当前位置:文档之家› 蚁群算法聚类分析

蚁群算法聚类分析

蚁群算法聚类分析
蚁群算法聚类分析

蚁群算法聚类分析

摘要:

蚁群算法是今年来才提出的一种基于种群寻优的启发式搜索算法,由意大利学者M.Dorigo等于1991年首先提出。该算法受到自然界中真实蚁群集体行为的启发,利用真实蚁群通过个体间的信息传递、搜索从蚁穴到食物间的最短路径的集体寻优特征,来解决一些离散系统中优化的困难问题。本文就蚁群算法的基本原理、模型特征、聚类分析展开论述。

关键字:

蚁群算法原理模型聚类分析

引言

蚁群算法是最近几年才提出的一种新型的模拟进化算法。蚂蚁是大家司空见惯的一种昆虫,而他们的群体合作的精神令人钦佩。他们的寻食、御敌、筑巢(蚂蚁的筑窝、蜜蜂建巢)之精巧令人惊叹。蚂蚁是自然界中常见的一种生物,人们对蚂蚁的关注大都是因为“蚂蚁搬家,天要下雨”之类的民谚。然而随着近代仿生学的发展,这种似乎微不足道的小东西越来越多地受到学者们的关注。1991年M.DIorigo,V.MaIliezzo等人首先提出了蚁群算法 (Ant Colony Algorithms),人们开始了对蚁群的研究:相对弱小,功能并不强大的个体是如何完成复杂的工作的(如寻找到食物的最佳路径并返回等)。在此基础上一种很好的优化算法逐渐发展起来。

基本蚁群算法的机制原理

模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下基本假设:

(1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也只对其周围的局部环境产生影响;

(2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的适应性表现,即蚂蚁是反应型适应性主体;

(3)在个体水平上,每只蚂蚁仅根据环境做出独立选择;在群体水平上,单只蚂蚁的行为是随机的,但蚁群可通过自组织过程形成高度有序的群体行为;

由上述假设和分析可见,基本蚁群算法的寻优机制包含两个基本阶段:适应阶段和协作阶段。在适应阶段,各候选解根据积累的信息不断调整自身结构,路径上经过的蚂蚁越多,信息量越大,则该路径越容易被选择;时间越长,信息量会越小;在协作阶段,候选解之间通过信息交流,以期望产生性能更好的解,类似于学习自动机的学习机制。

蚁群算法实际上是一类智能多主体系统,其自组织机制使得蚁群算法不需要对所求问题的每一方面都有详尽的认识。自组织本质上是蚁群算法机制在没有外界作用下使系统熵增加的动态过程,体现了从无序到有序的动态演化,其逻辑结构如图1所示。

图1 基本蚁群算法的逻辑结构

由图1可见,先将具体的组合优化问题表述成规范的格式,然后利用蚂蚁算法在“探索(exploration)’’和“利用(exploitation)"之间根据信息素这一反馈载体确定决策点,同时按照相应的信息素更新规则对每只蚂蚁个体的信息素进行增量构建,随后从整体角度规划出蚂蚁活动的行为方向,周而复始,即可求出组合优化问题的最优解。

基本蚁群算法的模型特征

现在大量的工作是围绕组合优化问题进行的,因为蚁群模型的定义要受到问题结构的影响,故而选择一种标准的问题是衡量算法好坏,并与其它算法进行比较的前提,通常选择的问题是旅行商问题(TSP),TsP具有广泛的代表意义和应用前景,许多现实问题均可抽象为TSP 的求解,故我们以TSP为例来描述基本蚁群算法的模型特征。

TSP问题属于一种典型的组合优化问题,其定义为:给定n个城市的集合,寻找一条只经过各城市一次的具有最短长度的闭合路径。设(X i,Y j)是城市i的坐标值,d ij为城市i和城市j 之间的距离,用欧几里德空间距离表示:

(1)

一个TSP问题可由图(N,E)给定,其中N是城市的集合,E是城市之间的支路集合(欧几里德空间中TSP意义下的一个全连接图),令b i(t)(i=1,2,?,n)为t时刻位于城市i

的蚂蚁个数,则为蚁群中蚂蚁的总个数。每个蚂蚁可认为具有下列特征的简

单智能体:

(1)其选择城市的概率是城市之间的距离和连接支路所包含的当前信息素余量的函数;

(2)为了强制蚂蚁进行合法的周游,直到周游完一次所有的城市,才允许蚂蚁游走己访问过的城市,设置禁忌表来进行控制;

(3)当完成一次周游后,它在每条访问过的支路上都会留下信息素。

设:u(t)为t时刻在ij连线上残留的信息量,而初始时刻各条路径上的信息量相等,即T ii(O)=c。如果在时间间隔(t,t+1)中m个蚂蚁都从当前城市选择下一个城市,则经过n个时间间隔。为了避免残留信息过多引起的残留信息淹没启发信息的问题,在每一只蚂蚁完成对所有n个城市的访问后(也即一个循环结束后),必须对残留信息进行更新处理,模仿人类记忆的特点,对1日的信息进行削弱。同时,必须将最新的蚂蚁访问路径的信息加入T ij,此时按如下方法修改各条路径上的残留信息。

(2)

(3)

上式中,p为信息残留系数,l—p表征了从时刻t到t+n路径(I,j)上残留信息为本次循环第k只蚂蚁在t与t+n时刻,留在路径(i,j)上的的挥发程度。△T

ij

年位长度上的信息量。

根据Morigo的Ant—Cycle System模型,有

(4)

为第k只蚂蚁在本次循环中所走路径的长度。则t时刻蚂上式中,Q为常量,L

k

蚁k(k=l,2,3,?,n)由城市i到城市j的选择概率定义如下:

(5)

定义tabuk为一动态增长的列表,其中记录了蚂蚁k所经过的所有的城市号,为允许第k只蚂蚁访问的城市列表,则为t时刻蚂蚁由城市i选择城市j的某种启发信息。

Ant cycle算法流程如图2所示:

图2 Ant-cycle算法流程图

而后Dorigo等人又提出了蚁群算法的另外两个版本:蚁密算法和蚁量算法,这两种算法在信息素更新的方式上利用的是局部信息,而蚁周算法利用的是整体信息。这两种算法的模型中,每只蚂蚁在每一步后都留下了它的信息素,而不必等到周游结束。在蚁密算法中,蚂蚁每次从i到j都会在支路(ij)上留下数量为Q的信息素:在蚁量算法中,一只从i到j 的蚂蚁在支路(i,j)上留下数量为Q/d ij的信息素。其更新方式定义如下:

(6)

(7)

基本蚁群算法的优点和不足之处

蚁群算法的基本思想是模仿蚂蚁依赖信息量(pheromone)进行通信而显示出的社会性行为,在智能体(agent)定义的基础上,由一个贪心法指导下的自催化(auto catalytic)过程引导每个智能体的行动,它是一种随机的通用试探法。AS的信息正反馈机制能迅速找到好的解决方法;分布式计算可以避免过早地收敛;强启发能在早期的寻优中迅速找到合适的解决方案,该算法已经被成功地运用于许多能被表达为在图表上寻找最佳路径的问题。

不难看出,蚁群算法的优点在于:

(1)较强的鲁棒性:对蚁群算法模型稍加修改,就可以应用于其他问题;

(2)分布式计算:蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现;

(3)易于与其他方法结合:蚁群算法很容易与多种启发式算法结合,以改善算法的性能。

但是蚁群算法也存在着若干不足之处,如:

(1)需要较长的搜索时间,蚁群算法的复杂度可以反映这一点。虽然计算机计算速度的提高和蚁群算法的本质并行性在一定程度上可以缓解这一问题,但是对于大规模优化问题,这还是一个很大的障碍;

(2)该算法容易出现停滞现象(stagnation behaVior),即搜索进行到一定程度后,所有个体所发现的解完全一致,不能对解空间进一步搜索,不利于发现更好的解;

(3)蚁群算法是一种基于蚁群群体行为的算法,群体各个个体需要通过交换信息素实现相互通讯,并通过信息素的差异分布构造问题的解。算法求解问题过程中需要问题空间中存在信息素的差异,而这一差异的出现常常需要耗费算法一部分的时间,在某些情况下会很大程度地降低算法的运行效率;

(4)在算法实现方面存在许多不确定的因素,比如,信息素初始数值的确定,不同的蚁群算法设置为不同的数值,而且具有很大的差异;在信息素的更新方面,同样具有差异很大的很多不同的方式;另外,算法还有许多参数的取值要在算法中确定,这些参数在不同取值的情况下,常常会对算法的性能和求解效率产生重大影响;

(5)在蚁群依据信息素确定行走路径的过程中,可能会出现蚁群陷入局部最优解的情况,造成了算法求解的偏差。

聚类数目已知的蚁群聚类算法

聚类分析师一种传统的多变量统计分类方法,用以探讨如何将所搜集的物体分类,似的相同群体具有高度的相异性。聚类分析的用途甚广,在科学数据探测、图像处理、模式识别、文档检索、医疗诊断、web分析、计算物学等领域起着非常重要的作用。

聚类问题的本质是一个非线性规划问题,目前没有有效的算法解决这些问题。蚁群算法作为一种分布式寻优算法,已经展示了其优良的搜索最优解的能力,并具有其他通用型算法不具备的特征。由于蚁群算法能够应用于各种优化组合问题,因此可以用来解决聚类分析问

题。基于蚁群算法的聚类算法大致分为聚类数目已知和聚类数目未知两类问题,本文将着重介绍聚类数目已知的聚类算法。

1.问题提出

一幅图中含有多个物体,在图像中进行聚类分析需要对不同的物体分割表示,如图3所示,手写了12个待分类样品,要分成4类,如何让计算机自动将这12个物体归类呢?本文将用蚁群算法解决聚类问题的实现方法。

图3 待聚类的样品数字

2.蚂蚁的结构

在已知聚类数据的蚁群聚类算法中,每只蚂蚁都表示为一种可能的聚类结果。首先生成具有m只蚂蚁的蚁群,每只蚂蚁在搜索开始之前分配一个空的长度为样本个数N的解集S,解集中的第i个位置对应地i个样品所属的类号。在搜索结束后,解集中的值表示的是第i个样品所归属的类。

针对图3,分为4类的12个样品,设计蚂蚁的解集,假设蚂蚁S i进行搜索后找到的解集,如表1所示。

表1 某只蚂蚁的解集

某已知蚂蚁S i中的值表示的是第1个样品分到第2类,第2个样品分到第4类,等等,这是蚂蚁利用信息素把每个样品分到相应的类中后的解集。

3.构造信息素矩阵

在12样品分到4个类规模的聚类问题中,信息素是一个在迭代过程中不断更新的12*4的矩阵。在出事阶段,信息素值被初始化为同一个数值,例如表2所示。

表2 信息素矩阵

4.构造目标函数

已知模式样品表中有N个样品和M个模式分类,每个样品有n个特征,以每个模式样品到聚类中心的距离之和达到最小作为目标函数,其数学模型表示为:

5.更新蚁群

在每一次蚁群更新中,蚂蚁将通过信息素的间接通信实现把N样品划分为M个类的一个近似划分。当m值蚂蚁都迭代结束后,假如局部搜索以便进一步提高划分的质量,然后根据划分的质量更新信息素矩阵,如此循环,直到满足循环条件结束。

6.局部搜索

依照上述方法计算所有蚂蚁对应的解集。

7.信息素矩阵更新

执行过局部搜索之后,利用前L个蚂蚁对信息素表进行更新。信息素更新采用:

8.算法流程

最终找到的最优蚂蚁对应的解集如表3所示。如图4所示为聚类数目已知的蚁群聚类算法流程图。图5所示为该解集对应的最优聚类划分。图6所示为最终信息素矩阵。

表3 最优蚂蚁的解集

图4 聚类数目已知的蚁群聚类算法流程图

图5 蚁群算法找到的最优聚类划分

图6 最终信息素矩阵

9.实现步骤

(1)初始化蚁群参数

(2)初始化信息素矩阵

(3)所有蚂蚁根据信息素矩阵构建解集

(4)计算各类中心

(5)在排序后的蚂蚁解集中,将前L个蚂蚁作为要交换样品的蚂蚁,我们取L=2,对要交换样品的蚂蚁实施局部搜索操作。

(6)跟新信息素值

(7)如果没有达到最大迭代次数,则转步骤(3),否则输出最优聚类解集。

10.编程代码

11.效果图

基于手写数字聚类结果图

(a) 原始数据(b)设定聚类数目和最大迭代次数

(c)聚类结果(d)信息素矩阵

参考文献

【1】杨淑莹.模式识别与智能计算,电子工业出版社,2008

【2】边肇祺,张学工.模式识别,清华大学出版社,2000

【3】https://www.doczj.com/doc/c017440449.html,

【4】杨沛,古德祥.蚁群的信息系统.昆虫知识,2001,38(1):23—25.

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

数据挖掘聚类算法课程设计报告

数据挖掘聚类问题(Plants Data Set)实验报告 1.数据源描述 1.1数据特征 本实验用到的是关于植物信息的数据集,其中包含了每一种植物(种类和科属)以及它们生长的地区。数据集中总共有68个地区,主要分布在美国和加拿大。一条数据(对应于文件中的一行)包含一种植物(或者某一科属)及其在上述68个地区中的分布情况。可以这样理解,该数据集中每一条数据包含两部分内容,如下图所示。 图1 数据格式 例如一条数据:abronia fragrans,az,co,ks,mt,ne,nm,nd,ok,sd,tx,ut,wa,wy。其中abronia fragrans是植物名称(abronia是科属,fragrans是名称),从az一直到wy 是该植物的分布区域,采用缩写形式表示,如az代表的是美国Arizona州。植物名称和分布地区用逗号隔开,各地区之间也用逗号隔开。 1.2任务要求 聚类。采用聚类算法根据某种特征对所给数据集进行聚类分析,对于聚类形成的簇要使得簇内数据对象之间的差异尽可能小,簇之间的差距尽可能大。 2.数据预处理 2.1数据清理 所给数据集中包含一些对聚类过程无用的冗余数据。数据集中全部数据的组织结构是:先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。例如: ①abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ②abelmoschus esculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ③abelmoschus moschatus,hi,pr 上述数据中第①行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的②③两行分别列出了属于abelmoschus科属的两种具体植物及其分布地区。从中可以看出后两行给出的所有地区的并集正是第一行给出的地区集

实验三 K-均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

聚类分析算法解析.doc

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象 <- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法 "median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

聚类算法总结

聚类算法的种类:

--------------------------------------------------------- 几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:

--------------------------------------------------------- 目前聚类分析研究的主要内容: 对聚类进行研究是数据挖掘中的一个热门方向,由于以上所介绍的聚类方法都 存在着某些缺点,因此近些年对于聚类分析的研究很多都专注于改进现有的聚 类方法或者是提出一种新的聚类方法。以下将对传统聚类方法中存在的问题以 及人们在这些问题上所做的努力做一个简单的总结: 1 从以上对传统的聚类分析方法所做的总结来看,不管是k-means方法,还是CURE方法,在进行聚类之前都需要用户事先确定要得到的聚类的数目。然而在 现实数据中,聚类的数目是未知的,通常要经过不断的实验来获得合适的聚类 数目,得到较好的聚类结果。 2 传统的聚类方法一般都是适合于某种情况的聚类,没有一种方法能够满足各 种情况下的聚类,比如BIRCH方法对于球状簇有很好的聚类性能,但是对于不 规则的聚类,则不能很好的工作;K-medoids方法不太受孤立点的影响,但是 其计算代价又很大。因此如何解决这个问题成为当前的一个研究热点,有学者 提出将不同的聚类思想进行融合以形成新的聚类算法,从而综合利用不同聚类 算法的优点,在一次聚类过程中综合利用多种聚类方法,能够有效的缓解这个 问题。 3 随着信息时代的到来,对大量的数据进行分析处理是一个很庞大的工作,这 就关系到一个计算效率的问题。有文献提出了一种基于最小生成树的聚类算法,该算法通过逐渐丢弃最长的边来实现聚类结果,当某条边的长度超过了某个阈值,那么更长边就不需要计算而直接丢弃,这样就极大地提高了计算效率,降 低了计算成本。 4 处理大规模数据和高维数据的能力有待于提高。目前许多聚类方法处理小规 模数据和低维数据时性能比较好,但是当数据规模增大,维度升高时,性能就 会急剧下降,比如k-medoids方法处理小规模数据时性能很好,但是随着数据 量增多,效率就逐渐下降,而现实生活中的数据大部分又都属于规模比较大、 维度比较高的数据集。有文献提出了一种在高维空间挖掘映射聚类的方法PCKA (Projected Clustering based on the K-Means Algorithm),它从多个维度中选择属性相关的维度,去除不相关的维度,沿着相关维度进行聚类,以此对 高维数据进行聚类。 5 目前的许多算法都只是理论上的,经常处于某种假设之下,比如聚类能很好 的被分离,没有突出的孤立点等,但是现实数据通常是很复杂的,噪声很大, 因此如何有效的消除噪声的影响,提高处理现实数据的能力还有待进一步的提高。

蚁群聚类算法综述

计算机工程与应用2006.16 引言 聚类分析是数据挖掘领域中的一个重要分支[1],是人们认 和探索事物之间内在联系的有效手段,它既可以用作独立的 据挖掘工具,来发现数据库中数据分布的一些深入信息,也 以作为其他数据挖掘算法的预处理步骤。所谓聚类(clus- ring)就是将数据对象分组成为多个类或簇(cluster),在同一 簇中的对象之间具有较高的相似度,而不同簇中的对象差别大。传统的聚类算法主要分为四类[2,3]:划分方法,层次方法, 于密度方法和基于网格方法。 受生物进化机理的启发,科学家提出许多用以解决复杂优 问题的新方法,如遗传算法、进化策略等。1991年意大利学A.Dorigo等提出蚁群算法,它是一种新型的优化方法[4]。该算不依赖于具体问题的数学描述,具有全局优化能力。随后他 其他学者[5~7]提出一系列有关蚁群的算法并应用于复杂的组优化问题的求解中,如旅行商问题(TSP)、调度问题等,取得 著的成效。后来其他科学家根据自然界真实蚂蚁群堆积尸体分工行为,提出基于蚂蚁的聚类算法[8,9],利用简单的智能体 仿蚂蚁在给定的环境中随意移动。这些算法的基本原理简单懂[10],已经应用到电路设计、文本挖掘等领域。本文详细地讨现有蚁群聚类算法的基本原理与性能,在归纳总结的基础上 出需要完善的地方,以推动蚁群聚类算法在更广阔的领域内 到应用。 2聚类概念及蚁群聚类算法 一个簇是一组数据对象的集合,在同一个簇中的对象彼此 类似,而不同簇中的对象彼此相异。将一组物理或抽象对象分组为类似对象组成的多个簇的过程被称为聚类。它根据数据的内在特性将数据对象划分到不同组(或簇)中。聚类的质量是基于对象相异度来评估的,相异度是根据描述对象的属性值来计算的,距离是经常采用的度量方式。聚类可用数学形式化描述为:设给定数据集X={x 1 ,x 2 ,…,x n },!i∈{1,2,…,n},x i ={x i1 ,x i2 , …,x

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告 1.方法背景 聚类分析又称群分析,是多元统计分析中研究样本或指标的一种主要的分类方法,在古老的分类学中,人们主要靠经验和专业知识,很少利用数学方法。随着生产技术和科学的发展,分类越来越细,以致有时仅凭经验和专业知识还不能进行确切分类,于是数学这个有用的工具逐渐被引进到分类学中,形成了数值分类学。近些年来,数理统计的多元分析方法有了迅速的发展,多元分析的技术自然被引用到分类学中,于是从数值分类学中逐渐的分离出聚类分析这个新的分支。结合了更为强大的数学工具的聚类分析方法已经越来越多应用到经济分析和社会工作分析中。在经济领域中,主要是根据影响国家、地区及至单个企业的经济效益、发展水平的各项指标进行聚类分析,然后很据分析结果进行综合评价,以便得出科学的结论。 2.基本要求 用FAMALE.TXT、MALE.TXT和/或test2.txt的数据作为本次实验使用的样本集,利用C均值和分级聚类方法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。 3.实验要求 (1)把FAMALE.TXT和MALE.TXT两个文件合并成一个,同时采用身高和体重数据作为特征,设类别数为2,利用C均值聚类方法对数据进行聚类,并将聚类结果表示在二维平面上。尝试不同初始值对此数据集是否会造成不同的结果。 (2)对1中的数据利用C均值聚类方法分别进行两类、三类、四类、五类聚类,画出聚类指标与类别数之间的关系曲线,探讨是否可以确定出合理的类别数目。 (3)对1中的数据利用分级聚类方法进行聚类,分析聚类结果,体会分级聚类方法。。(4)利用test2.txt数据或者把test2.txt的数据与上述1中的数据合并在一起,重复上述实验,考察结果是否有变化,对观察到的现象进行分析,写出体会 4.实验步骤及流程图 根据以上实验要求,本次试验我们将分为两组:一、首先对FEMALE 与MALE中数据组成的样本按照上面要求用C均值法进行聚类分析,然后对FEMALE、MALE、test2中数据组成的样本集用C均值法进行聚类分析,比较二者结果。二、将上述两个样本用分即聚类方法进行聚类,观察聚类结果。并将两种聚类结果进行比较。 (1)、C均值算法思想

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题 一、专家系统(Expert System) 1,什么是专家系统? 在日常生活中大家所认知的“专家”一般都拥有某一特定领域的大量专业知识,以及丰富的实际经验。在解决问题时,专家们通常拥有一套独特的思维方式,能较圆满地解决一类困难问题,或向用户提出一些建设性的建议等。 专家系统一般定义为一个具有智能特点的计算机程序。 它的智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。因此,专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。 图1 专家系统的基本组成 专家系统通常由知识库和推理机两个主要组成要素。 知识库存放着作为专家经验的判断性知识,例如表达建议、 推断、 命令、 策略的产生式规则等, 用于某种结论的推理、 问题的求解,以及对于推理、 求解知识的各种控制知识。 知识库中还包括另一类叙述性知识, 也称作数据,用于说明问题的状态,有关的事实和概念,当前的条件以及常识等。

专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 推理机实际上是一个运用知识库中提供的两类知识,基于木某种通用的问题求解模型,进行自动推理、 求解问题的计算机软件系统。 它包括一个解释程序, 用于决定如何使用判断性知识推导新的知识, 还包括一个调度程序, 用于决定判断性知识的使用次序。 推理机的具体构造取决于问题领域的特点,及专家系统中知识表示和组织的方法。 推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。正向推理是从前件匹配到结论,反向推理则先假设一个结论成立,看它的条件有没有得到满足。由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。 人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。 综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。 知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。 2,专家系统的特点 在功能上, 专家系统是一种知识信息处理系统, 而不是数值信息计算系统。在结构上, 专家系统的两个主要组成部分 – 知识库和推理机是独立构造、分离组织, 但又相互作用的。在性能上, 专家系统具有启发性, 它能够运用专家的经验知识对不确定的或不精确的问题进行启发式推理, 运用排除多余步骤或减少不必要计算的思维捷径和策略;专家系统具有透明性, 它能够向用户显示为得出某一结论而形成的推理链, 运用有关推理的知识(元知识)检查导出结论的精度、一致性和合理性, 甚至提出一些证据来解释或证明它的推理;专家系统具有灵活性, 它能够通过知识库的扩充和更新提高求解专门问题的水平或适应环境对象的某些变化,通过与系统用户的交互使自身的性能得到评价和监护。 3,专家系统适合解决的实际问题 专家系统是人工智能的一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。专家系统一词系由以知识为基础的专家系统(knowledge-based expert system)而来,此种系统应用计算机中储存的人类知识,解决一般需要用到专家才能处理的问题,它能模仿人类专家解决特定问题时的推理过程,因而可供非专家们用来增进问题解决的能力,同时专家们也可把它视为具备专业知识的助理。由于在人类社会中,专家资源确实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。 专家系统技术广泛应用在工程、科学、医药、军事、商业等方面,而且成果相当丰硕,甚至在某些应用领域,还超过人类专家的智能与判断。其功能应用领

蚁群算法

社会性动物的群集活动往往能产生惊人的自组织行为,如个体行为显得盲目的蚂蚁在组成蚁群后能够发现从蚁巢到食物源的最短路径。生物学家经过仔细研究发现蚂蚁之间通过一种称之为“外激素”的物质进行间接通讯、相互协作来发现最短路径。受其启发,1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。本文阐述了算法的基本原理及特性以及一些优化的蚁群算法,阐述了蚁群算法在数据挖掘中的应用,最后总结了蚁群算法在数据挖掘应用中尚待解决的问题。 关键词: 蚁群算法; 蚁群优化; 数据挖掘 正文文字大小:大中小 1 蚁群算法原理 自1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。该算法的出现引起了学者们的极大关注,蚁群算法的特点: ①其原理是一种正反馈机制或称增强型学习系统; 它通过【最优路径上蚂蚁数量的增加→信息素强度增加→后来蚂蚁选择概率增大→最优路径上蚂蚁数量更大增加】达到最终收敛于最优路径上L ②它是一种通用型随机优化方法, 它吸收了蚂蚁的行为特(内在搜索机制) , 它是使用人工蚂蚁仿真(也称蚂蚁系统) 来求解问题L但人工蚂蚁决不是对实际蚂蚁的一种简单模拟, 它融进了人类的智能L人工蚂蚁有一定的记忆; 人工蚂蚁不完全是瞎的; 人工蚂蚁生活的时空是离散的L ③它是一种分布式的优化方法, 不仅适合目前的串行计算机, 而且适合未来的并行计算机L ④它是一种全局优化的方法, 不仅可用于求解单目标优化问题, 而且可用于求解多目标优化问题L ⑤它是一种启发式算法, 计算复杂性为o (Nc*n2*m) , 其中Nc 是迭代次数, m 是蚂蚁数目, n 是目的节点数目L 蚁群发现最短路径的原理和机制[1] 下面用图 1解释蚁群发现最短路径的原理和机制。 如图 1(a)所示,在蚁巢和食物源之间有两条道路 Nest-A-B-D-Food 和Nest-A-C-D-Food,其长度分别为 4 和 6。单位时间内蚂蚁可移动一个单位长度的距离。开始时所有路径上都没有外激素。 如图 1(b),在 t=0 时刻,20 只蚂蚁从蚁巢出发移动到 A。由于路径上没有外激素,它们以

k均值聚类报告

K-均值聚类算法报告 摘要 K-均值是聚类方法中长用的一种划分方法,有很多优点,本文主要对K-均值是聚类方法的产生,工作原理,一般步骤,以及它的源码进行简单的介绍,了解K-均值是聚类!!! (一)课题名称:K-均值聚类(K-means clustering) (二)课题分析: J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为: K-means 算法的特点——采用两阶段反复循环过程算法,结束的条件是不再有数据元素被重新分配: ① 指定聚类,即指定数据到某一个聚类,使得它与这个聚类中心的距离比它到其它聚类中心的距离要近。 ② 修改聚类中心。 优点:本算法确定的K 个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K<

(1)从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2)循环(3)到(4)直到每个聚类不再发生变化为止; (3)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (4)重新计算每个(有变化)聚类的均值(中心对象) k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 (三)总体检索思路: 利用goole,百度,搜狗等搜索引擎及校内的一些数据库进行相关内容的检索。主要检索内容为K-均值聚类算法的工作原理,一般步骤,源码。 (四)检索过程记录: 关键词:K-均值聚类算法 搜索引擎:百度 检索内容:①K-均值聚类算法工作原理 ②K-均值聚类算法的一般步骤 ③K-均值聚类算法的源码

聚类算法分析报告汇总

嵌入式方向工程设计实验报告 学院班级:130712 学生学号:13071219 学生姓名:杨阳 同作者:无 实验日期:2010年12月

聚类算法分析研究 1 实验环境以及所用到的主要软件 Windows Vista NetBeans6.5.1 Weka3.6 MATLAB R2009a 2 实验内容描述 聚类是对数据对象进行划分的一种过程,与分类不同的是,它所划分的类是未知的,故此,这是一个“无指导的学习” 过程,它倾向于数据的自然划分。其中聚类算法常见的有基于层次方法、基于划分方法、基于密度以及网格等方法。本文中对近年来聚类算法的研究现状与新进展进行归纳总结。一方面对近年来提出的较有代表性的聚类算法,从算法思想。关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析。最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题等。 实验中主要选择了K 均值聚类算法、FCM 模糊聚类算法并以UCI Machine Learning Repository 网站下载的IRIS 和WINE 数据集为基础通过MATLAB 实现对上述算法的实验测试。然后以WINE 数据集在学习了解Weka 软件接口方面的基础后作聚类分析,使用最常见的K 均值(即K-means )聚类算法和FCM 模糊聚类算法。下面简单描述一下K 均值聚类的步骤。 K 均值算法首先随机的指定K 个类中心。然后: (1)将每个实例分配到距它最近的类中心,得到K 个类; (2)计分别计算各类中所有实例的均值,把它们作为各类新的类中心。 重复(1)和(2),直到K 个类中心的位置都固定,类的分配也固定。 在实验过程中通过利用Weka 软件中提供的simpleKmeans (也就是K 均值聚类算法对WINE 数据集进行聚类分析,更深刻的理解k 均值算法,并通过对实验结果进行观察分析,找出实验中所存在的问题。然后再在学习了解Weka 软件接口方面的基础上对Weka 软件进行一定的扩展以加入新的聚类算法来实现基于Weka 平台的聚类分析。 3 实验过程 3.1 K 均值聚类算法 3.1.1 K 均值聚类算法理论 K 均值算法是一种硬划分方法,简单流行但其也存在一些问题诸如其划分结果并不一定完全可信。K 均值算法的划分理论基础是 2 1 min i c k i k A i x v ∈=-∑∑ (1) 其中c 是划分的聚类数,i A 是已经属于第i 类的数据集i v 是相应的点到第i 类的平均距离,即

K-means聚类算法分析应用研究

K-means聚类算法分析应用研究 发表时间:2011-05-09T08:59:20.143Z 来源:《魅力中国》2011年3月上作者:李曼赵松林 [导读] 本文浅谈了数字图像处理的发展概况、研究背景并对彩色图像K-means算法进行分析。 李曼赵松林 (商丘职业技术学院河南商丘,476000) 中图分类号:TP39 文献标识码:A 文章编号:1673-0992(2011)03-0000-01 摘要:本文浅谈了数字图像处理的发展概况、研究背景并对彩色图像K-means算法进行分析.主要详细谈论了是对K-means算法的一些认识,并且介绍K-means聚类的算法思想、工作原理、聚类算法流程、以及对算法结果进行分析,得出其特点及实际使用情况。 关键字:数字图像处理;K-means算法;聚类 一、数字图像处理发展概况及边缘的概念 数字图像处理(Digital Image Processing)即计算机图像处理,就是利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术[1]。最早出现于20世纪50年代,它作为一门学科大约形成于20世纪60年代初期。它以改善图像的质量为对象,以改善人的视觉效果为目的。在处理过程中,输入低质量图像,输出质量高图像,图像增强、复原、编码、压缩等都是图像处理常用的方法[1]。数字图像处理在航天、航空、星球探测、通信技术、军事公安、生物工程和医学等领域都有广泛的应用,并取得了巨大的成就。 边缘就是图像中灰度有阶跃变化或屋顶变化的像素的集合,边缘是图像最重要的特征之一,它包含了图像的大部分信息。实质上边缘检测就是采用算法提取图像中对象与背景间的交界线。在目标与背景、目标与目标、区域与区域、基元与基元之间都存在边缘,这是图像分割所依赖的最重要的特征之一。根据灰度变化的剧烈程度,边缘可以分为两种:一种是屋顶边缘,一种为阶跃性边缘。对于屋顶状边缘,二阶导数在边缘初取极值,而对阶跃性边缘,二阶导数在边缘处零交叉;。 二、彩色图像的K-means聚类算法 (一)K-means聚类 聚类就是把数据分成几组,按照定义的测量标准,同组内数据与其他组数据相比具有较强的相似性。K-means聚类就是首先从n个数据对象任选k个对象作为初始聚类中心;剩下的其它对象,则根据它们与这些聚类中心的距离(相似度),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);一直重复此过程直至标准测度函数收敛为止。通常都采用均方差作标准测度函数。k个聚类有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 聚类的用途是很广泛的。在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。 (二)算法思想分析 输入:聚类个数k,以及包含 n个数据对象的彩色图片。 输出:满足方差最小标准的k个聚类。 处理流程: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (3)重新计算每个(有变化)聚类的均值(中心对象); (4)循环(2)到(3)直到每个聚类不再发生变化为止。 首先设置K值,也就是确定若干个聚类中心。使用rand函数随机获得K个颜色值,存放在矩阵miu中,第一次对每个像素点中的K种颜色进行迭代运算,得到最小的颜色矩阵的2范数,同时标记该颜色,依次相加的到各点的颜色矩阵总值。再次迭代得到K中颜色的各个矩阵均值。最后提取出标记的各个颜色,依次对各个点进行颜色赋值,使每个像素点的颜色归类。得到聚类后的图像。 (三)算法的数学描述 (四)算法过程分析 设置K值为8,读入一幅图片后计算图像上所有的像素点个数为N,即令N=size(X,1)*size(X,2),令颜色矩阵R为矩阵[N,K]并清零。随机获得颜色聚类中心为Miu=fix(255*rand(K,3))。

蚁群算法聚类分析

蚁群算法聚类分析 摘要: 蚁群算法是今年来才提出的一种基于种群寻优的启发式搜索算法,由意大利学者M.Dorigo等于1991年首先提出。该算法受到自然界中真实蚁群集体行为的启发,利用真实蚁群通过个体间的信息传递、搜索从蚁穴到食物间的最短路径的集体寻优特征,来解决一些离散系统中优化的困难问题。本文就蚁群算法的基本原理、模型特征、聚类分析展开论述。 关键字: 蚁群算法原理模型聚类分析

引言 蚁群算法是最近几年才提出的一种新型的模拟进化算法。蚂蚁是大家司空见惯的一种昆虫,而他们的群体合作的精神令人钦佩。他们的寻食、御敌、筑巢(蚂蚁的筑窝、蜜蜂建巢)之精巧令人惊叹。蚂蚁是自然界中常见的一种生物,人们对蚂蚁的关注大都是因为“蚂蚁搬家,天要下雨”之类的民谚。然而随着近代仿生学的发展,这种似乎微不足道的小东西越来越多地受到学者们的关注。1991年M.DIorigo,V.MaIliezzo等人首先提出了蚁群算法 (Ant Colony Algorithms),人们开始了对蚁群的研究:相对弱小,功能并不强大的个体是如何完成复杂的工作的(如寻找到食物的最佳路径并返回等)。在此基础上一种很好的优化算法逐渐发展起来。 基本蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下基本假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也只对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的适应性表现,即蚂蚁是反应型适应性主体; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择;在群体水平上,单只蚂蚁的行为是随机的,但蚁群可通过自组织过程形成高度有序的群体行为; 由上述假设和分析可见,基本蚁群算法的寻优机制包含两个基本阶段:适应阶段和协作阶段。在适应阶段,各候选解根据积累的信息不断调整自身结构,路径上经过的蚂蚁越多,信息量越大,则该路径越容易被选择;时间越长,信息量会越小;在协作阶段,候选解之间通过信息交流,以期望产生性能更好的解,类似于学习自动机的学习机制。 蚁群算法实际上是一类智能多主体系统,其自组织机制使得蚁群算法不需要对所求问题的每一方面都有详尽的认识。自组织本质上是蚁群算法机制在没有外界作用下使系统熵增加的动态过程,体现了从无序到有序的动态演化,其逻辑结构如图1所示。

相关主题
文本预览
相关文档 最新文档