC,AF=FC=AC,∴S1+S2=BE2+AF2=×(BC)2+×(AC)2=(BC2+AC2)=×36=9;故选:B.10.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A的面积是()A.16 B.32 C.34 D.64【考点】勾股定理.【分析】根据已知两正方形的面积分别得出直角三角形两直角边长的平方,利用勾股定理求出斜边长的平方,即可求出正方形A的面积.【解答】解:如图所示:根据题意得:EF2=25,FG2=9,∠EFG=90°,根据勾股定理得:EG2=25+9=34,∴以斜边为边长的正方形A的面积为34.故选:C.11.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是()A.30 B.50 C.60 D.80【考点】全等三角形的判定与性质.【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.【解答】解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF≌△BAG,(AAS)同理△BCG≌△CDH,∴AF=BG,AG=EF,GC=DH,BG=CH,∵梯形DEFH的面积=(EF+DH)•FH=80,S△AEF=S△ABG=AF•AE=9,S△BCG=S△CDH=CH•DH=6,∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50,故选 B.12.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A.3.5 B.4 C.4.5 D.5【考点】勾股定理的应用.【分析】仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可.【解答】解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,解得:h=4.5.故选:C.二、填空题13.已知|x﹣12|+|z﹣13|+y2﹣10y+25=0,则以x、y、z为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出x、y、z的值,再根据勾股定理的逆定理进行解答即可.【解答】解:以x,y,z为三边的三角形是直角三角形.∵|x﹣12|+|z﹣13|+y2﹣10y+25=0,∴|x﹣12|+|z﹣13|+(y﹣5)2=0,∴x﹣12=0,z﹣13=0,y﹣5=0,∴x=12,y=5,z=13,∵122+52=132,∴以x,y,z为三边的三角形是直角三角形.故答案为直角.14.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2= 8 .【考点】勾股定理.【分析】根据勾股定理即可求得该代数式的值.【解答】解:∵AB2=BC2+AC2,AB=2,∴AB2+BC2+AC2=8.故答案为:8.15.已知直角三角形三边的平方和是32cm2,则其斜边上的中线长为2cm .【考点】勾股定理;直角三角形斜边上的中线.【分析】由勾股定理和已知条件得出得出AB2=16cm2,得出AB=4cm,由直角三角形斜边上的中线性质得出CD=AB,即可得出结果.【解答】解:如图所示:∵∠ACB=90°,∴AC2+BC2=AB2,∵直角三角形三边的平方和是32cm2,∴AB2=16cm2,∴AB=4cm,∴斜边AB上的中线长=AB=2cm,故答案为:2cm16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8 .【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.17.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为1或4 .【考点】勾股定理的证明.【分析】分两种情况:①5为斜边时,由勾股定理求出另一直角边长为4,小正方形的边长=4﹣3=1,即可得出小正方形的面积;②3和5为两条直角边长时,求出小正方形的边长=2,即可得出小正方形的面积;即可得出结果.【解答】解:分两种情况:①5为斜边时,由勾股定理得:另一直角边长==4,∴小正方形的边长=4﹣3=1,∴小正方形的面积=12=1;②3和5为两条直角边长时,小正方形的边长=5﹣3=2,∴小正方形的面积22=4;综上所述:小正方形的面积为1或4;故答案为:1或4.18.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:13、84、85 .【考点】勾股数.【分析】先根据给出的数据找出规律,再根据勾股定理进行求解即可.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,第6组第一个数是13,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:132+x2=(x+1)2,解得x=84.则得第6组数是:13、84、85.故答案为:13、84、85.三、解答题19.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD 的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.故四边形ABCD的面积是36.20.如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.【考点】勾股定理的应用.【分析】在△RtAOB中依据勾股定理可知AB2=40,在Rt△A′OB′中依据勾股定理可求得OB′的长,从而可求得BB′的长.【解答】解:在△RtAOB中,由勾股定理可知AB2=AO2+OB2=40,在Rt△A′OB′中由勾股定理可知A′B′2=A′O2+OB′2.∵AB=A′B′,∴A′O2+OB′2=40.∴OB′==.∴BB′=6﹣.21.两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,现在要在两根电线杆底端之间(线段BD上)选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.若使钢索AE与CE 相等,那么点E应该选在距点B多少米处?【考点】勾股定理的应用.【分析】设BE=x米,在Rt△ABE中,由勾股定理得:AE2=52+x2,在Rt△CDE中,由勾股定理得:CE2=32+(8﹣x)2,根据AE=CE∴52+x2=32+(8﹣x)2求得BE的长即可.【解答】解:设BE=x米,在Rt△ABE中,AE2=52+x2在Rt△CDE中,CE2=32+(8﹣x)2,∵AE=CE,∴52+x2=32+(8﹣x)2,解得x=3,答:点E应该选在距B点3米处.22.如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.【考点】全等三角形的判定与性质;勾股定理的证明.【分析】(1)根据全等三角形的判定与性质,可得∠1与∠3的关系,AB与DE的关系,根据余角的性质,可得∠2与∠3的关系;(2)根据面积的不同求法,可得答案.【解答】解:(1)AB=DE,AB⊥DE,如图2,∵AD⊥CA,∴∠DAE=∠ACB=90°.在△ABC和△DEA中,,∴△ABC≌△DEA (SAS),AB=DE,∠3=∠1.∵∠DAE=90°,∴∠1+∠2=90°,∴∠3+∠2=90°,∴∠AFE=90°,∴AB⊥DE;(2)S四边形ADBE=S△ADE+S△BDE=DE•AF+DE•BF=DE•AB=c2,S四边形ADBE=S△ABE+S△ADE=a2+b2,∴a2+b2=c2,∴a2+b2=c2.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了3秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?【考点】勾股定理的应用.【分析】根据题意得出由勾股定理得出BC的长,进而得出小汽车1小时行驶40×20×60=48000(米),进而得出答案.【解答】解:根据题意,得AC=30m,AB=50m,∠C=90°,在Rt△ACB中,根据勾股定理,BC2=AB2﹣AC2=502﹣302=402,所以BC=40,小汽车3秒行驶40米,则1小时行驶40×20×60=48000(米),即小汽车行驶速度为48千米/时,因为 48<70,所以小汽车没有超速行驶.24.如图将一根15cm长的细木棒放入长宽分别为4cm,3cm和12cm的长方体无盖盒子中,则细木棒露在外面的最短长度是多少?【考点】勾股定理的应用.【分析】长方体内体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,这样就是求出盒子的对角线长度即可.【解答】解:由题意知:盒子底面对角长为=5cm,盒子的对角线长:=13cm,细木棒长15cm,故细木棒露在盒外面的最短长度是:15﹣13=2cm.所以细木棒露在外面的最短长度是2厘米.25.如图,学校为美化校园,将形状是直角三角形的﹣园地△ABC,分别以三边AB、BC、CA 为直径向外作半圆,开辟为三个花坛甲、乙、丙,现分给201班同学种花.班长准备让人数相等的两个小组同学负责.为了公平分配任务,她安排一个小组负责花坛甲,另一个小组负责花坛乙和丙.你认为班长的安排合理吗?请说明理由.【考点】勾股定理的应用.【分析】根据△ABC是直角三角形,可得出S甲=S乙+S丙,故班长的安排是合理的.【解答】解:班长的安排合理.理由如下:∵S甲=π×()2S乙=π×()2S丙=π×()2又△ABC是直角三角形∴=+∴S甲=S乙+S丙答:因为班长分配给两个小组的花坛面积相等,所以她的安排是合理的.。