影响碳化硼陶瓷致密化的因素'
- 格式:pdf
- 大小:335.69 KB
- 文档页数:4
低膨胀陶瓷材料种类概览一、氧化物陶瓷材料1.氧化锆陶瓷氧化锆陶瓷是一种具有极低热膨胀系数的陶瓷材料,常用于制作高精度工具和仪器。
它的高机械强度和化学稳定性使其在高温、高压和腐蚀性环境中表现出色。
2.氧化铝陶瓷氧化铝陶瓷是一种普遍使用的陶瓷材料,具有低膨胀系数、高硬度、高熔点和优异的绝缘性能。
它在电子和化工领域中广泛应用,如制作电子陶瓷基板、细线路板和传感器。
3.氧化锌陶瓷氧化锌陶瓷是一种常见的电子材料,具有良好的电学性能和低热膨胀系数。
它常用于制作热敏电阻、声波器件和气体传感器等。
4.氧化铈陶瓷氧化铈陶瓷是一种稀土陶瓷材料,具有低膨胀系数和良好的热稳定性。
它广泛应用于高温传感器、电容器和电介质材料等。
二、非氧化物陶瓷材料1.碳化硅陶瓷碳化硅陶瓷是一种具有极高硬度和低热膨胀系数的陶瓷材料,常用于高温、高压和耐腐蚀的环境中。
它的优异性能使其成为制造切割工具、油井泵轴承和电子封装材料的理想选择。
2.碳化硼陶瓷碳化硼陶瓷是一种具有极高硬度和优异耐磨性的陶瓷材料,广泛应用于高温和高速摩擦环境中。
它常用于制作刀具、轴承和磨料等。
3.碳化钛陶瓷碳化钛陶瓷是一种应力致密化陶瓷材料,具有低膨胀系数和高硬度。
它在高温和低温条件下都能发挥出色的性能,因此广泛应用于航空航天和电子领域。
4.碳化硼氮陶瓷碳化硼氮陶瓷是一种具有低膨胀系数、高硬度和优异耐热性的陶瓷材料。
它广泛应用于制作高温耐磨件、防弹材料和粉末冶金工具等。
综上所述,低膨胀陶瓷材料种类众多,其具有低热膨胀系数、高硬度和优异的耐热性能,可以在各个领域中发挥重要作用。
随着科技的不断进步,人们对低膨胀陶瓷材料的需求将会不断增长,相信未来将会涌现更多创新的低膨胀陶瓷材料。
稀土在结构陶瓷材料和功能陶瓷中的应用有哪些?稀土及稀土氧化物在陶瓷材料中的应用,主要是作为添加物来改进陶瓷材料的烧结性、致密性、显微结构和晶相组成等,从而在极大程度上改善了它们的力学、电学、光学或热学性能,以满足不同场合下使用的陶瓷材料的性能要求。
本文简要综述了稀土氧化物在结构陶瓷材料和功能陶瓷中的应用。
1 稀土氧化物在陶瓷材料中的作用机理2 稀土氧化物在结构陶瓷材料中的应用结构陶瓷是指晶粒间主要是离子键和共价键的一类陶瓷材料,具有良好的力学性、高温性和生物相容性等。
结构陶瓷在日常生活中应用很普遍,目前已向航空航天、能源环保和大中型集成电路等高技术领域拓展。
2.1 氧化物陶瓷氧化物陶瓷是指陶瓷中含有氧原子的陶瓷,或高于二氧化硅(SiO2:熔点1730℃)晶体熔点的各种简单氧化物形成的陶瓷。
氧化物陶瓷具有良好的物理化学性质,电导率大小与温度成反比。
氧化物陶瓷常作为耐热、耐磨损和耐腐蚀陶瓷,应用在化工、电子和航天等领域。
2.1.1 氧化铝陶瓷氧化铝陶瓷被广泛用于制造电路板、真空器件和半导体集成电路陶瓷封装管壳等。
为了获得性能良好的陶瓷,需要细化晶粒并使其以等轴晶分布,降低陶瓷的气孔率,提高致密度,最好能达到或接近理论密度。
氧化铝陶瓷的烧结温度高,烧制原料高纯氧化铝价格也高,限制了其在部分领域的推广及应用。
研究表明,稀土氧化物的加入可与基体氧化物形成液相或固溶体,降低烧结温度,改善其力学性能。
常用的稀土氧化物添加剂有Dy2O3、Y2O3、La2O3、CeO3、Sm2O3、Nd2O3、Tb4O7和Eu2O3等。
2.1.2 氧化锆陶瓷氧化锆(ZrO2)有单斜相、四方相和立方相三种晶型。
在一定温度下,氧化锆发生晶型转化时伴随体积膨胀和切应变,体积膨胀可能导致制品开裂。
氧化锆的熔点高,耐酸碱侵蚀能力强,化学稳定好,抗弯强度和断裂韧性很高。
三种晶型相互转化会伴随着体积的膨胀或收缩,导致性能不稳定,须采取稳定化措施。
氮化硼烧结温度氮化硼是一种具有高硬度、高熔点和良好热导性能的陶瓷材料,广泛应用于高温、高压、高速和腐蚀性环境下的工业领域。
氮化硼的烧结温度是影响其烧结致密度和性能的重要因素之一。
烧结是指将粉末颗粒在一定温度下进行加热处理,使其相互结合形成致密的固体材料的过程。
对于氮化硼而言,通过烧结可以提高其密度和力学性能,从而满足不同工业领域对材料性能的要求。
氮化硼的烧结温度通常在1800℃到2200℃之间,这是因为氮化硼具有高熔点和高热稳定性。
在烧结过程中,需要将氮化硼粉末加热到足够高的温度,使其颗粒表面发生熔融,从而形成致密的结合。
随着烧结温度的升高,氮化硼颗粒之间的结合力增强,烧结致密度也会提高。
然而,烧结温度过高也会引起氮化硼颗粒的过度生长和晶粒长大,从而降低材料的力学性能。
因此,在确定烧结温度时需要综合考虑材料的性能要求和烧结工艺的可行性。
为了提高氮化硼的烧结效果和降低烧结温度,人们也进行了一系列的改性研究。
例如,添加少量的助剂和控制烧结气氛可以促进氮化硼颗粒的结合,降低烧结温度。
此外,调整氮化硼粉末的粒度和分布也可以影响烧结效果。
在实际生产中,根据具体的工艺要求和材料性能需求,可以选择不同的烧结温度。
较高的烧结温度可以获得更高的致密度和力学性能,但也会增加生产成本和能源消耗。
因此,需要在实际应用中进行综合考虑,找到最佳的烧结温度。
氮化硼的烧结温度是影响其烧结效果和性能的重要因素。
通过选择合适的烧结温度和改进烧结工艺,可以获得高致密度和优良性能的氮化硼陶瓷材料,满足不同工业领域的需求。
希望随着科技的不断发展,氮化硼烧结技术能够得到进一步的改进和应用,为工业生产提供更好的材料选择。
b4c碳化硼的结构B4C碳化硼的结构碳化硼(B4C)是一种重要的陶瓷材料,具有优异的物理和化学性能。
它由硼和碳两种元素组成,形成了独特的结构。
下面将介绍B4C碳化硼的结构特点以及相关的性质和应用。
1. 结构特点B4C碳化硼的结构是由硼原子和碳原子交替排列而成的。
其晶体结构属于六方晶系,具有类似石墨的层状结构。
每个层中,硼原子和碳原子呈等距离排列,形成了硼碳链。
相邻层之间通过共面的碳原子形成键连接。
这种层状结构使得B4C具有较高的硬度和热导率。
2. 物理性质B4C碳化硼具有极高的硬度,接近于金刚石。
这使得它在磨削和切割工具中得到广泛应用。
此外,B4C还具有较低的密度和良好的热导率,使得它成为高性能散热材料的理想选择。
另外,B4C还具有较高的熔点和热稳定性,能够在高温环境下保持稳定的性能。
3. 化学性质B4C碳化硼具有较高的化学稳定性,能够在大多数非氧化性环境下长时间稳定存在。
它对酸、碱和大部分溶剂都具有很好的抗腐蚀性。
然而,在氧化性环境下,B4C会发生氧化反应,形成BO2和CO2等产物。
因此,在高温和氧化性环境中使用B4C时需要注意其氧化性。
4. 应用领域B4C碳化硼由于其优异的性能在多个领域得到广泛应用。
首先,由于其高硬度和磨削性能,B4C被广泛用于制作磨料和磨具,如砂轮和切削刀具等。
其次,B4C的高热导率使其成为散热材料的理想选择,广泛应用于电子器件、太阳能电池和高功率激光器等领域。
此外,B4C还可以用于核工业中的辐射防护材料和中子吸收材料等。
总结:B4C碳化硼的结构特点决定了其优异的物理和化学性能。
其层状结构使其具有高硬度、良好的热导率和化学稳定性。
这些特点使得B4C在磨削工具、散热材料和辐射防护材料等领域具有广泛的应用前景。
随着科学技术的不断发展,B4C碳化硼在更多领域的应用将会得到拓展,并为人类带来更多的福利。
球磨法制碳化硼工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!球磨法制备碳化硼工艺流程详解碳化硼,一种超硬材料,因其优异的耐磨性和高温稳定性,广泛应用于航空航天、军事、电子等领域。
(1)常压烧结:又称无压烧结。
属于在大气压条件下坯体自由烧结的过程。
在无外加动力下材料开始烧结,温度一般达到材料的熔点0.5-0.8即可。
在此温度下固相烧结能引起足够原子扩散,液相烧结可促使液相形成或由化学反应产生液相促进扩散和粘滞流动的发生。
常压烧结中准确制定烧成曲线至关重要。
合适的升温制度方能保证制品减少开裂与结构缺陷现象,提高成品率。
(2)热压烧结与热等静压烧结:热压烧结指在烧成过程中施加一定的压力(在10~40MPa),促使材料加速流动、重排与致密化。
采用热压烧结方法一般比常压烧结温度低100ºC左右,主要根据不同制品及有无液相生成而异。
热压烧结采用预成型或将粉料直接装在模内,工艺方法较简单。
该烧结法制品密度高,理论密度可达99%,制品性能优良。
不过此烧结法不易生产形状复杂制品,烧结生产规模较小,成本高。
作为陶瓷烧结手段,利用来自于表面能的表面应力而达到致密化的常压烧结法虽是一般常用的方法,但是,不依赖于表面应力,而在高温下借助于外压的方法,也是可以采用的。
这就是称为热压法的烧结方法。
广义来说,在加压下进行烧结的方法包括所有这类方法,超高压烧结和热等静压(HIP)烧结也属于这类方法。
不过,一般都作为在高温下施加单轴压力进行烧结的方法来理解。
其基本结构示于图1。
首先,制备粉体试料,置于模型中,在规定温度下加热、加压,获得烧结体。
由于下述原因而采用这种方法:(1)烧结温度降低;(2)烧结速度提高;(3)使难烧结物质达到致密化。
因为能够在颗粒成长或重新结晶不大可能进行的温度范围达到致密化,所以,可获得由微小晶粒构成的高强度、高密度烧结体。
图2所示,是热压对陶瓷致密化影响效果之一例。
将热压作为制造制品的手段而加以利用的实例有:氧化铝、铁氧体、碳化硼、氮化硼等工程陶瓷。
连续热压烧结生产效率高,但设备与模具费用较高,又不利于过高过厚制品的烧制。
热等静压烧结可克服上述弊缺,适合形状复杂制品生产。
碳化硼的研究进展刘珅楠;孙帆;谭章娜;袁青;周凯静;马剑华【摘要】碳化硼是高性能陶瓷材料中的一种重要原料,包含诸多的优良性能,除了高硬度、低密度等性能外,它还具备高化学稳定性和中子吸收截面及热电性能等特性,在国防军事设备、功能陶瓷、热电元件等诸多领域具有十分广泛的应用。
本文重点介绍了碳化硼的相关性质、研究进展和应用现状。
详细地介绍了碳化硼的制备方法,如电弧炉碳热还原法、自蔓延高温法、化学气相沉积法、溶胶-凝胶法等方法,并分析了它们的优缺点。
%Boron carbide is a kind of important raw materials of high performanceceramic material, including many excellent performance. In addition to highhardness and low density properties, it also has high chemical stability andneutron absorption cross section and thermoelectric properties, which are widely used in national defense and military equipment, functional ceramics and thermoelectric element fields. The current research progress and application of relevant properties, boron carbide were introduced. The preparation methods of boron carbide, such as carbon arc furnace reduction method, self-propagating high temperature method, chemical vapor deposition, sol-gel method, were mainly introduced, and their advantages and disadvantages were analyzed.【期刊名称】《广州化工》【年(卷),期】2015(000)005【总页数】3页(P21-23)【关键词】碳化硼;特种陶瓷;自蔓延高温法;化学气相沉积法;溶胶-凝胶法;前驱体【作者】刘珅楠;孙帆;谭章娜;袁青;周凯静;马剑华【作者单位】温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州325000;温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州 325000;温州大学化学与材料工程学院,浙江温州 325000【正文语种】中文【中图分类】TQ263.1材料是人类社会赖以生存和发展的物质基础。
碳化硼密度
碳化硼密度是2.52g/cm3。
碳化硼,别名黑钻石,是一种无机物,化学式为B₄C,通常为灰黑色微粉。
是已知最坚硬的三种材料之一(仅次于金刚石和立方相氮化硼),用于坦克车的装甲、避弹衣和很多工业应用品中。
它的莫氏硬度约为9.5。
它在19世纪作为金属硼化物研究的副产品被发现,直到1930年代才被科学地研究。
碳化硼可由电炉中用碳还原三氧化二硼制得。
碳化硼可以吸收大量的中子而不会形成任何放射性同位素,因此它在核能发电场里它是很理想的中子吸收剂,而中子吸收剂主要是控制核分裂的速率。
碳化硼在核反应炉场里主要是做成可控制的棒状,但有的时候会因为要增加表面积而把它制成粉末状。
因具有密度低、强度大、高温稳定性以及化学稳定性好的特点。
在耐磨材料、陶瓷增强相,尤其在轻质装甲,反应堆中子吸收剂等方面使用。
此外,和金刚石和立方氮化硼相比,碳化硼制造容易、成本低廉,因而使用更加广泛,在某些地方可以取代价格昂贵的金刚石、常见在磨削、研磨、钻孔等方面的应用。
第51卷第4期2022年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.51㊀No.4April,2022TiB 2、CNT 双相增韧碳化硼复合陶瓷及其性能研究许㊀森1,林文松1,张㊀虹2,石健强2,方宁象2(1.上海工程技术大学材料工程学院,上海㊀201620;2.浙江立泰复合材料股份有限公司,湖州㊀313219)摘要:在1500ħ的真空条件下,通过液相渗硅法(liquid silicon infiltration,LSI)制备了碳化硼/二硼化钛-碳纳米管(B 4C-TiB 2-CNT)陶瓷复合材料,对其成分㊁形貌㊁性能和增韧机理进行了分析表征和研究㊂结果表明:复合材料的主要组成相为B 12(C,Si,B)3㊁SiC 和Si㊂二硼化钛和碳纳米管显著提高了液相渗硅烧结碳化硼陶瓷的力学性能,在TiB 2和CNT 的添加量分别为10%和0.4%时,复合陶瓷的弯曲强度和断裂韧性达到了(390ʃ18)MPa 和(5.38ʃ0.38)MPa㊃m 1/2,分别比B 4C 陶瓷高了31%和53%㊂本文的研究从片状SiC 颗粒和CNT 的拔出㊁TiB 2的颗粒增韧以及裂纹的偏转等方面解释了B 4C-TiB 2-CNT 复合材料的增韧机理㊂关键词:碳化硼;液相渗硅法;双相增韧陶瓷;二硼化钛;碳纳米管;陶瓷复合材料中图分类号:TQ174㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2022)04-0716-07Preparation and Characterization of TiB 2and CNT Dual-Phases Toughened B 4C Ceramic CompositesXU Sen 1,LIN Wensong 1,ZHANG Hong 2,SHI Jianqiang 2,FANG Ningxiang 2(1.College of Materials Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;2.Zhejiang Light-Tough Composite Materials Co.,Ltd.,Huzhou 313219,China)Abstract :B 4C-TiB 2-CNT ceramic composites were fabricated by the liquid silicon infiltration (LSI)sintering at 1500ħin vacuum.The compositions,morphologies,mechanical properties and toughening mechanism of the fabricated composites were investigated.The results show that the main constituent phases of the composites are B 12(C,Si,B)3,SiC and Si.The additions of TiB 2and CNT significantly improve the mechanical properties of liquid-phase silicon sintered B 4C ceramics.The flexural strength and fracture toughness of the composite ceramics reach (390ʃ18)MPa and (5.38ʃ0.38)MPa㊃m 1/2with TiB 2and CNT additions of 10%and 0.4%respectively,which are 31%and 53%higher than pure B 4C caremics.The toughening mechanisms of B 4C-TiB 2-CNT ceramic composites are explained by the pullout of plate-like SiC particles and CNT,the particle toughening of TiB 2and the deflection of cracks.Key words :boron carbide;liquid silicon infiltration;dual-phases toughened ceramics;TiB 2;CNT;ceramic composite㊀㊀收稿日期:2021-12-03㊀㊀基金项目:装备预研项目(41422010903)㊀㊀作者简介:许㊀森(1997 ),男,河南省人,硕士研究生㊂E-mail:xs_sanmu@ ㊀㊀通信作者:林文松,博士,教授㊂E-mail:wslin@0㊀引㊀㊀言碳化硼(B 4C)因其优异的性能,如高硬度(~30GPa)㊁高熔点(2450ħ)㊁低密度(2.52g /cm 3)㊁高耐磨性㊁耐腐蚀性和中子吸收能力等,被广泛应用于弹道装甲㊁研磨材料㊁耐磨部件和核工业[1-6]㊂然而,由于B 4C 陶瓷的烧结性差和固有的低断裂韧性,其应用受到严重限制[7-8]㊂在B 4C 中加入TiB 2㊁CNT 等添加剂可以有效改善B 4C 基陶瓷材料的力学性能㊂在这些添加相中,TiB 2和CNT 是已知的最有效添加物㊂Xu 等[9]通过放电等离子烧结(spark plasma sintering,SPS)技术制备了具有高相对密度(98.4%)和晶粒生长有限的B 4C-TiB 2陶瓷㊂Zhu 等[10]在无压烧结下获得相对密度为98.9%㊀第4期许㊀森等:TiB2㊁CNT双相增韧碳化硼复合陶瓷及其性能研究717㊀的B4C-TiB2陶瓷复合材料㊂Wang等[11]通过热压法制备了不同TiB2含量的B4C-TiB2二元复合材料,并获得了良好的抗弯强度和断裂韧性㊂Yavas等[12]用CNT作为第二相,通过SPS的方式制备了具有高相对密度和断裂韧性的B4C-CNT陶瓷㊂Bahamirian等[13]通过SPS制备了具有优良力学性能的SiC-45%B4C-10%Ni-5% CNT(体积分数)复合材料㊂孙川等[14]以B2O3㊁Al㊁石墨和B4C粉体为原料,采用反应-热压烧结工艺在1800ħ/35MPa的烧结条件下制备了致密的碳化硼基复相陶瓷,复相陶瓷的密度㊁硬度㊁抗弯强度和断裂韧性分别为2.82g/cm3㊁41.5GPa㊁380MPa和3.9MPa㊃m1/2,其中断裂韧性比纯碳化硼陶瓷提高了85.7%㊂综上所述,热压烧结㊁放电等离子烧结和无压烧结被广泛用于制备B4C基体陶瓷[15-18]㊂然而,热压烧结和放电等离子烧结不仅成本高,而且只能生产形状简单的产品[19]㊂即使在2000ħ以上的温度条件下,也很难通过无压烧结生产出高密度的B4C陶瓷[15]㊂与这些昂贵且复杂的烧结技术相比,液相渗硅法(liquid silicon infiltration,LSI)由于周期短㊁成本低㊁加工温度低㊁产品孔隙率低等优点,多用于工业上大规模制备碳化硼陶瓷㊂但反应烧结仍有一定的局限性,其最主要的问题是烧结完成后的B4C陶瓷的断裂韧性和弯曲强度较差㊂因此,采用具有优良性能的第二增韧相对B4C陶瓷进行补强增韧,以获得高性能的B4C陶瓷复合材料是一种优异的解决方法㊂本研究将均匀分散的TiB2和CNT浆料逐步加入到球磨中的B4C浆料中,得到B4C-TiB2-CNT混合浆料㊂然后进行烘干造粒,得到了分散均匀㊁成型性好的B4C-TiB2-CNT粉末,通过LSI法得到B4C-TiB2-CNT复合陶瓷㊂随后,研究了增韧相和烧结技术对陶瓷性能的影响㊂该流程操作方便,适用于工业化生产㊂1㊀实㊀㊀验1.1㊀复合材料粉末制备为了研究不同增韧相对B4C陶瓷的增韧效果,本实验设计了四组不同的对照组㊂原始材料的具体配比如表1所示㊂其中,B4C粉末购于牡丹江金刚钻碳化硼有限公司(粒径~17μm,纯度ȡ99%),TiB2粉末购于丹东化工研究院有限公司(粒径~5μm,纯度ȡ99%),CNT分散液购于上海海逸科贸有限公司(长度约为3~5μm),酚醛树脂购于济南圣泉化学有限公司(固体含量25%(质量分数))㊂表1㊀B4C-TiB2-CNT陶瓷复合材料的配比Table1㊀Formula of B4C-TiB2-CNT ceramic compositesSample Mass fraction/%B4C TiB2CNT Phenolic resin Pure B4C900010BT8010010BC89.600.410BTC79.6100.410将掺入酚醛树脂的B4C粉末与去离子水以质量比1ʒ1配合,并加入与粉末质量相同的碳化硅磨球,在球磨罐中球磨8h,然后按照一定比例加入TiB2粉末和CNT分散液,继续球磨5h㊂将球磨好的浆料置入真空干燥箱中,在120ħ的温度下烘干24h,最后将烘干的物料球磨8h,得到均匀且蓬松的复合材料粉末㊂1.2㊀液相渗硅烧结在100MPa下将制备好的粉末压制成50mmˑ50mmˑ10mm的预制块,并在真空干燥箱中150ħ烘干24h以去除多余的水分㊂然后在1200ħ的氢气环境下加热5h进行热解㊂最后,将陶瓷素坯用硅粉包覆,在1500ħ的真空环境下烧结2h,得到致密的B4C-TiB2-CNT复合陶瓷材料㊂1.3㊀表㊀征采用阿基米德法测量复合材料的孔隙率和密度,通过反应公式计算求得复合材料的相对密度㊂对复合材料样品进行切割㊁研磨和抛光,以测试其力学性能和微观结构㊂采用三点弯曲试验(GB/T6569 2006)测试复合材料的弯曲强度,试样尺寸为3mmˑ4mmˑ40mm,试验跨距30mm,加载速率0.5mm/min㊂使用维氏硬度计测量其维氏硬度(GB/T16534 2009)和断裂韧性(JIS R1607 1995),试验条件为9.8N的载荷,加载时间为15s,取5个样品的平均结果㊂误差棒为5个结果的方差㊂718㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷通过X 射线衍射(XRD,Rigaku Ultima III,日本)分析B 4C-TiB 2-CNT 复合陶瓷材料的相组成㊂通过扫描电子显微镜(SEM,ZEISS Gemini 300,德国)观察复合材料的元素分布和表面形貌㊂2㊀结果与讨论2.1㊀力学性能分析样品的密度和相对密度如图1所示㊂从图中可以看出,纯碳化硼陶瓷样品的密度为2.63g /cm 3,相对密度为99.3%㊂随着TiB 2和CNT 的加入,样品的密度呈现上升的趋势,而相对密度则呈现出下降的趋势㊂其中,TiB 2相的加入会使得陶瓷样品的密度显著增大,样品BT 和BTC 的密度分别为2.71g /cm 3和2.72g /cm 3,这主要是由于添加相TiB 2的密度为4.52g /cm 3,远高于碳化硼陶瓷基体,导致样品的密度增大㊂样品BC 的密度为2.64g /cm 3,略高于纯碳化硼陶瓷㊂由于增韧相的存在,样品BT㊁BC 和BTC 的相对密度相比于纯碳化硼(99.3%)均略微下降,分别为98.7%,99.0%和99.2%㊂样品的气孔率和维氏硬度如图2所示,从图中可以看出,随着TiB 2和CNT 的加入,样品的气孔率有些许增加,维氏硬度降低㊂在LSI 过程中,硅在毛细管力的作用下熔渗到预制件内部的孔隙中,与游离碳和B 4C 基体发生反应,从而获得高致密的复合材料㊂由于TiB 2和CNT 的硬度低于B 4C,因此添加了TiB 2和CNT 的样品维氏硬度有所下降㊂值得注意的是,样品BTC 的孔隙率(0.73%ʃ0.03%)要低于样品BC(0.97%ʃ0.08%)和BT(1.30%ʃ0.06%),略高于纯碳化硼陶瓷(0.66%ʃ0.04%),这可能是由于CNT 的加入抑制了TiB 2的生长[20],促进了熔融硅的渗入,使得BTC 样品更加致密,从而使样品BTC 的维氏硬度((31.43ʃ0.94)GPa)相比于纯碳化硼陶瓷降低幅度不大㊂图1㊀复合材料的密度和相对密度Fig.1㊀Density and relative density of compositeceramics 图2㊀复合材料的气孔率和维氏硬度Fig.2㊀Porosity and Vickers hardness of composite ceramics 复合材料样品的弯曲强度和断裂韧性如图3所示,与纯碳化硼(弯曲强度为(297ʃ24)MPa,断裂韧性为(3.52ʃ0.32)MPa㊃m 1/2)相比,样品的弯曲强度和断裂韧性随着TiB 2和CNT 的加入而增大㊂样品BT 的弯曲强度和断裂韧性分别为(362ʃ22)MPa 和(4.06ʃ0.37)MPa㊃m 1/2,样品BC 的弯曲强度和断裂韧性分别为(315ʃ16)MPa 和(4.79ʃ0.45)MPa㊃m 1/2,样品BTC 具有最高的弯曲强度和断裂韧性,分别是(390ʃ18)MPa 和(5.38ʃ0.38)MPa㊃m 1/2,比纯碳化硼的性能高出了31%和53%㊂这主要是由于TiB 2和CNT 两相的叠加作用,使得BTC 陶瓷获得了更加优异的力学性能㊂2.2㊀相分析复合材料的X 射线衍射分析结果如图4所示㊂从图4可以看出,反应烧结生成了B 12(C,Si,B)3和SiC两个新相㊂同时,部分游离碳也与液相Si 发生反应生成了SiC㊂烧结中的反应如下[21]:C(s)+Si(l)ңSiC(s)(1)3B 4C(s)+Si(l)ңB 12(C,Si,B)3(s)+SiC(s)(2)式(1)的ΔH =-66.88KJ /mol,是一个极端放热反应,会在极短的时间内完成㊂短时间内释放的高能量导致体积膨胀,使材料致密,随后在高温下,残留的熔融硅会与B 4C 发生反应生成β-SiC 和B /C 比大于4的㊀第4期许㊀森等:TiB 2㊁CNT 双相增韧碳化硼复合陶瓷及其性能研究719㊀新相[22],上述结果可以用式(2)来表示㊂BT 和BTC 的XRD 图谱中对应TiB 2结构的波峰表明,TiB 2在渗硅烧结过程中具有足够的热稳定[19]㊂由于CNT 的添加量较少且易与无定形碳的波峰重合,因此很难通过XRD 识别出CNT 对应的波峰㊂整个XRD 图谱中并未检测到对应于B 4C 和二元B-Si 的衍射峰,表明整个B 4C 相已经转变为B 12(C,Si,B)3㊂与此同时,在纯碳化硼和样品BT 中均发现了部分非晶峰包,尤其是样品BT 中最明显,这主要是烧结后样品剩余的少量无定形碳所导致的,TiB 2颗粒阻碍了熔融硅的渗入,这与样品BT 在2θ=27.89ʎ处Si 的衍射峰明显降低相对应,最终导致样品内部剩余无定形碳含量增大,而在样品BTC 和BC 中并未发现明显的峰包,这可能是CNT 的存在促进了烧结过程中熔融硅的渗入,使得样品中残存的无定形碳的含量降低㊂图3㊀复合材料的弯曲强度和断裂韧性Fig.3㊀Flexural strength and fracture toughness of compositeceramics 图4㊀复合材料的XRD 图谱Fig.4㊀XRD patterns of composite ceramics 图5为BTC 样品断口的元素能谱分布图,图5(a)为断口处的SEM 照片,图5(b)和5(c)为对应的元素能谱分布总图,小图Si㊁Ti㊁C 和B 分别是Si㊁Ti㊁C㊁B 各元素的分布图㊂从图5(a)和5(b)中可以看出,BTC 样品中仅含有Si㊁Ti㊁C㊁B 四种元素,这表明在烧结过程中并未引入其他杂质㊂从各元素的分布图可以看出,各元素在断口处分布均匀,其中,Ti 元素主要是以细小颗粒状分布在断口表面,由于TiB 2的稳定性,可推测TiB 2主要是以颗粒的形式分布在BTC 样品中㊂从图5(c)中各元素的原子百分比可以看出,除添加的TiB 2㊁CNT 以及反应生成的SiC 外,剩余B /C 元素的比例仍然远大于4,这表明烧结产物中生成了新相,根据XRD 图谱可以看出,该新相为B 12(C,Si,B)3㊂根据反应式(1)㊁(2)和元素能谱计算可得,B 12(C,Si,B)3在样品BTC 中的体积分数为54%,SiC 相的体积分数为21%,残余Si 相的体积分数为17%,增韧相TiB 2和CNT 的体积分数为8%㊂2.3㊀复合材料增韧机理分析图6是BTC 样品断口形貌的SEM 照片,由图6(a)可以看出,当裂纹经过B 12(C,Si,B)3和SiC 相时,部分裂纹会沿着两相的交界处发生偏折,而另一部分则会进入到B 12(C,Si,B)3和SiC 两相的内部,如图6(b)白色箭头所示㊂因此,样品BTC 的断裂模式是穿晶断裂和沿晶断裂并存的混合模式㊂混合断裂模式导致了裂纹扩展过程中的高断裂能量耗散[23],最终复合材料的断裂韧性得到进一步提高㊂同时,从图6(b)和6(c)中可以看到,SiC 相和TiB 2相表面产生了明显的阶梯状形貌的裂纹簇,据陶瓷断裂力学[24],如果断裂扩展途径能够消耗裂纹尖端应力场的能量,那么裂纹扩展的驱动力将减少,从而提高韧性[8]㊂阶梯状断裂的本质是多个微裂纹的连续偏移,在偏移过程中,微裂纹的扩展路径变长,导致裂纹扩展所需的能量增加㊂因此,阶梯式断裂可以有效地提高断裂韧性,有许多研究也报告了相似的情况[25-26]㊂与此同时,从图6(d)中可以看出,样品的断口表面存在一些片状的SiC 颗粒㊂在LSI 过程中,B 4C 相的边界区域在高温下裂解为B 和C㊂B 和部分C 与熔融Si 发生反应生成B 12(C,Si,B)3和SiC 相,而另一部分C 则会进入熔融的Si 中,与Si 反应生成片状的SiC 颗粒㊂因此大部分片状SiC 颗粒存在于B 12(C,Si,B)3和熔融Si 相的交界处㊂当微裂纹经过两相交界处时,片状SiC 颗粒会发生拉拔和断裂,增加裂纹扩展所需的能量,从而提高样品的断裂韧性㊂720㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷图5㊀(a)BTC样品的断口SEM照片;(b),(c)BTC样品断口的元素能谱分布图Fig.5㊀(a)SEM image of sample BTC;(b),(c)fractrue SEM-EDS elemental energy spectra of sample BTC图6㊀BTC样品断口形貌的SEM照片Fig.6㊀SEM images of fracture morphology of sample BTC㊀第4期许㊀森等:TiB2㊁CNT双相增韧碳化硼复合陶瓷及其性能研究721㊀㊀㊀图7显示了TiB2颗粒和CNT在BTC样品断口表面的SEM照片㊂当微裂纹扩展经过CNT区域时,部分CNT在裂纹扩展途中产生桥接(见图7(a)),阻碍裂纹的扩展途径,另一部分CNT在断口表面产生拉拔(见图7(b))㊂最终,CNT消耗了裂纹扩展所需要的能量,迫使裂纹扩展停止㊂由于CNT的桥接和拔出,在图7中能清楚地看到CNT的根部㊂同时,由于TiB2的热稳定性,TiB2主要以颗粒的形式存在于样品BTC中㊂从图7中可以看出,TiB2颗粒均匀地分布在断口表面㊂当微裂纹经过TiB2颗粒时,TiB2颗粒阻碍了微裂纹扩展,迫使裂纹传播途径产生偏转,消耗裂纹扩展的能量,从而提高了样品的断裂韧性㊂与此同时,TiB2颗粒在样品断裂时会产生拉出和断裂,从图7中能清晰地看到产生拉拔的TiB2颗粒,这种行为同样也会消耗裂纹扩展的能量,迫使裂纹扩展停止㊂图7㊀CNT和TiB2在BTC样品断口表面的SEM照片Fig.7㊀SEM images of fracture morphology of CNT and TiB2in sample BTC3㊀结㊀㊀论通过液相渗硅法在1500ħ真空条件成功制备了TiB2和CNT多相增韧的B4C-TiB2-CNT陶瓷复合材料㊂复合材料的主要组成相是B12(C,Si,B)3㊁SiC和Si㊂TiB2和CNT增韧相提高了材料的力学性能,B4C-TiB2-CNT陶瓷的断裂韧性为(5.38ʃ0.38)MPa㊃m1/2,弯曲强度为(390ʃ18)MPa,分别比纯B4C陶瓷的性能高出53%和31%㊂B4C-TiB2-CNT陶瓷复合的主要增韧机理是微裂纹的偏折㊁TiB2颗粒的拔出和CNT的桥接与拔出㊂参考文献[1]㊀THÉVENOT F.Boron carbide:a comprehensive review[J].Journal of the European Ceramic Society,1990,6(4):205-225.[2]㊀JI W,REHMAN S S,WANG W,et al.Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densificationmechanism[J].Scientific Reports,2015:15827.[3]㊀CHEN M W,MCCAULEY J W,LASALVIA J C,et al.Microstructural characterization of commercial hot-pressed boron carbide ceramics[J].Journal of the American Ceramic Society,2005,88(7):1935-1942.[4]㊀EMIN D,ASELAGE T L.A proposed boron-carbide-based solid-state neutron detector[J].Journal of Applied Physics,2004,97(1):013529.[5]㊀CELLI M,GRAZZI F,ZOPPI M.A new ceramic material for shielding pulsed neutron scattering instruments[J].Nuclear Instruments andMethods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2006,565(2):861-863. [6]㊀魏红康,赵㊀林,汪长安,等.CNTs对B4C放电等离子烧结行为和力学性能的影响[J].人工晶体学报,2014,43(12):3140-3144.WEI H K,ZHAO L,WANG C G,et al.Influence of CNTs on the sintering behavior and mechanical properties of boron carbide by SPS process[J].Journal of Synthetic Crystals,2014,43(12):3140-3144(in Chinese).[7]㊀LEVIN L,FRAGE N,DARIEL M P.A novel approach for the preparation of B4C-based cermets[J].International Journal of Refractory Metals&Hard Materials,2000,18(2-3):131-135.[8]㊀WANG S,LI L M,YAN S,et al.Preparing B4C-SiC-TiB2composites via reactive pressureless sintering with B4C and TiSi2as raw materials[J].Journal of Materials Research and Technology,2020,9(4):8685-8696.[9]㊀XU C M,CAI Y B,FLODSTRÖM K,et al.Spark plasma sintering of B4C ceramics:the effects of milling medium and TiB2addition[J].International Journal of Refractory Metals and Hard Materials,2012,30(1):139-144.[10]㊀ZHU Y,CHENG H W,WANG Y W,et al.Effects of carbon and silicon on microstructure and mechanical properties of pressureless sinteredB4C/TiB2composites[J].Journal of Alloys and Compounds,2019,772:537-545.722㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第51卷[11]㊀WANG A Y,HE Q L,GUO W C,et al.Microstructure and properties of hot pressed TiB2and SiC reinforced B4C-based composites[J].Materials Today Communications,2021,26:102082.[12]㊀YAVAS B,SAHIN F,YUCEL O,et al.Effect of particle size,heating rate and CNT addition on densification,microstructure and mechanicalproperties of B4C ceramics[J].Ceramics International,2015,41(7):8936-8944.[13]㊀BAHAMIRIAN M,ALIPOUR F,GOLENJI R B,et al.Role of carbon nanotubes on mechanical properties of SiC-B4C-Ni hybrid compositesfabricated by reactive spark plasma sintering[J].Ceramics International,2021,47(18):25221-25228.[14]㊀孙㊀川,万春磊,潘㊀伟,等.反应烧结B4C/Al2O3复合陶瓷的装甲防护性能研究[J].无机材料学报,2018,33(5):545-549.SUN C,WAN C L,PAN W,et al.Ballistic performance of B4C/Al2O3composite ceramic prepared by reaction sintering[J].Journal of Inorganic Materials,2018,33(5):545-549(in Chinese).[15]㊀LEE H,SPEYER R F,HACKENBERGER W S.Sintering of boron carbide heat-treated with hydrogen[J].Journal of the American CeramicSociety,2002,85(8):2131-2133.[16]㊀RYBAL'CHENKO N D,MIRONOVA A G,PODTYKAN V P,et al.Effect of conditions of hot pressing on the structure and mechanicalproperties of boron carbide[J].Soviet Powder Metallurgy and Metal Ceramics,1983,22(8):630-633.[17]㊀DENG J X,ZHOU J,FENG Y H,et al.Microstructure and mechanical properties of hot-pressed B4C/(W,Ti)C ceramic composites[J].Ceramics International,2002,28(4):425-430.[18]㊀SHEN Z J,NYGREN M.Microstructural prototyping of ceramics by kinetic engineering:applications of spark plasma sintering[J].ChemicalRecord(New York,N Y),2005,5(3):173-184.[19]㊀CAO X Y,MA M M,MA X K,et al.Microstructures and mechanical properties of in situ SiC-TiB2ceramic composites fabricated by reactivemelt infiltration[J].Journal of Alloys and Compounds,2020,840:155734.[20]㊀豆鹏飞.碳纳米管/陶瓷复合材料的应用研究现状[J].陶瓷,2017(1):13-17.DOU P F.Research status of application of carbon nanotubes/ceramic composites[J].Ceramics,2017(1):13-17(in Chinese). [21]㊀HAYUN S,FRAGE N,DARIEL M P.The morphology of ceramic phases in B x C-SiC-Si infiltrated composites[J].Journal of Solid StateChemistry,2006,179(9):2875-2879.[22]㊀TANEJA K,KUMAR M,MAHAJAN S B.Reaction mechanism for pressureless sintering silicon carbide boron carbide composite[J].MaterialsToday:Proceedings,2021,39:1921-1924.[23]㊀LIN J,YANG Y H,ZHANG H A,et al.Effects of CNTs content on the microstructure and mechanical properties of spark plasma sintered TiB2-SiC ceramics[J].Ceramics International,2017,43(1):1284-1289.[24]㊀BASU B,BALANI K.Mechanical behavior of ceramics[M]//Advanced Structural Ceramics.The American Ceramic Society,2011:34-64.[25]㊀LI Q L,SONG P,LÜK Y,et al.Fracture behaviour of ceramic-metallic glass gradient transition coating[J].Ceramics International,2019,45(5):5566-5576.[26]㊀LI A J,ZHEN Y H,YIN Q,et al.Microstructure and properties of(SiC,TiB2)/B4C composites by reaction hot pressing[J].CeramicsInternational,2006,32(8):849-856.。
碳化硼维氏硬度
碳化硼是一种非常硬的陶瓷材料,其维氏硬度(Vickers Hardness)通常在3000至4000之间。
这使得碳化硼成为许多高温、高压和耐磨应用中的理想选择,例如制造切削工具、轴承和防弹材料等。
需要注意的是,虽然碳化硼非常坚固,但它也很脆弱,在受到冲击或振动时容易发生断裂。
因此,在使用碳化硼制品时需要特别小心谨慎。
此外,碳化硼的维氏硬度也取决于其纯度和制备工艺等因素。
高纯度、精密加工的碳化硼通常具有更高的硬度值,可以达到4000以上。
而在一些特殊情况下,如使用钻石压头进行测试时,碳化硼的维氏硬度甚至可以超过5000。
需要指出的是,尽管碳化硼非常坚固,并且在许多方面都表现出色,在某些应用中仍存在局限性。
例如,在高温环境下,碳化硼可能会发生脆裂或失去稳定性;同时,在一些强酸、强碱和氧化剂等腐蚀性物质的作用下,碳化硼也可能发生破损或变形。
因此,在选择材料时需要考虑到具体应用环境和要求,并综合评估各种因素后做出决策。
总之,碳化硼是一种非常坚固且有广泛应用前景的陶瓷材料,其维氏硬度在3000至4000之间。
它在切削工具、轴承、防弹材料等领
域都有着重要的应用价值,并为现代科学技术的发展做出了重要贡献。
随着制备工艺和技术的不断提高,碳化硼的性能也将得到进一步优化和拓展,为更多领域带来新的应用前景。