初一奥数题(附问题详解
- 格式:doc
- 大小:40.50 KB
- 文档页数:9
【导语】奥数能够有效地培养学⽣⽤数学观点看待和处理实际问题的能⼒,提⾼学⽣⽤数学语⾔和模型解决实际问题的意识和能⼒,提⾼学⽣揭⽰实际问题中隐含的数学概念及其关系的能⼒等等。
使学⽣能够在创造性思维过程中,看到数学的实际作⽤,感受到数学的魅⼒,增强学⽣对数学美的感受⼒。
以下是为您整理的相关资料,希望对您有⽤。
七年级奥数题1: 把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少? 解: ⾸先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除 依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中⼗位上的数字都出现了10次,那么⼗位上的数字之和就是10+20+30+……+90=450它有能被9整除 同样的道理,100~900百位上的数字之和为4500同样被9整除 也就是说1~999这些连续的⾃然数的各个位上的数字之和可以被9整除; 同样的道理:1000~1999这些连续的⾃然数中百位、⼗位、个位上的数字之和可以被9整除(这⾥千位上的“1”还没考虑,同时这⾥我们少200020012002200320042005 从1000~1999千位上⼀共999个“1”的和是999,也能整除; 200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
七年级奥数题2: A和B是⼩于100的两个⾮零的不同⾃然数。
求A+B分之A-B的最⼩值... 解: (A-B)/(A+B)=(A+B-2B)/(A+B)=1-2*B/(A+B) 前⾯的1不会变了,只需求后⾯的最⼩值,此时(A-B)/(A+B)。
初一奥数题(附答案)1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y +4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB 的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD 与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n 是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.已知甲乙两种4千米6千米1千克1~0.54参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11.所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,9(150-y)+=148.5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×+2(x+1)(1+30%)=[2x+3(x+1)],即2×+2×+2×=5x+,即=2×,所以x=(元).若y为去年每支牙膏,则y=+1=(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以(25+x)=,解之得x=50分钟.于是左边=(25+50)=30(千米),右边=×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x?40%+y?10%+z?50%=,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。
初一数学奥数竞赛题近年来,数学奥数竞赛在中小学生中越来越受欢迎。
这些竞赛要求学生具备扎实的数学基础知识和灵活的解题能力,提高他们的逻辑思维和问题解决能力。
今天,我们来看几个适合初一学生的数学奥数竞赛题。
题目1:小美在她家门口卖冰淇淋,一支冰淇淋卖5元,两支冰淇淋卖9元。
小美今天一共卖出了30支冰淇淋,她一共赚了多少钱?解析:我们可以设冰淇淋的单价为x元,因为一支冰淇淋卖5元,所以我们可以得到一个方程:5 = x。
两支冰淇淋卖9元,所以我们可以得到另一个方程:9 = 2x。
解这个方程组,我们可以得到x = 4.5。
小美一共卖出30支冰淇淋,所以她赚的总钱数为30 * 4.5 = 135元。
题目2:小明的爸爸今年40岁,小明今年12岁。
假设小明的爸爸每年的年龄都是相同的增长,他几年后的年龄和小明的年龄之和是100岁。
请问那时小明的年龄是多少岁?解析:设小明的爸爸从现在开始每年的年龄增长为x岁。
那么,小明几年后的年龄就是12 + x岁,小明的爸爸几年后的年龄就是40 + x岁。
根据题意,小明几年后的年龄和小明的爸爸几年后的年龄之和是100岁,所以我们可以得到一个方程:(12 + x)+(40 + x)= 100。
解这个方程,我们可以得到x = 18。
所以,几年后小明的年龄就是12 + 18 = 30岁。
题目3:一个长方形花坛周长是20米,其中一条边的长度是4米。
我们要在长方形花坛的周围建一道宽度相等的砖墙,这道砖墙的长度是花坛周长的一半。
问这道砖墙的长度是多少米?解析:设砖墙的宽度为x米,花坛的长度为L米,宽度为W米。
花坛周长是20米,所以我们可以得到一个方程:2L + 2W = 20。
其中一条边的长度是4米,所以我们可以得到另一个方程:2L + W = 4。
将两个方程联立,我们可以解得L = 4,W = 6。
砖墙的长度是花坛周长的一半,所以砖墙的长度是20 / 2 = 10米。
通过解这些数学奥数竞赛题,可以让初一学生锻炼他们的数学思维和解题能力。
初一奥数应用题及答案题目一:小明和小红在公园里玩捉迷藏,小明先藏好,小红开始寻找。
小红从起点出发,每分钟走50米,小明每分钟走40米。
如果小明藏好之后,小红开始寻找,经过5分钟后,小红找到了小明。
请问小明藏的地方离起点有多远?答案:首先,我们需要计算小红在5分钟内走了多远。
小红每分钟走50米,所以5分钟内走了 \( 50 \times 5 = 250 \) 米。
接下来,我们计算小明在5分钟内走了多远。
小明每分钟走40米,所以5分钟内走了 \( 40 \times 5 = 200 \) 米。
由于小红找到了小明,这意味着小明藏的地方距离起点的距离是小红和小明走过的距离之差。
因此,小明藏的地方离起点的距离是 \( 250 - 200 = 50 \) 米。
题目二:一个水池装有进出水管道。
如果只开进水管,需要4小时将水池注满;如果只开排水管,需要6小时将满水池排空。
现在同时打开进水管和排水管,问需要多少时间才能将水池注满?答案:设水池的容量为 \( V \) 升。
进水管每小时的进水量为\( \frac{V}{4} \) 升,排水管每小时的排水量为 \( \frac{V}{6} \) 升。
当同时打开进水管和排水管时,每小时的净进水量为 \( \frac{V}{4} - \frac{V}{6} \) 升。
将两个分数通分,得到 \( \frac{3V -2V}{12} = \frac{V}{12} \) 升。
这意味着每小时水池的净增加量是 \( \frac{V}{12} \) 升。
要将水池注满,需要 \( \frac{V}{\frac{V}{12}} = 12 \) 小时。
题目三:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米。
如果将这个长方体的表面涂上油漆,求涂油漆的总面积。
答案:长方体的表面积由六个面组成,每对面的面积相同。
长方体的长、宽、高分别是 \( l = 10 \) 厘米,\( w = 8 \) 厘米,和 \( h = 6 \)厘米。
初一奥数题(附答案)1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u =3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DO B的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且B D∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价1 0%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?甲:105 乙:45 32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?牙刷:1.4 牙膏:2.433.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;0.9+ 0.25x(2)求新合金中含第二种合金的重量范围;最大:1.035 最小:0.905(3)求新合金中含锰的重量范围.0.01~0.54参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+ m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖A D,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)= 75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。
初一奥数题(附答案)1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足:x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DO B的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=7 0°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BE F.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且B D∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价1 0%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?甲:105 乙:45 32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?牙刷:1.4 牙膏:2.433.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;0.9+ 0.25x(2)求新合金中含第二种合金的重量范围;最大:1.035 最小:0.905(3)求新合金中含锰的重量范围.0.01~0.54参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x +m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖A D,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.。
初一的奥数题及答案初一奥数题通常涉及一些基础的数学概念和技巧,比如整数的性质、简单的代数运算、几何图形的面积计算等。
以下是一些适合初一学生的奥数题目及其答案:题目1:小明有5个苹果,他想平均分给3个朋友,每个朋友能分到多少个苹果?答案:小明可以将5个苹果分成3份,但是5不能被3整除,所以他可以将苹果切成3份,每份1个苹果,剩下2个苹果。
这样,每个朋友可以分到1个完整的苹果,小明自己留下2个。
题目2:一个长方形的长是宽的两倍,如果它的周长是24厘米,求长方形的长和宽。
答案:设长方形的宽为x厘米,那么长就是2x厘米。
根据周长的公式,2(长+宽) = 24,即2(2x + x) = 24。
解这个方程,我们得到6x = 24,所以x = 4。
因此,长方形的宽是4厘米,长是2倍于宽,即8厘米。
题目3:一个数的3倍加上5等于这个数的5倍减去15,求这个数。
答案:设这个数为x。
根据题意,我们有3x + 5 = 5x - 15。
移项得到2x = 20,所以x = 10。
题目4:一个圆的面积是28.26平方厘米,求这个圆的半径。
答案:圆的面积公式是A = πr^2。
将面积28.26平方厘米代入公式,得到28.26 = πr^2。
解这个方程,我们得到r^2 = 28.26 / π。
取π的近似值3.14,得到r^2 ≈ 9。
所以,半径r ≈ 3厘米。
题目5:一个等腰三角形的底边长为6厘米,周长为18厘米,求这个等腰三角形的腰长。
答案:设等腰三角形的腰长为x厘米。
因为等腰三角形的两腰相等,所以周长等于底边加上两腰的长度,即6 + 2x = 18。
解这个方程,我们得到2x = 12,所以x = 6。
因此,等腰三角形的腰长为6厘米。
这些题目和答案可以帮助初一学生锻炼数学思维和解题技巧。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯初一奥数题(附答案)1.设 a,b,c 为实数,且| a|+a=0,| ab|=ab,|c|-c=0,求代数式|b| -| a+b|-|c-b|+| a-c|的值.2.若 m< 0,n> 0,| m|<| n|,且| x+m|+| x-n| =m+n,求 x 的取值范围.3.设 (3x-1) 7=a7x7+a6x6++a1x+ a0,试求 a0+a2+a4+a6的值.4.解方程 2| x+1|+|x-3 |=6.5.解不等式|| x+ 3|-|x-1 ||> 2.6. x,y,z 均是非负实数,且知足:x+3y+2z=3,3x+3y+z=4,求 u =3x-2y + 4z 的最大值与最小值.7.求 x4-2x3 +x2+2x-1 除以 x2+x+ 1 的商式和余式.12.如图 1-88 所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才能使行程最短?13.如图 1-89 所示. AOB 是一条直线, OC,OE 分别是∠ AOD 和∠ D OB 的均分线,∠ COD=55°.求∠ DOE 的补角.14.如图 1- 90 所示.BE 均分∠ ABC ,∠ CBF=∠ CFB=55°,∠ EDF=70°.求证: BC‖AE .15.如图 1-91 所示.在△ ABC 中, EF⊥ AB ,CD ⊥AB ,∠ CDG= ∠BE F.求证:∠ AGD= ∠ ACB .16.如图 1-92 所示.在△ ABC 中,∠ B= ∠C, BD ⊥ AC 于 D.求17.如图 1-93 所示.在△ ABC 中, E 为 AC 的中点, D 在 BC 上,且 B D∶DC=1∶2,AD 与 BE 交于 F.求△ BDF 与四边形 FDCE 的面积之比.18.如图 1-94 所示.四边形ABCD 两组对边延伸订交于K 及 L ,对角线 AC ‖KL ,BD 延伸线交 KL 于 F.求证: KF=FL .19.随意改变某三位数数码次序所得之数与原数之和可否为999?说明理由.20.设有一张 8 行、8 列的方格纸,随意把此中32 个方格涂上黑色,剩下的 32 个方格涂上白色.下边对涂了色的方格纸实行“操作”,每次操作是把随意横行或许竖列上的各个方格同时改变颜色.问可否最后获取恰有一个黑色方格的方格纸?21.假如正整数p 和 p+2 都是大于 3 的素数,求证: 6| (p+1).22.设 n 是知足以下条件的最小正整数,它们是75 的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有 3 条腿,每把椅子有 4 条腿,当它们全被人坐上后,共有 43 条腿 (包含每一个人的两条腿 ),问房间里有几个人?24.求不定方程49x-56y+14z=35 的整数解.25.男、女各8 人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不考虑先后序次,只考虑男女如何结成舞伴.问各有多少种不一样状况?26.由 1,2,3,4,5 这 5 个数字构成的没有重复数字的五位数中,有多少个大于 34152?27.甲火车长 92 米,乙火车长84 米,若相向而行,相遇后经过 1.5 秒 (s)两车错过,若同向而行相遇后经 6 秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了 4 天后,由甲队独自达成剩下的,又用 2 天达成.若甲独自达成比乙独自达成所有任务快 3 天.求甲乙独自完成各用多少天?29.一船向相距240 海里的某港出发,抵达目的地前48 海里处,速度每小时减少 10 海里,抵达后所用的所有时间与原速度每小时减少 4 海里航行全程所用的时间相等,求本来的速度.30.某工厂甲乙两个车间,昨年计划达成税利750 万元,结果甲车间超额15%达成计划,乙车间超额 10%达成计划,两车间共同达成税利 845 万元,求昨年这两个车间分别达成税利多少万元?甲: 460 万乙:290万31.已知甲乙两种商品的原价之和为150 元.因市场变化,甲商品降价 1 0%,乙商品抬价20%,调价后甲乙两种商品的单价之和比原单价之和降低了 1%,求甲乙两种商品原单价各是多少?甲: 105 乙: 4532.小红昨年暑期在商铺买了 2 把小孩牙刷和 3 支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多 1 元,今年暑期她又带相同的钱去该商店买相同的牙刷和牙膏,因为今年的牙刷每把涨到1.68 元,牙膏每支涨价30%,小红只能买 2 把牙刷和 2 支牙膏,结果找回 4 角钱.试问昨年暑期每把牙刷多少钱?每支牙膏多少钱?牙刷:牙膏:33.某商场假如将进货单价为8 元的商品,按每件12 元卖出,每日可售出 400 件,据经验,若每件少卖 1 元,则每日可多卖出 200 件,问每件应减价多少元才可获取最好的效益?11元34.从 A 镇到 B 镇的距离是28 千米,今有甲骑自行车用0. 4 千米 /分钟的速度,从 A 镇出发驶向 B 镇, 25 分钟此后,乙骑自行车,用0.6 千米/分钟的速度追甲,试问多少分钟后追上甲?50 分钟后35.现有三种合金:第一种含铜60%,含锰 40%;第二种含锰10%,含镍 90%;第三种含铜 20%,含锰 50%,含镍 30%.现各取适合重量的这三种合金,构成一块含镍 45%的新合金,重量为 1 千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;最大:最小:(3)求新合金中含锰的重量范围.0.01~0 .54参照答案2.因为| a| =-a,所以a≤0,又因为| ab| =ab,所以 b≤0,因为| c| =c,所以 c≥0.所以a+ b≤0,c-b≥0, a-c≤0.所以原式 =-b+ (a+ b)-(c-b)-(a-c)=b .3.因为 m< 0,n> 0,所以| m| =-m ,| n| =n.所以| m|<| n|可变成m+ n> 0.当 x+m≥0时,| x+m |=x + m;当 x- n≤0时,| x-n | =n-x .故当 -m≤ x≤n时,|x+ m|+| x-n | =x + m-x + n=m + n.4.分别令x=1 , x=-1 ,代入已知等式中,得a0+a2+ a4+ a6=-8128 .10.由已知可解出y 和 z因为 y, z 为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3 ,余式为2x-412.小柱的路线是由三条线段构成的折线(如图 1- 97 所示 ).我们用“对称”的方法将小柱的这条折线的路线转变成两点之间的一段“连线”(它是线段).设甲村对于北山坡(将山坡当作一条直线)的对称点是甲′;乙村对于南山坡的对称点是乙′,连结甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是 A , B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)明显,路线甲→A→B→乙的长度恰巧等于线段甲′乙′的长度.而从甲村到乙村的其余任何路线,利用上边的对称方法,都能够化成一条连结甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的行程最短.13.如图1- 98 所示.因为OC,OE 分别是∠ AOD ,∠ DOB 的角均分线,又∠ AOD+∠ DOB=∠ AOB=180°,因为∠ COD=55° ,所以∠ DOE=90° -55°=35°.所以,∠ DOE 的补角为180°-35 °= 145°.14.如图1- 99 所示.因为BE 均分∠ ABC ,所以∠CBF= ∠ ABF ,又因为∠ CBF=∠ CFB,所以∠ ABF=∠ CFB.进而AB ‖ CD( 内错角相等,两直线平行).由∠ CBF=55°及 BE 均分∠ ABC ,所以∠ ABC=2× 55°=110°.①由上证知AB ‖ CD,所以∠ EDF=∠ A=70°,②由①,②知BC ‖ AE( 同侧内角互补,两直线平行).15.如图1-100 所示. EF⊥ AB , CD ⊥ AB ,所以∠ EFB=∠ CDB=90°,所以 EF‖ CD( 同位角相等,两直线平行).所以∠BEF=∠ BCD(两直线平行,同位角相等).①又由已知∠ CDG= ∠BEF .② 由①,②∠ BCD=∠ CDG.所以BC ‖ DG( 内错角相等,两直线平行).所以∠ AGD=∠ ACB(两直线平行,同位角相等).16.在△ BCD 中,∠DBC +∠ C=90°(因为∠ BDC=90° ),① 又在△ ABC 中,∠ B= ∠ C,所以∠A +∠ B+∠ C=∠ A + 2∠ C=180°,所以由①,②17.如图 1- 101,设 DC 的中点为G,连结 GE .在△ ADC 中, G,E 分别是 CD ,CA 的中点.所以,GE ‖ A D ,即在△ BEG 中, DF ‖ GE.进而 F 是 BE 中点.连结FG .所以又S△ EFD = S△ BFG-SEFDG=4S △ BFD-SEFDG ,所以S△ EFGD=3S △ BFD .设 S△ BFD=x ,则 SEFDG=3x .又在△ BCE 中, G 是 BC 边上的三均分点,所以S△ CEG=S △ BCEE ,进而所以SEFDC=3x + 2x= 5x,所以S△ BFD ∶ SEFDC=1 ∶ 5.18.如图1- 102 所示.由已知AC ‖KL ,所以 S△ ACK=S △ ACL ,所以即 KF=FL .+ b1=9 , a+a1=9 ,于是 a+b+c + a1+ b1+c1=9 + 9+9,即 2(a 十 b+ c)=27 ,矛盾!20.答案能否认的.设横行或竖列上包含k 个黑色方格及8-k 个白色方格,此中0≤ k≤8.当改变方格的颜色时,获取 8-k 个黑色方格及k个白色方格.所以,操作一次后,黑色方格的数量“增添了”(8-k)-k=8-2k个,即增添了一个偶数.于是不论如何操作,方格纸上黑色方格数量的奇偶性不变.所以,从原有的32 个黑色方格(偶数个 ),经过操作,最后老是偶数个黑色方格,不会获取恰有一个黑色方格的方格纸.21.大于 3 的质数 p 只能拥有6k+ 1, 6k+ 5 的形式.若p=6k + 1(k ≥ 1),则 p+2=3(2k + 1)不是质数,所以,p =6k + 5(k ≥ 0).于是, p+1=6k + 6,所以, 6| (p+ 1) .22.由题设条件知n=75k=3 ×52 ×k .欲使 n 尽可能地小,可设 n=2α 3β 5γ (,β≥1γ≥,2)且有( α +1)( β+1)(+1)=75γ .于是α+ 1,β+1,γ+ 1 都是奇数,α,β,γ均为偶数.故取γ=2.这时( α+1)( β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20?324?5223.设凳子有x 只,椅子有y 只,由题意得3x+4y+2(x+y) = 43,即5x+6y = 43.所以 x=5, y=3 是独一的非负整数解.进而房间里有8 个人.8⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24.原方程可化为7x-8y+2z = 5.令 7x-8y=t , t +2z=5 .易见 x=7t , y=6t 是 7x-8y=t 的一组整数解.所以它的所有整数解是而 t=1, z=2 是 t+ 2z=5 的一组整数解.它的所有整数解是把 t 的表达式代到 x , y 的表达式中,获取原方程的所有整数解是25. (1)第一个地点有8 种选择方法,第二个地点只有7 种选择方法,,由乘法原理,男、女各有8×7×6×5×4×3×2×1= 40320种不一样摆列.又两列间有一相对地点关系,所以共有2×403202 种不一样状况.(2)逐一考虑结对问题.与男甲结对有8 种可能状况,与男乙结对有7 种不一样状况,,且两列可对调,所以共有2×8×7×6×5×4×3×2 ×1=80640种不一样状况.26.万位是 5 的有 4×3×2×1=24( 个 ).万位是 4 的有4×3×2×1=24( 个 ).万位是3,千位只能是 5 或 4,千位是 5 的有 3×2×1=6 个,千位是 4 的有以下 4 个:34215 , 34251, 34512 , 34521.所以,总合有24+24 + 6+4= 58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92 + 84=176( 米 ).设甲火车速度为x 米 /秒,乙火车速度为y 米 /秒.两车相向而行时的速度为x+y ;两车同向而行时的速度为x- y,依题意有解之得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯解之得x=9( 天 ), x +3=12( 天 ).解之得x=16( 海里 /小时 ).经查验, x=16 海里 /小时为所求之原速.30.设甲乙两车间昨年计划达成税利分别为x 万元和y 万元.依题意得解之得故甲车间超额达成税利乙车间超额达成税利所以甲共达成税利400+60=460( 万元 ),乙共达成税利350+35=385( 万元 ).31.设甲乙两种商品的原单价分别为x 元和 y 元,依题意可得由②有0.9x+1.2y=148.5 ,③由①得x=150-y ,代入③有0. 9(150-y) += 148. 5,解之得y=45( 元 ),因此, x=105( 元).32.设昨年每把牙刷x 元,依题意得2×+2(x+1)(1+30 % )=[2x + 3(x+1)]-0.4 ,即 2×+ 2×1.3+2 ×1.3x = 5x +,即 2.4x=2 ×1.68 ,所以x=1.4( 元 ).若 y 为昨年每支牙膏价钱,则y=1.4 +1=2.4( 元 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33.本来可获收益4×400=1600 元.设每件减价x 元,则每件仍可赢利(4-x) 元,此中0< x< 4.因为减价后,每日可卖出(400+200x) 件,若设每日赢利y 元,则y= (4-x)(400+200x)= 200(4-x)(2+x)=200(8 + 2x-x2)=-200(x2-2x+1) + 200+1600=-200(x-1)2+1800 .所以当 x=1 时, y 最大 =1800( 元 ).即每件减价 1 元时,赢利最大,为1800 元,此时比本来多卖出200 件,因此多赢利 200 元.34.设乙用x 分钟追上甲,则甲到被追上的地址应走了(25+x) 分钟,所以甲乙两人走的行程分别是0. 4(25+x) 千米和0. 6x 千米.因为两人走的行程相等,所以0.4(25+x)=0.6x ,解之得x=50 分钟.于是左侧 =0.4(25 + 50)=30( 千米 ),右侧 = 0.6 ×50=30( 千米 ),即乙用50 分钟走了30 千米才能追上甲.但 A ,B 两镇之间只有28 千米.所以,到 B 镇为止,乙追不上甲.35. (1) 设新合金中,含第一种合金x 克(g) ,第二种合金y 克,第三种合金z 克,则依题意有(2) 当 x=0 时,大 500 克.(3) 新合金中,含锰重量为:x?40%+ y?10% +z?50% =400-0.3x ,y=250 ,此时, y 为最小;当z=0 时, y=500 为最大,即250 ≤ y≤ 500,所以在新合金中第二种合金重量y 的范围⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯是:最小250 克,最而 0≤x≤500,所以新合金中锰的重量范围是:最小250 克,最大400 克.。
初一数学奥数题及答案初一数学奥数题通常包括一些基础的数学问题,以及一些需要创造性思维和逻辑推理的题目。
以下是一些典型的初一奥数题目及答案:# 题目1:数字问题小明在计算一个数的平方时,错误地将这个数写成了两倍,结果得到了400。
请问正确的数是多少?答案:设这个数为 \( x \),根据题意,我们有 \( (2x)^2 = 400 \)。
\( 4x^2 = 400 \)。
\( x^2 = 100 \)。
\( x = 10 \) 或 \( x = -10 \)(在实际问题中,我们通常取正数)。
所以,正确的数是10。
# 题目2:逻辑推理有5个盒子,分别标有1到5号。
每个盒子里都装有不同数量的糖果,但只有一个盒子里的糖果数量是奇数。
1号盒子里的糖果数量是2号盒子的两倍,3号盒子里的糖果数量是4号盒子的两倍,5号盒子里的糖果数量是偶数。
根据这些信息,哪个盒子里的糖果数量是奇数?答案:由于5号盒子的糖果数量是偶数,那么1号、2号、3号和4号盒子中必须有一个盒子的糖果数量是奇数。
1号盒子的糖果数量是2号的两倍,所以1号和2号盒子的糖果数量要么都是偶数,要么都是奇数。
但题目说只有一个盒子的糖果数量是奇数,所以1号和2号盒子的糖果数量不能都是奇数。
3号盒子的糖果数量是4号盒子的两倍,所以如果4号盒子是奇数,3号盒子也是奇数,这与题目条件不符。
因此,4号盒子的糖果数量是偶数,3号盒子的糖果数量也是偶数。
由于5号盒子是偶数,1号和2号盒子不能都是奇数,3号和4号盒子都是偶数,所以只有1号盒子的糖果数量是奇数。
# 题目3:几何问题在一个直角三角形中,如果一条直角边的长度是另一条直角边的两倍,且斜边的长度是10,求两条直角边的长度。
答案:设较短的直角边长度为 \( x \),较长的直角边长度为 \( 2x \)。
根据勾股定理,我们有 \( x^2 + (2x)^2 = 10^2 \)。
\( x^2 + 4x^2 = 100 \)。
完整版)初一奥数题集(带答案) 奥数1、求(-1)^2002的值。
答案:12、如果a是有理数,那么a+2000的值不能是多少?答案:03、计算2007-[2006-{2007-(2006-2007)}]的值。
答案:20094、计算(-1)+(-1)-(-1)×(-1)÷(-1)的结果。
答案:-15、计算(-1)^2006+(-1)^2007÷-1^2008的结果。
答案:06、计算-2÷(-2)^2+(-2)的结果。
答案:07、计算3.825×-1.825+0.25×3.825+3.825×0.的结果。
答案:-2.58、计算2002-2001+2000-1999+…+2-1的值。
答案:10019、计算-1÷2.5×(-0.75)^(-1)÷(-1)×(-1)的结果。
答案:0.610、计算-5×+6×的结果。
答案:11、计算2-2+2-3+2-4+…+2-9+2^10的值。
答案:102212、计算(1/3)+(2/4)+(3/6)+…+(n/n+1)的值。
答案:n/(n+1)13、计算1×2×3+2×4×6+7×14×21/2的结果。
答案:10514、求x+1+x-2的最小值及取最小值时x的取值范围。
答案:最小值为-1,x的取值范围为[2,∞)。
已知实数$a,b,c$满足$-1c>a$,求$c-1+a-c-a-b$的值。
解题思路:将$c-1+a-c-a-b$化简,得到$a-2c-b-1$,然后根据题目中的不等式关系,将$a,b,c$表示成$c$的形式,代入化简后的式子中,即可得到答案。
具体步骤如下:由题意得:$c-1c>a$,即$b-a>a-c$,$b-c>c-a$。
将$c-1+a-c-a-b$化简,得到$a-2c-b-1$。
初一奥数题〔附答案〕1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.假如m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x 的取值X围.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4,求u=3 x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶D C=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K与L,对角线A C‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一X8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作〞,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足如下条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子假如干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,假如相向而行,相遇后经过1.5秒(s)两车错过,假如同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.假如甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?甲:460万乙:290万31.甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?甲:105 乙:4532.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价3 0%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,假如每件少卖1元,如此每天可多卖出200件,问每件应减价多少元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;0.9+0.25x(2)求新合金中含第二种合金的重量X围;最大:1.035 最小:0.905(3)求新合金中含锰的重量X围.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|= x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入等式中,得a0+a2+a4+a6=-8128.10.由可解出y和z 因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称〞的方法将小柱的这条折线的路线转化成两点之间的一段“连线〞(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,如此从甲→A→B→乙的路线的选择是最好的选择(即路线最短〕显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠C OE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.因此,∠DOE的补角为 180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°与BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知 BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以 BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A +2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又 S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以 S△EFGD=3S△BFD.设S△BFD=x,如此SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以 S△CEG=S△B CEE,从而所以 SEFDC=3x+2x=5x,所以 S△BFD∶SEFDC=1∶5.18.如图1-102所示.由AC‖KL,所以S△ACK=S△ACL,所以即 KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否认的.设横行或竖列上包含k个黑色方格与8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格与k个白色方格.因此,操作一次后,黑色方格的数目“增加了〞(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.假如p=6k+1(k≥1),如此p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有 (α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时 (α+1)(β+1)= 25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•52 23.设凳子有x只,椅子有y只,由题意得 3x+4y+2(x+y)=43,即 5x+6y=43.所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有 8×7×6×5×4×3×2×1=40320 种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有 2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有 4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有 24+24+6+4=58 个数大于34152.27.两车错过所走过的距离为两车长之总和,即 92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y 米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3 =12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即 2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以 x=1.4(元).假如y为去年每支牙膏价格,如此y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,如此每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,假如设每天获利y元,如此y=(4-x)(400+200x) =200(4-x)(2+x) =200(8+2x-x2) =-200(x2-2x+1)+200+1600 =-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,如此依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z =0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的X围是:最小250克,最而0≤x ≤500,所以新合金中锰的重量X围是:最小250克,最大400克.。